CN105449510A - All solid state mid-infrared optical parametric oscillator - Google Patents
All solid state mid-infrared optical parametric oscillator Download PDFInfo
- Publication number
- CN105449510A CN105449510A CN201610005889.1A CN201610005889A CN105449510A CN 105449510 A CN105449510 A CN 105449510A CN 201610005889 A CN201610005889 A CN 201610005889A CN 105449510 A CN105449510 A CN 105449510A
- Authority
- CN
- China
- Prior art keywords
- laser
- level crossing
- crystal
- plane mirror
- mid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 29
- 239000007787 solid Substances 0.000 title claims 3
- 239000013078 crystal Substances 0.000 claims abstract description 40
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 claims abstract description 15
- SBIBMFFZSBJNJF-UHFFFAOYSA-N selenium;zinc Chemical compound [Se]=[Zn] SBIBMFFZSBJNJF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000010453 quartz Substances 0.000 claims abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000005086 pumping Methods 0.000 claims description 8
- 230000010287 polarization Effects 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims 2
- 239000013307 optical fiber Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 17
- 230000000737 periodic effect Effects 0.000 abstract description 11
- 239000006096 absorbing agent Substances 0.000 abstract description 10
- 230000008878 coupling Effects 0.000 abstract description 7
- 238000010168 coupling process Methods 0.000 abstract description 7
- 238000005859 coupling reaction Methods 0.000 abstract description 7
- -1 second plane mirror Chemical compound 0.000 abstract description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract 1
- 229910052791 calcium Inorganic materials 0.000 abstract 1
- 239000011575 calcium Substances 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 238000011161 development Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 4
- 229910001634 calcium fluoride Inorganic materials 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000006117 anti-reflective coating Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
- H01S3/108—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
- H01S3/1083—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
- Lasers (AREA)
Abstract
一种全固态中红外光参量振荡器,包括尾纤输出的1.5μm窄线宽激光二极管(以下简称为LD),沿该激光二极管的激光输出方向依次是聚焦耦合系统、第一平面镜、Er:YAG激光晶体、饱和吸收体Cr:ZnSe、起偏器、石英片标准具、第二平面镜、MgO:PPLN非线性周期极化晶体和第三平面镜,在第二平面镜的反射光方向依次是氟化钙标准具和平凹腔镜。本发明泵浦源为被动调Q的1.6μm脉冲激光,可使整个系统结构更加简单紧凑,能够充分利用腔内1.6μm激光高的功率密度,提高整个QPM-OPO系统的转换效率和输出功率,而且整个系统的工作波长都控制在人眼安全波段,实现了全固态的中红外光学参量振荡器的可调谐输出。
An all-solid-state mid-infrared optical parametric oscillator, including a 1.5 μm narrow-linewidth laser diode (hereinafter referred to as LD) output by a pigtail, along the laser output direction of the laser diode is a focusing coupling system, a first plane mirror, Er: YAG laser crystal, saturable absorber Cr:ZnSe, polarizer, quartz plate etalon, second plane mirror, MgO:PPLN nonlinear periodic poled crystal and the third plane mirror, the reflected light direction of the second plane mirror is fluorinated in sequence Calcium etalon and plano-concave cavity mirror. The pump source of the present invention is a passively Q-switched 1.6 μm pulsed laser, which can make the whole system structure simpler and more compact, can make full use of the high power density of the 1.6 μm laser in the cavity, and improve the conversion efficiency and output power of the entire QPM-OPO system, Moreover, the working wavelength of the whole system is controlled in the human eye-safe band, realizing the tunable output of the all-solid-state mid-infrared optical parametric oscillator.
Description
技术领域technical field
本发明涉及中红外激光,特别是一种全固态中红外光参量振荡器,基于周期极化晶体、准相位匹配技术,利用内腔式OPO的方式,其中泵浦源采用被动调Q的1.6μm脉冲激光,实现高功率中红外激光输出的全固态中红外光参量振荡器。The present invention relates to mid-infrared lasers, in particular to an all-solid-state mid-infrared optical parametric oscillator, which is based on periodically polarized crystals and quasi-phase-matching technology, and utilizes an inner-cavity OPO, in which the pump source adopts passively Q-switched 1.6 μm Pulse laser, an all-solid-state mid-infrared optical parametric oscillator for high-power mid-infrared laser output.
背景技术Background technique
由于3~5μm波段内的中红外激光正好处于大气窗口,而且还处在一些有害、有毒气体以及水和二氧化碳等重要分子的吸收带上,中红外激光在激光雷达、遥感、环境监测、医疗以及红外对抗等方面有着重要应用价值和前景。Since the mid-infrared laser in the 3-5μm band is just in the atmospheric window, and is also in the absorption band of some harmful and toxic gases, as well as important molecules such as water and carbon dioxide, the mid-infrared laser is widely used in lidar, remote sensing, environmental monitoring, medical and Infrared countermeasures and other aspects have important application value and prospects.
