CN105461346A - Method for preparing porous material by use of blast furnace slag titanium-extracting tailings - Google Patents
Method for preparing porous material by use of blast furnace slag titanium-extracting tailings Download PDFInfo
- Publication number
- CN105461346A CN105461346A CN201510819224.XA CN201510819224A CN105461346A CN 105461346 A CN105461346 A CN 105461346A CN 201510819224 A CN201510819224 A CN 201510819224A CN 105461346 A CN105461346 A CN 105461346A
- Authority
- CN
- China
- Prior art keywords
- blast furnace
- furnace slag
- titanium tailings
- porous material
- tailings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002893 slag Substances 0.000 title claims abstract description 66
- 239000011148 porous material Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000010936 titanium Substances 0.000 claims abstract description 65
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 65
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 63
- 238000005245 sintering Methods 0.000 claims abstract description 23
- 239000011230 binding agent Substances 0.000 claims abstract description 15
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 238000001035 drying Methods 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 5
- 235000012538 ammonium bicarbonate Nutrition 0.000 claims description 3
- 229910021538 borax Inorganic materials 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 235000013312 flour Nutrition 0.000 claims description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 3
- 239000004328 sodium tetraborate Substances 0.000 claims description 3
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 3
- 229920003987 resole Polymers 0.000 claims 2
- 238000007493 shaping process Methods 0.000 claims 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 239000008204 material by function Substances 0.000 abstract description 3
- 238000004064 recycling Methods 0.000 abstract description 3
- 238000001784 detoxification Methods 0.000 abstract description 2
- 239000012752 auxiliary agent Substances 0.000 abstract 1
- 230000003020 moisturizing effect Effects 0.000 abstract 1
- 239000000440 bentonite Substances 0.000 description 5
- 229910000278 bentonite Inorganic materials 0.000 description 5
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 4
- 229910052808 lithium carbonate Inorganic materials 0.000 description 4
- 229920001568 phenolic resin Polymers 0.000 description 4
- 239000005011 phenolic resin Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 3
- 239000000080 wetting agent Substances 0.000 description 3
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 2
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 2
- 239000005711 Benzoic acid Substances 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000001099 ammonium carbonate Substances 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- 235000010233 benzoic acid Nutrition 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/06—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
- C04B38/063—Preparing or treating the raw materials individually or as batches
- C04B38/0635—Compounding ingredients
- C04B38/0645—Burnable, meltable, sublimable materials
- C04B38/068—Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/131—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/132—Waste materials; Refuse; Residues
- C04B33/138—Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
本发明属于钛渣回收利用领域,具体涉及利用高炉渣提钛尾渣制备多孔材料的方法。本发明要解决的技术问题是目前对高炉渣提钛尾渣的再利用经济价值不高。发明解决上述技术问题的方案是提供一种利用高炉渣提钛尾渣制备多孔材料的方法,包括以下步骤:a、将干燥后的高炉渣提钛尾渣与造孔剂、粘结剂、烧结助剂和增湿剂混合均匀后成型;b、将上述成型的混合物干燥后,经高温烧结,得到多孔材料。本发明提供的方法,既拓宽了高炉渣提钛尾渣无害化、减量化和资源化途径,又可获得经济附加值更高的功能材料。
The invention belongs to the field of recycling titanium slag, and in particular relates to a method for preparing porous materials by extracting titanium tailings from blast furnace slag. The technical problem to be solved by the invention is that currently the economic value of reusing the titanium tailings from the blast furnace slag is not high. The solution of the invention to solve the above-mentioned technical problems is to provide a method for preparing porous materials by using blast furnace slag to extract titanium tailings, including the following steps: a, combining the dried blast furnace slag with pore-forming agent, binder, sintering The auxiliary agent and the moisturizing agent are mixed uniformly and then formed; b. After the above-mentioned formed mixture is dried, it is sintered at high temperature to obtain a porous material. The method provided by the invention not only broadens the ways of detoxification, reduction and resource utilization of titanium tailings extracted from blast furnace slag, but also can obtain functional materials with higher economic added value.
Description
技术领域technical field
本发明属于钛渣回收利用领域,具体涉及利用高炉渣提钛尾渣制备多孔材料的方法。The invention belongs to the field of recycling titanium slag, and in particular relates to a method for preparing porous materials by extracting titanium tailings from blast furnace slag.
