CN105430418B - H.264/AVC, one kind arrives HEVC fast transcoding methods - Google Patents
H.264/AVC, one kind arrives HEVC fast transcoding methods Download PDFInfo
- Publication number
- CN105430418B CN105430418B CN201510777766.5A CN201510777766A CN105430418B CN 105430418 B CN105430418 B CN 105430418B CN 201510777766 A CN201510777766 A CN 201510777766A CN 105430418 B CN105430418 B CN 105430418B
- Authority
- CN
- China
- Prior art keywords
- hevc
- region
- skip
- avc
- transcoding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种视频通信的视频编码中不同编码标准的转码方法,属于视频通信不同编码标准之间的转码技术领域。The invention relates to a transcoding method of different coding standards in video coding of video communication, and belongs to the technical field of transcoding between different coding standards of video communication.
背景技术Background technique
新一代视频编码标准HEVC正快速发展,上一代视频编码标准H.264/AVC仍广泛应用。为了降低在终端设备上安装多种解码器所带来的成本,转码器的诞生成为了必然。The new-generation video coding standard HEVC is developing rapidly, and the previous-generation video coding standard H.264/AVC is still widely used. In order to reduce the cost of installing multiple decoders on terminal equipment, the birth of transcoders has become inevitable.
H.264/AVC中最大编码单元为宏块(Macro Block,MB),大小固定为16×16,其中帧内预测模式有16×16、8×8、4×4亮度预测,帧间预测模式有SKIP、16×16、16×8、8×16、8×8、8×4、4×8和4×4。The largest coding unit in H.264/AVC is a macro block (Macro Block, MB), the size is fixed at 16×16, and the intra prediction mode has 16×16, 8×8, 4×4 brightness prediction, and the inter prediction mode There are SKIP, 16×16, 16×8, 8×16, 8×8, 8×4, 4×8 and 4×4.
相对于H.264/AVC,HEVC的编码单元更为灵活,预测模式更加多样。其最大编码单元(Largest Coding Unit,LCU)为,大小通常设置为64×64。每个LCU又可以划分为64×64、32×32、16×16、8×8、4×4大小的编码单元(Coding Unit,CU)。在一个尺寸为64×64的LCU内部,每种尺寸(64×64、32×32、16×16、8×8、4×4)的CU对应的编码单元深度(CodingUnit Depth,CU Depth)分别为0、1、2、3、4。对于每个CU而言,在预测过程中,又可以划分为若干个预测单元(Prediction Unit,PU)。每个PU的大小最大为32×32,最小为4×4。在帧内预测中,HEVC定义了33种帧内预测方向以及直流预测和平面预测两种特殊预测模式;在帧间预测时,HEVC则定义了SKIP、MERGE、2N×2N、2N×N、N×2N、AMP以及N×N等7种预测模式。Compared with H.264/AVC, HEVC has more flexible coding units and more diverse prediction modes. Its largest coding unit (Largest Coding Unit, LCU) is , and its size is usually set to 64×64. Each LCU can be divided into 64×64, 32×32, 16×16, 8×8, 4×4 coding units (Coding Unit, CU). In an LCU with a size of 64×64, the coding unit depth (CodingUnit Depth, CU Depth) corresponding to each size (64×64, 32×32, 16×16, 8×8, 4×4) of the CU is respectively It is 0, 1, 2, 3, 4. For each CU, in the prediction process, it can be divided into several prediction units (Prediction Unit, PU). The maximum size of each PU is 32×32 and the minimum is 4×4. In intra prediction, HEVC defines 33 intra prediction directions and two special prediction modes of DC prediction and planar prediction; in inter prediction, HEVC defines SKIP, MERGE, 2N×2N, 2N×N, N Seven prediction modes including ×2N, AMP and N×N.
一般而言,H.264/AVC到HEVC的转码需要H.264/AVC的解码器和HEVC的编码器级联而成。转码器先对采用H.264/AVC编码的码流进行解码,然后再用HEVC标准对解码的视频重新编码,转换为HEVC标准的编码码流。但是,由于HEVC的编码复杂度极高,转码效率自然会很低。Generally speaking, transcoding from H.264/AVC to HEVC requires the cascading of H.264/AVC decoder and HEVC encoder. The transcoder first decodes the code stream encoded with H.264/AVC, then re-encodes the decoded video using the HEVC standard, and converts it into an encoded code stream of the HEVC standard. However, due to the extremely high encoding complexity of HEVC, the transcoding efficiency will naturally be low.
现有的H.264/AVC到HEVC转码是采用基于概率统计分析的H.264/AVC到HEVC转码技术。The existing H.264/AVC to HEVC transcoding uses the H.264/AVC to HEVC transcoding technology based on probability statistics analysis.