基于获得中红外波段3~5μm激光,国内外相关机构开展了大量研究工作并取得了一定成绩。其中最热门的研究主要集中在中红外固体激光器、中红外半导体量子级联激光器和光学参量振荡器。从固体激光器中直接获得中红外激光输出,目前研究较多的是基于Er3+、Fe2+、Ho3+、Dy3+等不同激活离子的基质材料。例如采用高掺杂Er3+离子的Er:YAG激光晶体作为增益介质,利用980nm半导体激光器作为泵浦源,可以得到3μm附件的中红外激光输出。另外还可以利用3μm的Er:YAG激光器泵浦掺Fe2+的ZnSe,得到3.95~5.05μm波段的中红外激光输出。但是通过固体激光器直接得到中红外激光输出的效率目前还是比较低的,而且可供选择的增益介质还非常有限。中红外半导体量子级联激光器有结构简单、体积小和可实现任意波长等优点,但是由于量子阱的制作工艺比较复杂,目前这方面的研究尚处于起步状态。另一方面,中红外半导体量子级联激光器对工作温度要求比较苛刻,虽然目前已获得室温下连续光输出,但若实现高功率中红外激光还是具有相当大的难度。Based on the acquisition of 3-5 μm lasers in the mid-infrared band, relevant institutions at home and abroad have carried out a lot of research work and achieved certain results. Among them, the most popular research focuses on mid-infrared solid-state lasers, mid-infrared semiconductor quantum cascade lasers and optical parametric oscillators. The mid-infrared laser output can be directly obtained from solid-state lasers. At present, most studies are based on matrix materials based on different active ions such as Er 3+ , Fe 2+ , Ho 3+ , and Dy 3+ . For example, using Er:YAG laser crystal with high doping Er 3+ ions as the gain medium, and using a 980nm semiconductor laser as the pump source, the mid-infrared laser output near 3μm can be obtained. In addition, a 3 μm Er:YAG laser can be used to pump Fe 2+ -doped ZnSe to obtain a mid-infrared laser output in the 3.95-5.05 μm band. However, the efficiency of directly obtaining mid-infrared laser output through solid-state lasers is still relatively low, and the available gain media are still very limited. Mid-infrared semiconductor quantum cascade lasers have the advantages of simple structure, small size, and the ability to realize arbitrary wavelengths. However, due to the complicated fabrication process of quantum wells, research in this area is still in its infancy. On the other hand, mid-infrared semiconductor quantum cascade lasers have strict requirements on operating temperature. Although continuous light output at room temperature has been obtained, it is still quite difficult to realize high-power mid-infrared lasers.
目前,通过参量转换的光学参量振荡器是实现高功率中红外激光输出的一个重要途径。由于近红外激光器技术发展的日益成熟,全固化小型化的近红外激光器已经商业化,并且大非线性系数、高损伤阈值和高稳定性的非线性光学材料的研制成功,极大地促进了OPO技术的发展。特别是准相位匹配技术出现以来,因准相位匹配技术可以充分利用非线性晶体的最大非线性系数、消除了空间走离效应和采用较长的非线性晶体,并且制作周期极化晶体的工艺也日益成熟,基于准相位匹配技术的光学参量振荡器已成为获得3~5μm波段中红外激光的一个非常有效的技术路线。近十几年来,利用1μm附近的激光作为QPM-OPO泵浦源的研究在国内外进行了很多,并且也取得了非常好的成绩。但是受到1μm泵浦光到中红外激光的量子转换效率的极大限制,依然无法超出Manley-Rowe关系的量子限制。近年来,随着2μm激光器的发展以及2μm激光材料的成熟,很多研究人员采取2μm激光器作为泵浦源,以便能够超出利用1μm激光器作为泵浦源的量子转换效率的限制。但是目前利用2μm激光器作为泵浦源的QPM-OPO的转换效率并没有得到很大提高,这主要是因为2μm激光材料的荧光线宽都比较宽,为QPM-OPO提供一个理想的窄线宽的2μm激光泵浦源比较困难。到目前为止,利用2μm激光泵浦PPLN-OPO的转换效率最高才能达到30%左右。另外,2μm激光器基本上都采用790nm附近的激光二极管(以下简称为LD)作为泵浦源,因此OPO整个系统的量子效率受到极大的限制。最近一些研究人员又把目光转向Er掺杂光纤激光器和Er掺杂光纤激光器泵浦的Er:YAG激光器OPO的泵浦源,泵浦源不仅输出的1.6μm激光处在人眼安全波段,而且相对于1μm泵浦源的量子转换效率得到提高以及比2μm激光更容易实现窄线宽输出。比如S.Desμmoulins等人报道了利用1.54μm脉冲的Er,Yb双掺的光纤激光器作为OPO的泵浦源,泵浦PPLN晶体得到了中红外激光的调谐输出。美国的Y.E.Young等人报道了采用1645nm的Er:YAG激光器作为PPLN晶体的泵浦源,在简并点处得到了3290nm中红外激光的3.7W输出。以上两种实验中采用了同带泵浦技术也就是利用掺Er的光纤激光器作为Er:YAG激光器的泵浦源,但是采用1.6μm激光作为QPM-OPO泵浦源的系统中并没有实现全固化,复杂的结构给整个系统增加了体积,而且整个系统中Er掺杂光纤激光器都要采用980nm附近的LD作为泵浦源,导致整个QPM-OPO系统的量子转换效率受到最初一级泵浦源的极大限制。At present, the optical parametric oscillator through parametric conversion is an important way to realize high-power mid-infrared laser output. Due to the increasingly mature development of near-infrared laser technology, fully solidified miniaturized near-infrared lasers have been commercialized, and the successful development of nonlinear optical materials with large nonlinear coefficients, high damage thresholds and high stability has greatly promoted OPO technology. development of. Especially since the emergence of quasi-phase matching technology, because quasi-phase matching technology can make full use of the maximum nonlinear coefficient of nonlinear crystals, eliminate the space walk-off effect and use longer nonlinear crystals, and the process of making periodic poled crystals is also With increasing maturity, the optical parametric oscillator based on quasi-phase