背景技术Background technique
攀钢自投产以来,高钛型高炉渣储量已达数千万吨。高钛型高炉渣中含有约20%的二氧化钛,经过科研人员长期摸索实践,已总结出高温碳化-低温选择氯化-水洗尾渣成套工艺技术,该工艺技术产生的提钛尾渣属于大宗固体废弃物,其成分以CaO、SiO2和Al2O3为主,此外还包括其他一些含量较低的金属氧化物。氯化法提钛尾渣粒度较细,具有一定的活性,实现其资源化高效利用不仅满足国家节能减排的战略需求,同时具有重要经济价值。Since Panzhihua Iron and Steel was put into production, the reserves of high-titanium blast furnace slag have reached tens of millions of tons. High-titanium blast furnace slag contains about 20% titanium dioxide. After long-term exploration and practice by scientific researchers, a complete set of high-temperature carbonization-low-temperature selective chlorination-water washing tailings has been summed up. The titanium-extracting tailings produced by this process are bulk solids Waste, its composition is mainly CaO, SiO 2 and Al 2 O 3 , and also includes some other metal oxides with low content. The titanium tailings extracted by the chlorination method have a finer particle size and certain activity. The efficient utilization of its resources not only meets the national strategic needs for energy conservation and emission reduction, but also has important economic value.
当前,高炉渣提钛尾渣的再利用技术主要涉及建材等方面,用作建材辅料虽然可以大量减少尾渣堆存,但其经济价值有限。因此,研究开发经济价值更高的功能材料,对于高炉渣提钛尾渣的高效资源化利用具有重要意义。At present, the recycling technology of titanium tailings from blast furnace slag mainly involves building materials and other aspects. Although the use of building materials as auxiliary materials can greatly reduce the accumulation of tailings, its economic value is limited. Therefore, the research and development of functional materials with higher economic value is of great significance for the efficient resource utilization of titanium tailings from blast furnace slag.
发明内容Contents of the invention
本发明要解决的技术问题是目前对高炉渣提钛尾渣的再利用经济价值不高。The technical problem to be solved by the invention is that currently the economic value of reusing the titanium tailings from the blast furnace slag is not high.
发明解决上述技术问题的方案是提供一种利用高炉渣提钛尾渣制备多孔材料的方法,包括以下步骤:The solution of the invention to solve the above technical problems is to provide a method for preparing porous materials by extracting titanium tailings from blast furnace slag, which includes the following steps:
a、将干燥后的高炉渣提钛尾渣与造孔剂、粘结剂、烧结助剂和增湿剂混合均匀后成型;a. Mix the dried titanium tailings from blast furnace slag with pore-forming agent, binder, sintering aid and humidifier evenly before forming;
b、将上述成型的混合物干燥后,经高温烧结,得到多孔材料。b. After drying the formed mixture above, sintering at high temperature to obtain a porous material.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述的干燥是指常规干燥,干燥温度为100~120℃。In the method for preparing porous materials by extracting titanium tailings from blast furnace slag, the drying in step a refers to conventional drying, and the drying temperature is 100-120°C.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述的造孔剂为炭粉、面粉、碳酸氢铵、苯甲酸、酚醛树脂或聚甲基丙烯酸甲酯中的任意一种。In the above-mentioned method for preparing porous materials by extracting titanium tailings from blast furnace slag, the pore-forming agent described in step a is any one of carbon powder, flour, ammonium bicarbonate, benzoic acid, phenolic resin or polymethyl methacrylate .