matching technology has become a very effective technical route for obtaining mid-infrared lasers in the 3-5 μm band. In the past ten years, a lot of research has been carried out at home and abroad on the use of lasers near 1 μm as the pump source of QPM-OPO, and very good results have been achieved. However, due to the great limitation of the quantum conversion efficiency of 1 μm pump light to mid-infrared laser, it still cannot exceed the quantum limit of the Manley-Rowe relationship. In recent years, with the development of 2μm lasers and the maturity of 2μm laser materials, many researchers have adopted 2μm lasers as pumping sources in order to exceed the limit of quantum conversion efficiency using 1μm lasers as pumping sources. However, at present, the conversion efficiency of QPM-OPO using 2 μm laser as the pump source has not been greatly improved, mainly because the fluorescence linewidth of 2 μm laser materials is relatively wide, which provides an ideal narrow linewidth for QPM-OPO. 2μm laser pumping source is more difficult. So far, the conversion efficiency of PPLN-OPO pumped by 2 μm laser can reach about 30%. In addition, 2μm lasers basically use a laser diode (hereinafter referred to as LD) near 790nm as the pump source, so the quantum efficiency of the entire OPO system is greatly limited. Recently, some researchers have turned their attention to the Er-doped fiber laser and the Er:YAG laser OPO pumped by the Er-doped fiber laser. The quantum conversion efficiency of the 1μm pump source is improved and it is easier to achieve narrow linewidth output than the 2μm laser. For example, S.Desμmoulins et al. reported that the Er, Yb double-doped fiber laser with 1.54μm pulse was used as the pump source of OPO, and the tuned output of mid-infrared laser was obtained by pumping PPLN crystal. Y.E.Young et al. in the United States reported that a 1645nm Er:YAG laser was used as the pump source of the PPLN crystal, and a 3.7W output of a 3290nm mid-infrared laser was obtained at the degeneracy point. In the above two experiments, the same-band pumping technology was used, that is, the Er-doped fiber laser was used as the pump source of the Er:YAG laser, but the system using 1.6 μm laser as the QPM-OPO pump source did not achieve full curing. , the complex structure increases the volume of the entire system, and the Er-doped fiber laser in the entire system must use LD near 980nm as the pump source, resulting in the quantum conversion efficiency of the entire QPM-OPO system being limited by the initial pump source Extremely restrictive.
发明内容Contents of the invention
本发明的目的在于提供一种全固态中红外光参量振荡器,该装置直接采用1.5μmLD同带泵浦Er:YAG增益介质,通过Cr:ZnSe可饱和吸收体获得1.6μm脉冲激光输出,用做QPM-OPO的泵浦源,使整个OPO系统的量子转换效率得到极大提高,而且基于QPM技术灵活多样的调谐方式,实现3~5μm波段内参量光的可调谐输出。另外,采用内腔式OPO的方式,其中泵浦源为被动调Q的1.6μm脉冲激光,这样可使整个系统结构更加简单紧凑,能够充分利用腔内1.6μm激光高的功率密度,提高整个QPM-OPO系统的转换效率和输出功率,而且整个系统的工作波长都控制在人眼安全波段,可实现全固态的中红外光学参量振荡器的可调谐输出。The object of the present invention is to provide an all-solid-state mid-infrared optical parametric oscillator, which directly uses 1.5 μm LLD to pump the Er:YAG gain medium in the same band, and obtains a 1.6 μm pulse laser output through a Cr:ZnSe saturable absorber, which is used as The pump source of QPM-OPO greatly improves the quantum conversion efficiency of the entire OPO system, and based on the flexible and diverse tuning methods of QPM technology, the tunable output of internal parametric light in the 3-5 μm band is realized. In addition, the intracavity OPO method is adopted, in which the pump source is a passive Q-switched 1.6μm pulsed laser, which can make the entire system structure simpler and more compact, and can make full use of the high power density of the intracavity 1.6μm laser to improve the entire QPM - The conversion efficiency and output power of the OPO system, and the operating wavelength of the entire system is controlled in the human eye-safe band, which can realize the tunable output of the all-solid-state mid-infrared optical parametric oscillator.
本发明的技术解决方案如下:Technical solution of the present invention is as follows:
一种全固态中红外光参量振荡器,特点在于其构成包括尾纤输出的1.5μm窄线宽激光二极管(以下简称为LD),沿该激光二极管的激光输出方向依次是聚焦耦合系统、第一平面镜、Er:YAG激光晶体、饱和吸收体Cr:ZnSe、起偏器、石英片标准具、第二平面镜、MgO:PPLN非线性周期极化晶体和第三平面镜,所述的第一平面镜和第三平面镜分别为1.6μm被动调Q激光器的前腔镜和后腔镜,腔内依次是Er:YAG激光晶体、饱和吸收体Cr:ZnSe、起偏器、石英片标准具、第二平面镜、MgO:PPLN非线性周期极化晶体,所述的起偏器以布儒斯特角放置,所述的第二平面镜45度放置,1.6μm激光的偏振方向平行于所述的MgO:PPLN非线性周期极化晶体的z轴,在第二平面镜的反射光方向依次是氟化钙标准具和平凹腔镜,所述的第二平面镜、第三平面镜和平凹腔镜组成光参量振荡器的谐振腔,所述的1.5μm窄线宽激光二极管作为泵浦源,经过聚焦耦合系统聚焦到Er:YAG激光晶体内部。An all-solid-state mid-infrared optical parametric oscillator, which is characterized in that it consists of a 1.5 μm narrow linewidth laser diode (hereinafter referred to as LD) output by a pigtail. Along the laser output direction of the laser diode, there are focusing coupling system, first plane mirror, Er:YAG laser crystal, saturable absorber Cr:ZnSe, polarizer, quartz plate etalon, second plane mirror, MgO:PPLN nonlinear periodic poled crystal and third plane mirror, the first plane mirror and the second plane mirror The three plane mirrors are the front cavity mirror and the back cavity mirror of the 1.6μm passive Q-switched laser, and the cavity is followed by Er:YAG laser crystal, saturable absorber Cr:ZnSe, polarizer, quartz plate etalon, second plane mirror, MgO : PPLN nonlinear periodic poled crystal, the polarizer is placed at the Brewster angle, the second plane mirror is placed at 45 degrees, and the polarization direction of the 1.6 μm laser is parallel to the MgO:PPLN nonlinear period The z-axis of the polarized crystal, in the reflected light direction of the second plane mirror, is the calcium fluoride etalon and the plano-concave cavity mirror in turn, and the second plane mirror, the third plane mirror and the plano-concave cavity mirror form the resonant cavity of the optical parametric oscillator, The 1.5 μm narrow linewidth laser diode is used as a pump source, which is focused into the Er:YAG laser crystal through a focusing coupling system.
所述的MgO:PPLN非线性周期极化晶体置于可调温控炉中。The MgO:PPLN nonlinear periodic poled crystal is placed in an adjustable temperature-controlled furnace.
所述的带尾纤输出的1.5μm窄线宽LD发出的光束经过聚焦耦合系统聚焦在Er:YAG激光晶体内部,并且聚焦光斑大小与由前腔镜和后腔镜组成的谐振腔决定的腔内基模光束在该激光晶体中的腰斑大小相匹配。腔内插入饱和吸收体Cr:ZnSe、起偏器和石英片标准具,可得到窄线宽线偏振的脉冲激光。The light beam emitted by the 1.5 μm narrow linewidth LD with pigtail output is focused inside the Er:YAG laser crystal through the focusing coupling system, and the focus spot size is the same as the cavity determined by the resonant cavity composed of the front cavity mirror and the rear cavity mirror. The size of the waist spot of the fundamental mode beam in the laser crystal is matched. A saturable absorber Cr:ZnSe, a polarizer and a quartz plate etalon are inserted into the cavity to obtain a pulsed laser with narrow linewidth and linear polarization.
中红外光参量振荡器的谐振腔由第二平面镜、第三平面镜和平凹腔镜组成。MgO:PPLN非线性周期极化晶体放置在1.6μmEr:YAG被动调Q激光器的谐振腔中,这样可以充分利用1.6μm脉冲激光的脉冲能量,提高整个系统的转换效率。另外,光学参量振荡器腔内插入1mm的氟化钙平片(111)作为标准,可以对参量光的线宽进行调节。光学参量振荡器的谐振腔结构设计成L型,这样可以使1.6μm脉冲激光器和光学参量振荡器的谐振腔都能够相对独立,减小在调节谐振腔的过程中它们之间的相互影响。The resonant cavity of the mid-infrared optical parametric oscillator is composed of a second plane mirror, a third plane mirror and a flat concave cavity mirror. The MgO:PPLN nonlinear periodic poled crystal is placed in the resonant cavity of the 1.6μm Er:YAG passively Q-switched laser, which can make full use of the pulse energy of the 1.6μm pulsed laser and improve the conversion efficiency of the entire system. In addition, a 1 mm calcium fluoride flat plate (111) is inserted into the cavity of the optical parametric oscillator as a standard to adjust the line width of the parametric light. The resonant cavity structure of the optical parametric oscillator is designed to be L-shaped, so that the resonant cavities of the 1.6μm pulsed laser and the optical parametric oscillator can be relatively independent, reducing the mutual influence between them in the process of adjusting the resonant cavity.