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述的粘结剂为膨润土、沥青、环氧树脂或聚氨酯中的任意一种。所述粘结剂的添加量为高炉渣提钛尾渣质量的0~20%。优选的,粘结剂的添加量为高炉渣提钛尾渣质量的<5%。In the method for preparing porous materials by extracting titanium tailings from blast furnace slag, the binder in step a is any one of bentonite, asphalt, epoxy resin or polyurethane. The addition amount of the binder is 0-20% of the mass of the titanium tailings extracted from the blast furnace slag. Preferably, the amount of the binder added is <5% of the mass of the titanium tailings extracted from the blast furnace slag.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述的烧结助剂为Co2O3、Fe2O3、MnO、Li2CO3或硼砂中的任意一种。所述烧结助剂的添加量为高炉渣提钛尾渣质量的0~8%。In the method for preparing porous materials by extracting titanium tailings from blast furnace slag, the sintering aid in step a is any one of Co 2 O 3 , Fe 2 O 3 , MnO, Li 2 CO 3 or borax. The addition amount of the sintering aid is 0-8% of the mass of the blast furnace slag titanium tailings.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述的增湿剂为水或酚醛树脂。所述增湿剂的添加量<高炉渣提钛尾渣质量的20%。In the method for preparing porous materials by extracting titanium tailings from blast furnace slag, the humidifying agent in step a is water or phenolic resin. The added amount of the wetting agent is less than 20% of the mass of the titanium tailings extracted from the blast furnace slag.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述高炉渣提钛尾渣与造孔剂的质量比为1:1~30:1。In the above method for preparing porous materials by using blast furnace slag to extract titanium tailings, the mass ratio of blast furnace slag to titanium tailings and pore-forming agent in step a is 1:1-30:1.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述成型的压力为0.3~500MPa。In the above method for preparing porous material by extracting titanium tailings from blast furnace slag, the forming pressure in step a is 0.3-500 MPa.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤b所述的干燥是指常规干燥,干燥温度为100~120℃。In the method for preparing porous materials by extracting titanium tailings from blast furnace slag, the drying in step b refers to conventional drying, and the drying temperature is 100-120°C.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤b所述高温烧结的温度为900~1200℃,烧结时间为0.5~6h。In the method for preparing porous materials by extracting titanium tailings from blast furnace slag, the high-temperature sintering temperature in step b is 900-1200° C., and the sintering time is 0.5-6 hours.
通过本发明提供的方法制备得到的多孔材料,其孔隙率和抗压强度可根据用户需求灵活调整,应用范围广。本发明提供的制备方法所需原料来源广泛、成本低,制备方法简单,适于工业化大规模生产。本发明提供的方法,既拓宽了高炉渣提钛尾渣无害化、减量化和资源化途径,又可获得经济附加值更高的功能材料。The porosity and compressive strength of the porous material prepared by the method provided by the invention can be flexibly adjusted according to user requirements, and the application range is wide. The preparation method provided by the invention requires wide sources of raw materials, low cost, simple preparation method and is suitable for large-scale industrial production. The method provided by the invention not only broadens the ways of detoxification, reduction and resource utilization of titanium tailings extracted from blast furnace slag, but also can obtain functional materials with higher economic added value.
附图说明Description of drawings
图1实施例1制备的样品图。The sample figure prepared in Fig. 1 embodiment 1.
图2实施例2制备的样品图。Figure 2 is the sample diagram prepared in Example 2.
图3实施例3制备的样品图。Fig. 3 is a diagram of a sample prepared in Example 3.
具体实施方式detailed description
利用高炉渣提钛尾渣制备多孔材料的方法,包括以下步骤:The method for preparing porous material by extracting titanium tailings from blast furnace slag comprises the following steps:
a、将干燥后的高炉渣提钛尾渣与造孔剂、粘结剂、烧结助剂和增湿剂混合均匀后成型;a. Mix the dried titanium tailings from blast furnace slag with pore-forming agent, binder, sintering aid and humidifier evenly before forming;
b、将上述成型的混合物干燥后,经高温烧结,得到多孔材料。b. After drying the formed mixture above, sintering at high temperature to obtain a porous material.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述的干燥是指常规干燥,干燥温度为100~120℃。In the method for preparing porous materials by extracting titanium tailings from blast furnace slag, the drying in step a refers to conventional drying, and the drying temperature is 100-120°C.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述的造孔剂为炭粉、面粉、碳酸氢铵、苯甲酸、酚醛树脂或聚甲基丙烯酸甲酯中的任意一种。In the above-mentioned method for preparing porous materials by extracting titanium tailings from blast furnace slag, the pore-forming agent described in step a is any one of carbon powder, flour, ammonium bicarbonate, benzoic acid, phenolic resin or polymethyl methacrylate .