本发明具有以下优点:The present invention has the following advantages:
1)本发明提出直接采用1.5μmLD同带泵浦低掺杂浓度的Er:YAG晶体,通过Cr:ZnSe可饱和吸收体获得被动调Q1.6μm脉冲激光源,提高系统的量子转换效率,降低Er:YAG晶体的热效应问题,提高激光转换效率和光束质量,为中红外光学参量振荡器提供高效、高光束质量泵浦源。实现结构简单紧凑、小型化的被动调Q1.6μm人眼安全波段激光器脉冲激光输出。1) The present invention proposes to directly use 1.5 μm LLD to pump Er:YAG crystal with low doping concentration in the same band, and obtain a passively Q-switched 1.6 μm pulsed laser source through a Cr:ZnSe saturable absorber, so as to improve the quantum conversion efficiency of the system and reduce Er : Thermal effect of YAG crystal, improve laser conversion efficiency and beam quality, and provide high-efficiency, high-beam quality pump source for mid-infrared optical parametric oscillator. A pulsed laser output of a passive Q-switched 1.6μm eye-safe band laser with a simple, compact, and miniaturized structure is realized.
2)本发明采用被动调Q的1.6μmEr:YAG激光器作为内腔式光学参量振荡器泵浦源,充分利用腔内高的功率密度,提高泵浦光的利用率和整个系统的量子转换效率,基于具有巨大优势的准相位匹配技术获得3~5μm中红外激光的可调谐输出,能够实现中红外光学参量振荡器的结构简单紧凑、小型化以及高转换效率。2) The present invention uses a passively Q-switched 1.6 μm Er:YAG laser as the pumping source of the intracavity optical parametric oscillator, fully utilizes the high power density in the cavity, improves the utilization rate of pump light and the quantum conversion efficiency of the entire system, Based on the quasi-phase matching technology with great advantages, the tunable output of 3-5 μm mid-infrared laser can be obtained, which can realize the simple and compact structure, miniaturization and high conversion efficiency of the mid-infrared optical parametric oscillator.
附图说明Description of drawings
图1是本发明全固态中红外光参量振荡器结构示意图。Fig. 1 is a schematic structural diagram of an all-solid-state mid-infrared optical parametric oscillator of the present invention.
具体实施方式detailed description
如图1所示,本发明全固态中红外光参量振荡器,其构成包括尾纤输出的1.5μm窄线宽激光二极管101,沿该激光二极管101的激光输出方向依次是聚焦耦合系统102、第一平面镜103、Er:YAG激光晶体104、饱和吸收体Cr:ZnSe105、起偏器106、石英片标准具107、第二平面镜108、MgO:PPLN非线性周期极化晶体109和第三平面镜110,所述的第一平面镜103和第三平面镜110分别为1.6μm被动调Q激光器的前腔镜和后腔镜,腔内依次是Er:YAG激光晶体104、饱和吸收体Cr:ZnSe105、起偏器106、石英片标准具107、第二平面镜108、MgO:PPLN非线性周期极化晶体109,所述的起偏器106以布儒斯特角放置,所述的第二平面镜10845度放置,1.6μm激光的偏振方向平行于所述的MgO:PPLN非线性周期极化晶体109的z轴,在第二平面镜108的反射光方向依次是氟化钙标准具111和平凹腔镜112,所述的第二平面镜108、第三平面镜110和平凹腔镜112组成光参量振荡器的谐振腔,所述的1.5μm窄线宽激光二极管101作为泵浦源,经过聚焦耦合系统102聚焦到Er:YAG激光晶体104内部。As shown in Figure 1, the all-solid-state mid-infrared optical parametric oscillator of the present invention comprises a laser diode 101 with a narrow linewidth of 1.5 μm output by a pigtail, and along the laser output direction of the laser diode 101 are the focus coupling system 102, the first A plane mirror 103, an Er:YAG laser crystal 104, a saturable absorber Cr:ZnSe105, a polarizer 106, a quartz plate etalon 107, a second plane mirror 108, a MgO:PPLN nonlinear periodic polarization crystal 109 and a third plane mirror 110, The first plane mirror 103 and the third plane mirror 110 are respectively the front cavity mirror and the back cavity mirror of the 1.6 μm passive Q-switched laser, and the cavity is followed by Er:YAG laser crystal 104, saturable absorber Cr:ZnSe105, polarizer 106, quartz plate etalon 107, second plane mirror 108, MgO:PPLN nonlinear periodic poled crystal 109, described polarizer 106 is placed at Brewster's angle, and described second plane mirror 10845 degrees is placed, 1.6 The polarization direction of the μm laser is parallel to the z-axis of the MgO:PPLN nonlinear periodic poled crystal 109, and the reflected light direction of the second plane mirror 108 is followed by the calcium fluoride etalon 111 and the flat concave cavity mirror 112. The second plane mirror 108, the third plane mirror 110 and the plane-concave cavity mirror 112 form the resonant cavity of the optical parametric oscillator, and the 1.5 μm narrow linewidth laser diode 101 is used as a pumping source, which is focused to the Er:YAG laser through the focusing coupling system 102 Inside the crystal 104 .
全固态中红外光参量振荡器的具体实施例包括尾纤输出的1.5μm窄线宽LD101的纤芯直径为200μm,数值孔径为0.22,线宽大约在1nm。聚焦耦合系统102由两个平凸透镜组成,它们的焦距比为1:4。Er:YAG激光晶体104的掺杂浓度原子数比为0.25%,尺寸选用直径Φ=4mm,长度为30mm和40mm两种规格的圆棒结构。Er:YAG激光器的谐振腔由第一平面镜103和第三平面镜110组成。第一平面镜103镀有1.5μm波段增透膜和1.6μm波段的全反膜。第三平面镜110镀有1.6μm波段全反膜和参量光波段的全反膜。腔内插入的标准具107为未镀膜且厚度为1mm的石英平片。所述的起偏器106在腔内以布儒斯特角放置,P方向偏振。饱和吸收体Cr:ZnSe105放置在Er:YAG激光晶体104后面。掺5mol%MgO:PPLN非线性周期极化晶体109放置在第三平面镜110前面,该晶体的尺寸是长度为50mm,宽为5mm,厚度为1mm,把MgO:PPLN非线性周期极化晶体放在温控炉中,通过改变温度来实现中红外激光的可调谐输出,而且使1.6μm激光的偏振方向平行于MgO:PPLN非线性周期极化晶体109的z轴。中红外光参量振荡器的谐振腔设计为单谐振结构,只让信号光进行谐振。其中第二平面镜108、第三平面镜110和平凹腔镜112组成光学参量振荡器的谐振腔。45度放置的平面镜108镀有1.6μm波段高透膜和参量光波段的高反膜。平凹腔镜112的曲率半径为R=120mm,镀有闲子光波段的高透膜和信号光波段部分透过膜T=20%。在光学参量振荡器腔内插入标准具111为未镀膜且厚度为1mm的氟化钙平片。A specific embodiment of the all-solid-state mid-infrared optical parametric oscillator includes a 1.5 μm narrow linewidth LD101 output by a pigtail with a core diameter of 200 μm, a numerical aperture of 0.22, and a linewidth of about 1 nm. The focus coupling system 102 consists of two plano-convex lenses with a focal length ratio of 1:4. The Er:YAG laser crystal 104 has a doping concentration atomic ratio of 0.25%, and its size is a round rod structure with a diameter of Φ=4mm and a length of 30mm and 40mm. The resonant cavity of the Er:YAG laser is composed of a first plane mirror 103 and a third plane mirror 110 . The first plane mirror 103 is coated with an anti-reflective coating in the 1.5 μm band and a total reflection coating in the 1.6 μm band. The third plane mirror 110 is coated with a total reflection film in the 1.6 μm band and a total reflection film in the parametric light band. The etalon 107 inserted into the cavity is a flat quartz plate with a thickness of 1 mm without coating. The polarizer 106 is placed in the cavity at Brewster's angle, and polarized in the P direction. Saturable absorber Cr:ZnSe105 is placed behind Er:YAG laser crystal 104. Doped with 5mol% MgO: PPLN nonlinear periodic poled crystal 109 is placed in front of the third plane mirror 110, the size of the crystal is 50 mm in length, 5 mm in width and 1 mm in thickness, and the MgO: PPLN nonlinear periodic poled crystal is placed on In the temperature-controlled furnace, the tunable output of the mid-infrared laser is realized by changing the temperature, and the polarization direction of the 1.6 μm laser is parallel to the z-axis of the MgO:PPLN nonlinear periodically poled crystal 109 . The resonant cavity of the mid-infrared optical parametric oscillator is designed as a single resonance structure, which only allows the signal light to resonate. Wherein the second plane mirror 108 , the third plane mirror 110 and the flat concave cavity mirror 112 constitute the resonant cavity of the optical parametric oscillator. The plane mirror 108 placed at 45 degrees is coated with a high-transparency film in the 1.6 μm band and a high-reflection film in the parametric light band. The radius of curvature of the plano-concave cavity mirror 112 is R=120mm, and is coated with a high-transmittance film in the idler light band and a partially transparent film in the signal light band T=20%. Insert the etalon 111 into the cavity of the optical parametric oscillator, which is an uncoated calcium fluoride flat plate with a thickness of 1 mm.