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述的粘结剂可采用具有粘结性能的天然或合成粘结剂,如膨润土、沥青、环氧树脂或聚氨酯中的任意一种。所述粘结剂的添加量为高炉渣提钛尾渣质量的0~20%。可根据对抗压强度的需求调整,优选的,粘结剂的添加量为高炉渣提钛尾渣质量的<5%。In the above-mentioned method for preparing porous materials by extracting titanium tailings from blast furnace slag, the binder described in step a can be a natural or synthetic binder with bonding properties, such as any of bentonite, asphalt, epoxy resin or polyurethane. A sort of. The addition amount of the binder is 0-20% of the mass of the titanium tailings extracted from the blast furnace slag. It can be adjusted according to the demand for compressive strength. Preferably, the amount of the binder added is <5% of the mass of the blast furnace slag titanium tailings.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述的烧结助剂可采用对烧结具有促进作用的氧化物、盐类或其他混合物,可以为Co2O3、Fe2O3、MnO、Li2CO3(碳酸锂)或硼砂中的任意一种,烧结助剂的添加量为高炉渣提钛尾渣质量的0~8%。In the above method for preparing porous materials by extracting titanium tailings from blast furnace slag, the sintering aid mentioned in step a can be oxides, salts or other mixtures that can promote sintering, and can be Co 2 O 3 , Fe 2 O 3. For any one of MnO, Li 2 CO 3 (lithium carbonate) or borax, the amount of the sintering aid added is 0-8% of the mass of the blast furnace slag and titanium tailings.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述的增湿剂为水或酚醛树脂。所述增湿剂的添加量<高炉渣提钛尾渣质量的20%。增湿剂可根据所选择的粘结剂品种来确定是否增加,不是必须。In the method for preparing porous materials by extracting titanium tailings from blast furnace slag, the humidifying agent in step a is water or phenolic resin. The added amount of the wetting agent is less than 20% of the mass of the titanium tailings extracted from the blast furnace slag. The wetting agent can be increased according to the type of binder selected, but it is not necessary.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述高炉渣提钛尾渣与造孔剂的质量比为1:1~30:1,可根据对多孔材料的要求灵活控制,保证烧结后仍能成型即可。In the above method for preparing porous materials by using blast furnace slag to extract titanium tailings, the mass ratio of blast furnace slag to titanium tailings and pore-forming agent in step a is 1:1 to 30:1, which can be flexibly controlled according to the requirements for porous materials , to ensure that it can still be formed after sintering.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤a所述成型的压力为0.3~500MPa。可根据产品的需求适当调整。In the above method for preparing porous material by extracting titanium tailings from blast furnace slag, the forming pressure in step a is 0.3-500 MPa. It can be adjusted appropriately according to the demand of the product.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤b所述的干燥是指常规干燥,干燥温度为100~120℃。In the method for preparing porous materials by extracting titanium tailings from blast furnace slag, the drying in step b refers to conventional drying, and the drying temperature is 100-120°C.
上述利用高炉渣提钛尾渣制备多孔材料的方法中,步骤b所述高温烧结温度为900~1200℃,烧结时间为0.5~6h。In the method for preparing porous materials by extracting titanium tailings from blast furnace slag, the high-temperature sintering temperature in step b is 900-1200° C., and the sintering time is 0.5-6 hours.
实施例1Example 1
按照高炉渣提钛尾渣︰炭粉︰膨润土︰碳酸锂=70︰30︰2︰2(质量比)准确称取物料,混合均匀后,加入约5%(上述物料总质量的质量百分比)的水,再次充分混合后于30MPa压力下成型;将成型后的素坯烘干,转入高温炉中于1000℃烧结4小时,得到多孔材料。According to blast furnace slag extracting titanium tailings: carbon powder: bentonite: lithium carbonate = 70: 30: 2: 2 (mass ratio) to accurately weigh the material, after mixing evenly, add about 5% (mass percentage of the total mass of the above-mentioned materials) water, fully mixed again, and molded under a pressure of 30MPa; the molded green body was dried, transferred to a high-temperature furnace for sintering at 1000°C for 4 hours, and a porous material was obtained.
阿基米德排水法测试表明此条件下所制备的多孔材料孔隙率约为64.3%,抗压强度约为0.91MPa。所制备的样品见图1。The Archimedes drainage method test shows that the porosity of the porous material prepared under this condition is about 64.3%, and the compressive strength is about 0.91MPa. The prepared samples are shown in Figure 1.
实施例2Example 2
按照高炉渣提钛尾渣︰炭粉︰膨润土︰碳酸锂=90︰10︰2︰2(质量比)准确称取物料,均匀混合,加入水约10%(上述物料总质量的质量百分比),再次充分混合后于50MPa压力下成型;将成型后的素坯烘干,转入高温炉中于1050℃烧结4小时,得到多孔材料。According to blast furnace slag extracting titanium tailings: carbon powder: bentonite: lithium carbonate=90: 10: 2: 2 (mass ratio), accurately weigh the material, mix evenly, add about 10% of water (mass percentage of the total mass of the above materials), After fully mixing again, molding under the pressure of 50 MPa; drying the molded green body, transferring it to a high-temperature furnace for sintering at 1050° C. for 4 hours to obtain a porous material.