实验表明,本发明直接采用1.5μmLD同带泵浦Er:YAG增益介质,通过Cr:ZnSe可饱和吸收体获得1.6μm脉冲激光输出,用做QPM-OPO的泵浦源,使整个OPO系统的量子转换效率得到极大提高,而且基于QPM技术灵活多样的调谐方式,实现3~5μm波段内参量光的可调谐输出。另外,采用内腔式OPO的方式,其中泵浦源为被动调Q的1.6μm脉冲激光,这样可使整个系统结构更加简单紧凑,能够充分利用腔内1.6μm激光高的功率密度,提高整个QPM-OPO系统的转换效率和输出功率,而且整个系统的工作波长都控制在人眼安全波段,为中红外激光的发展提供一种新的技术方案,实现全固态的中红外光学参量振荡器的可调谐输出。Experiments show that the present invention directly uses 1.5 μm LLD to pump Er:YAG gain medium in the same band, and obtains 1.6 μm pulsed laser output through Cr:ZnSe saturable absorber, which is used as the pump source of QPM-OPO, so that the quantum of the whole OPO system The conversion efficiency is greatly improved, and based on the flexible and diverse tuning methods of the QPM technology, the tunable output of the internal parametric light in the 3-5 μm band is realized. In addition, the intracavity OPO method is adopted, in which the pump source is a passive Q-switched 1.6μm pulsed laser, which can make the entire system structure simpler and more compact, and can make full use of the high power density of the intracavity 1.6μm laser to improve the entire QPM - The conversion efficiency and output power of the OPO system, and the operating wavelength of the entire system is controlled in the human eye-safe band, providing a new technical solution for the development of mid-infrared lasers, and realizing the reliable operation of all-solid-state mid-infrared optical parametric oscillators tuning output.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610005889.1A CN105449510A (en) | 2016-01-05 | 2016-01-05 | All solid state mid-infrared optical parametric oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610005889.1A CN105449510A (en) | 2016-01-05 | 2016-01-05 | All solid state mid-infrared optical parametric oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105449510A true CN105449510A (en) | 2016-03-30 |
Family
ID=55559434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610005889.1A Pending CN105449510A (en) | 2016-01-05 | 2016-01-05 | All solid state mid-infrared optical parametric oscillator |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105449510A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106169695A (en) * | 2016-10-10 | 2016-11-30 | 苏州爱维格智能科技有限公司 | All solid state 1617nm passive Q-regulaitng laser based on same band pump technology |
CN106410582A (en) * | 2016-11-15 | 2017-02-15 | 厦门理工学院 | Shared chamber light parameter oscillator of human-eye safe wave-band continuous output |
CN106785873A (en) * | 2016-12-15 | 2017-05-31 | 西北大学 | One kind is yellow, orange, red band wavelength is tunable and frequency laser |
CN106785847A (en) * | 2016-12-15 | 2017-05-31 | 西北大学 | A kind of pair of wavelength tunable solid laser of composite resonant cavity configuration |
CN107482433A (en) * | 2017-09-12 | 2017-12-15 | 中国科学院电子学研究所 | Optical Parametric Oscillator |
CN107565362A (en) * | 2017-09-12 | 2018-01-09 | 中国科学院电子学研究所 | The optical parametric oscillator of alkali metal laser pumping |
CN108767633A (en) * | 2018-08-27 | 2018-11-06 | 深圳市格镭激光科技有限公司 | It is a kind of to can be used for the multiple of ultraviolet laser and expand resonant cavity |
CN111106508A (en) * | 2019-12-19 | 2020-05-05 | 中国兵器装备研究院 | Intracavity pumping mid-infrared pulse laser |
CN111755943A (en) * | 2020-07-15 | 2020-10-09 | 山东大学 | An Optical Parametric Oscillator Based on Pulse Laser Pumping and Its Working Method |
CN112993730A (en) * | 2021-02-02 | 2021-06-18 | 长春理工大学 | Double-wavelength pumping source based on Er-YAG (yttrium aluminum garnet) thin medium infrared parametric oscillator and output method |
CN112993729A (en) * | 2021-02-02 | 2021-06-18 | 长春理工大学 | Low-quantum-loss 1.6-micron high-peak-power pumping source of medium-wave optical parametric oscillator |
CN112993733A (en) * | 2021-02-02 | 2021-06-18 | 长春理工大学 | Light-operated wavelength selection pumping source based on Er-YAG mid-infrared parametric oscillator |
CN113285341A (en) * | 2021-04-09 | 2021-08-20 | 中国人民解放军国防科技大学 | Narrow-linewidth middle-far infrared laser based on selenium-gallium-barium crystal |
CN113991417A (en) * | 2021-10-29 | 2022-01-28 | 中红外激光研究院(江苏)有限公司 | 2 mu m thulium-doped solid laser pumped in 1.6 mu m erbium-doped laser cavity |
-
2016
- 2016-01-05 CN CN201610005889.1A patent/CN105449510A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106169695A (en) * | 2016-10-10 | 2016-11-30 | 苏州爱维格智能科技有限公司 | All solid state 1617nm passive Q-regulaitng laser based on same band pump technology |
CN106410582A (en) * | 2016-11-15 | 2017-02-15 | 厦门理工学院 | Shared chamber light parameter oscillator of human-eye safe wave-band continuous output |
CN106410582B (en) * | 2016-11-15 | 2019-04-09 | 厦门理工学院 | A Shared Cavity Optical Parametric Oscillator with Continuous Output in Eye-Safe Bands |