阿基米德排水法测试表明此条件下所制备的多孔材料孔隙率约为51.3%,抗压强度约为19.17MPa。所制备的样品见图2。The Archimedes drainage method test shows that the porosity of the porous material prepared under this condition is about 51.3%, and the compressive strength is about 19.17MPa. The prepared samples are shown in Figure 2.
实施例3Example 3
按照高炉渣提钛尾渣:炭粉:膨润土:碳酸锂=80︰20︰2︰2(质量比)准确称取物料,均匀混合,加入水约7%(上述物料总质量的质量百分比),再次充分混合后于30MPa压力下成型;将成型后的素坯烘干,转入高温炉中于1100℃烧结4小时,得到多孔材料。Extract titanium tailings according to blast furnace slag: carbon powder: bentonite: lithium carbonate=80: 20: 2: 2 (mass ratio) and accurately weigh materials, mix evenly, add about 7% of water (mass percentage of the total mass of the above-mentioned materials), After fully mixing again, molding under the pressure of 30MPa; drying the molded green body, transferring it to a high-temperature furnace and sintering at 1100°C for 4 hours to obtain a porous material.
阿基米德排水法测试表明此条件下所制备的多孔材料孔隙率约为51.9%,抗压强度约为8.40MPa。所制备的样品见图3。The Archimedes drainage method test shows that the porosity of the porous material prepared under this condition is about 51.9%, and the compressive strength is about 8.40MPa. The prepared samples are shown in Figure 3.
本发明提供的制备方法所需原料来源广泛、成本低,制备方法简单,适于工业化大规模生产。The preparation method provided by the invention requires wide sources of raw materials, low cost, simple preparation method and is suitable for large-scale industrial production.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510819224.XA CN105461346A (en) | 2015-11-23 | 2015-11-23 | Method for preparing porous material by use of blast furnace slag titanium-extracting tailings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510819224.XA CN105461346A (en) | 2015-11-23 | 2015-11-23 | Method for preparing porous material by use of blast furnace slag titanium-extracting tailings |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105461346A true CN105461346A (en) | 2016-04-06 |
Family
ID=55599570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510819224.XA Pending CN105461346A (en) | 2015-11-23 | 2015-11-23 | Method for preparing porous material by use of blast furnace slag titanium-extracting tailings |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105461346A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106076256A (en) * | 2016-07-06 | 2016-11-09 | 中山大学 | A kind of preparation method and applications of nanometer Fe (0) porous mud material with carbon element |
CN106810291A (en) * | 2017-03-12 | 2017-06-09 | 江西理工大学 | A kind of water treatment ceramsite of cobalt melting waste slag base and preparation method thereof |
CN109589911A (en) * | 2018-11-23 | 2019-04-09 | 江苏科技大学 | A kind of modified blast furnace slag and its application |
CN110668786A (en) * | 2019-09-25 | 2020-01-10 | 攀钢集团攀枝花钢铁研究院有限公司 | A kind of foam ceramic and its preparation method and application |
CN113087543A (en) * | 2021-03-31 | 2021-07-09 | 成渝钒钛科技有限公司 | High-titanium blast furnace slag high-strength lightweight aggregate and preparation method thereof |
CN116606161A (en) * | 2023-05-25 | 2023-08-18 | 攀枝花学院 | Method for preparing porous ceramics from titanium-containing blast furnace slag and silicon slag |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101544502A (en) * | 2009-04-24 | 2009-09-30 | 武汉科技大学 | Anorthite light weight refractory and preparation method thereof |
CN102924113A (en) * | 2012-11-09 | 2013-02-13 | 中南大学 | Copper mine tailing slag porous ceramic material and preparation method thereof |
CN104496535A (en) * | 2015-01-04 | 2015-04-08 | 中南大学 | Foamed ceramic mainly prepared from silica sand tailing and fly ash and preparation method thereof |
-
2015
- 2015-11-23 CN CN201510819224.XA patent/CN105461346A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101544502A (en) * | 2009-04-24 | 2009-09-30 | 武汉科技大学 | Anorthite light weight refractory and preparation method thereof |
CN102924113A (en) * | 2012-11-09 | 2013-02-13 | 中南大学 | Copper mine tailing slag porous ceramic material and preparation method thereof |
CN104496535A (en) * | 2015-01-04 | 2015-04-08 | 中南大学 | Foamed ceramic mainly prepared from silica sand tailing and fly ash and preparation method thereof |