CN106785873B (en) * | 2016-12-15 | 2019-01-22 | 西北大学 | A wavelength-tunable sum-frequency laser in yellow, orange and red bands |
CN106785873A (en) * | 2016-12-15 | 2017-05-31 | 西北大学 | One kind is yellow, orange, red band wavelength is tunable and frequency laser |
CN106785847A (en) * | 2016-12-15 | 2017-05-31 | 西北大学 | A kind of pair of wavelength tunable solid laser of composite resonant cavity configuration |
CN106785847B (en) * | 2016-12-15 | 2019-01-25 | 西北大学 | A wavelength-tunable solid-state laser with dual composite resonator structure |
CN107482433A (en) * | 2017-09-12 | 2017-12-15 | 中国科学院电子学研究所 | Optical Parametric Oscillator |
CN107565362A (en) * | 2017-09-12 | 2018-01-09 | 中国科学院电子学研究所 | The optical parametric oscillator of alkali metal laser pumping |
CN107482433B (en) * | 2017-09-12 | 2021-06-18 | 中国科学院电子学研究所 | Optical Parametric Oscillator |
CN108767633A (en) * | 2018-08-27 | 2018-11-06 | 深圳市格镭激光科技有限公司 | It is a kind of to can be used for the multiple of ultraviolet laser and expand resonant cavity |
CN108767633B (en) * | 2018-08-27 | 2024-02-02 | 深圳市格镭激光科技有限公司 | Multiple beam-expanding resonant cavity for ultraviolet laser |
CN111106508A (en) * | 2019-12-19 | 2020-05-05 | 中国兵器装备研究院 | Intracavity pumping mid-infrared pulse laser |
CN111755943A (en) * | 2020-07-15 | 2020-10-09 | 山东大学 | An Optical Parametric Oscillator Based on Pulse Laser Pumping and Its Working Method |
CN112993730A (en) * | 2021-02-02 | 2021-06-18 | 长春理工大学 | Double-wavelength pumping source based on Er-YAG (yttrium aluminum garnet) thin medium infrared parametric oscillator and output method |
CN112993729A (en) * | 2021-02-02 | 2021-06-18 | 长春理工大学 | Low-quantum-loss 1.6-micron high-peak-power pumping source of medium-wave optical parametric oscillator |
CN112993733A (en) * | 2021-02-02 | 2021-06-18 | 长春理工大学 | Light-operated wavelength selection pumping source based on Er-YAG mid-infrared parametric oscillator |
CN113285341A (en) * | 2021-04-09 | 2021-08-20 | 中国人民解放军国防科技大学 | Narrow-linewidth middle-far infrared laser based on selenium-gallium-barium crystal |
CN113991417A (en) * | 2021-10-29 | 2022-01-28 | 中红外激光研究院(江苏)有限公司 | 2 mu m thulium-doped solid laser pumped in 1.6 mu m erbium-doped laser cavity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105449510A (en) | All solid state mid-infrared optical parametric oscillator | |
CN107528197B (en) | Two-chamber compound unsteady cavity modeling pumping from optical parametric oscillation mid-infrared laser device | |
CN103022888A (en) | Alkali metal steam laser of polarized optical pumping | |
CN101673917A (en) | End-pumped mid-infrared KTA parametric oscillator | |
CN102244361A (en) | Self-Raman frequency conversion self-mode locking solid laser | |
CN107482425A (en) | A laser pump source with high repetition rate, single longitudinal mode, and narrow pulse width of 2.79um | |
CN104503183B (en) | Self frequency-changing's tera-hertz parametric oscillator | |
CN109586150A (en) | A kind of single resonance chamber realization continuous single frequency all-solid-state laser of hectowatt grade | |
CN204290023U (en) | Infrared intra-cavity optical parametric oscillator during a kind of miniaturized wide spectral is tunable | |
CN112186478A (en) | Laser with adjustable power proportion and pulse interval and method | |
CN202276060U (en) | Self-Raman frequency conversion self-locking mode solid laser | |
CN107611760A (en) | A kind of torsional pendulum chamber pure-tone pulse laser | |
CN100555053C (en) | All-solid-state CW tunable yellow-orange coherent light source | |
CN213278684U (en) | A laser with adjustable power ratio and pulse interval | |
CN208209239U (en) | Middle infrared full-wave section tunable laser | |
CN201149952Y (en) | Self-Raman frequency doubling solid-state yellow laser | |
CN106410582B (en) | A Shared Cavity Optical Parametric Oscillator with Continuous Output in Eye-Safe Bands | |
CN104577700A (en) | Intra-cavity OPO tunable mid-infrared laser | |
CN105356216A (en) | All-fiber narrow-linewidth single frequency green laser | |
CN108628058A (en) | Infrared super continuum source during a kind of on piece is integrated | |
CN205122984U (en) | Compact optics difference frequency terahertz is source now | |
CN101159364A (en) | LD terminal pump Nd:YAG/SrWO4/KTP yellow light laser | |
CN117977352A (en) | A 529nm and 533nm dual-wavelength continuous laser and method | |
CN203690698U (en) | Single-frequency intermediate infrared light source system of 2 [mu]m fiber laser pump | |
CN101159362A (en) | LD terminal pump yellow light laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160330 |
|
WD01 | Invention patent application deemed withdrawn after publication |