Non-Patent Citations (1)
Title |
---|
周张健: "《无机非金属材料工艺学》", 31 January 2010 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106076256A (en) * | 2016-07-06 | 2016-11-09 | 中山大学 | A kind of preparation method and applications of nanometer Fe (0) porous mud material with carbon element |
CN106810291A (en) * | 2017-03-12 | 2017-06-09 | 江西理工大学 | A kind of water treatment ceramsite of cobalt melting waste slag base and preparation method thereof |
CN106810291B (en) * | 2017-03-12 | 2019-11-22 | 江西理工大学 | Water treatment ceramsite based on cobalt smelting waste slag and preparation method thereof |
CN109589911A (en) * | 2018-11-23 | 2019-04-09 | 江苏科技大学 | A kind of modified blast furnace slag and its application |
CN110668786A (en) * | 2019-09-25 | 2020-01-10 | 攀钢集团攀枝花钢铁研究院有限公司 | A kind of foam ceramic and its preparation method and application |
CN113087543A (en) * | 2021-03-31 | 2021-07-09 | 成渝钒钛科技有限公司 | High-titanium blast furnace slag high-strength lightweight aggregate and preparation method thereof |
CN116606161A (en) * | 2023-05-25 | 2023-08-18 | 攀枝花学院 | Method for preparing porous ceramics from titanium-containing blast furnace slag and silicon slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105461346A (en) | Method for preparing porous material by use of blast furnace slag titanium-extracting tailings | |
CN104844023B (en) | A kind of method utilizing iron tailing solidifying copper tailing to make Mine ventilator material | |
CN102924113A (en) | Copper mine tailing slag porous ceramic material and preparation method thereof | |
CN104084126B (en) | The preparation method of biomass-based iron aluminium complex spherical charcoal | |
CN107083483A (en) | A kind of method for strengthening waste and old lithium ion battery metal recovery | |
CN106007423B (en) | The method that electric plating sludge resource utilizes | |
CN103964404B (en) | Ground phosphate rock is utilized to produce the method for the phosphorus ore sphere of powder | |
CN104193200A (en) | Preparation method of novel cementing material | |
CN102531438A (en) | Alkali-activated slag mortar | |
CN101323436B (en) | A method for reducing and decomposing phosphogypsum by using a composite reducing agent | |
CN106396636A (en) | Electrolytic manganese residue lightweight sintered brick and preparation method thereof | |
CN104451201B (en) | Two-grade curing vanadium extraction method for stone coal vanadium ores | |
CN108314340A (en) | It is a kind of using tailing as sulphoaluminate cement clinker of raw material and preparation method thereof | |
CN116332535A (en) | Method for producing active micro powder by cooperatively treating manganese slag by using fluidized bed furnace | |
CN107674973A (en) | A kind of method that mechanochemistry strengthens Leaching of chalcopyrite | |
CN108726926A (en) | A kind of method of red mud and bauxite grown place polymer cement mortar | |
CN105314940B (en) | Cement solidified body and method for treating toxic chromium slag by using same | |
CN103409619B (en) | Cooled agglomerated pellet and preparation method thereof | |
CN103755379B (en) | A method for preparing foamed hollow bricks with iron tailings as the main material | |
CN116553895A (en) | A kind of magnesium slag carbon fixation cementitious material and preparation method thereof | |
CN104630458A (en) | Preparation method of acidic chromium-containing vanadium-titanium sintered ore | |
CN104030589B (en) | A kind of iron tailings does heap solidifying agent and preparation method thereof | |
CN110540407B (en) | A kind of porous permeable brick fired by using carbonate-containing iron tailings and firing method thereof | |
CN111410447A (en) | A kind of steel slag-based multi-metal composite phosphate cement | |
CN104478343B (en) | A kind of acid-hatching of young eggs laterite nickel slag base steam pressure materials for wall and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160406 |
|
RJ01 | Rejection of invention patent application after publication |