利用概率统计分析的转码算法,主要目的在于寻找两种编码标准之间的相关性。在经过大量的统计分析发现,经过H.264/AVC标准编码的视频中,如果有一部分区域采用跳跃模式(SKIP)编码;那么,当采用HEVC标准对该视频编码时,该区域的CU Depth通常小于1(但并不绝对),PU划分较简单。同样,经过H.264/AVC标准编码后的视频,如果有一部分区域内运动矢量(Motion Vector,MV)方差较小的话;那么,在采用HEVC标准对该视频进行编码时,该区域的CU Depth也很可能较低。因此,现有转码方法中,有研究人员分别利用H.264/AVC码流中的SKIP模式标记或MV方差为HEVC的编码设定CU Depth终止的条件,进而降低HEVC的编码复杂度,提高转码效率。The main purpose of the transcoding algorithm using probability and statistical analysis is to find the correlation between two coding standards. After a lot of statistical analysis, it is found that in the video encoded by the H.264/AVC standard, if a part of the area is coded in skip mode (SKIP); then, when the video is encoded using the HEVC standard, the CU Depth of this area is usually Less than 1 (but not absolute), the PU division is simpler. Similarly, if the video encoded by the H.264/AVC standard has a small variance in the motion vector (Motion Vector, MV) in a part of the area; then, when the video is encoded using the HEVC standard, the CU Depth of the area It is also likely to be lower. Therefore, in the existing transcoding methods, some researchers use the SKIP mode flag or the MV variance in the H.264/AVC code stream to set the CU Depth termination conditions for HEVC coding, thereby reducing the coding complexity of HEVC and improving Transcoding efficiency.
已有转码技术的局限在于,第一,单纯考虑SKIP模式或MV方差来设定HEVC的CUDepth会导致在HEVC编码时有很多CU的CU Depth出现误判,将本应该继续分解的CU强制不再分解,即采用CU Depth较小的CU进行编码。第二,在PU模式的判定上,已有技术仅考虑了SKIP模式;而事实上,在H.264/AVC码流中,即便当图像内某区域都采用SKIP模式时,在HEVC中,该区域也很有可能不采用SKIP模式。可见已有的转码技术虽然可以提高HEVC的编码速度,但是HEVC的压缩性能也大大下降。第三,已有转码技术在HEVC的编码过程中,依然按照CU Depth由小到大(从0到4)的顺序依次进行率失真代价计算,而没有依据H.264/AVC的码流信息,提前确定CU Depth最有可能的精细范围,使HEVC的编码复杂度降低程度也有限。The limitation of the existing transcoding technology is that, first, simply considering the SKIP mode or MV variance to set the CUDepth of HEVC will lead to misjudgment of the CU Depth of many CUs during HEVC encoding, and the CUs that should continue to be decomposed will be forced to fail. Then decompose, that is, use a CU with a smaller CU Depth for encoding. Second, in the determination of the PU mode, the prior art only considers the SKIP mode; in fact, in the H.264/AVC code stream, even when a certain area in the image adopts the SKIP mode, in HEVC, the Regions are also very likely not to use SKIP mode. It can be seen that although the existing transcoding technology can improve the encoding speed of HEVC, the compression performance of HEVC is also greatly reduced. Third, in the HEVC encoding process of the existing transcoding technology, the rate-distortion cost is still calculated in the order of CU Depth from small to large (from 0 to 4), and there is no code stream information based on H.264/AVC , to determine the most likely fine range of CU Depth in advance, so that the reduction of HEVC coding complexity is also limited.
发明内容Contents of the invention
本发明针对现有H.264/AVC到HEVC转码技术存在的不足,依据H.264/AVC码流中提取的有效信息,提出一种快速高效的H.264/AVC到HEVC快速转码方法,该方法在大幅度降低HEVC编码复杂度的同时,保持HEVC的压缩性能基本不变。Aiming at the deficiencies in the existing H.264/AVC to HEVC transcoding technology, the present invention proposes a fast and efficient H.264/AVC to HEVC fast transcoding method based on the effective information extracted from the H.264/AVC code stream , while greatly reducing the complexity of HEVC encoding, the method keeps the compression performance of HEVC basically unchanged.
本发明的H.264/AVC到HEVC的快速转码方法,是:The fast transcoding method from H.264/AVC to HEVC of the present invention is:
在H.264/AVC的码流信息中,如果一个64×64的区域内所有的MB(宏块)都采用SKIP模式(跳跃模式),并且这些采用SKIP模式的MB的MV(运动矢量)的方差小于阈值0.01,那么在HEVC编码时,该64×64的区域对应的LCU(最大编码单元)在分解过程中,CU Depth(编码单元深度)从0或者1中选择,而每个PU(预测单元)的预测模式则只从SKIP、MERGE或者2N×2N中选择;如果一个32×32的区域内所有的MB都采用SKIP模式,并且这些SKIP模式的MB的MV的方差都小于阈值0.01,那么在HEVC编码时,该32×32的区域对应的CU(编码单元)在分解过程中,CU Depth仅从1或者2中选择,而每个PU的预测模式则只从SKIP、MERGE或者2N×2N中选择。In the stream information of H.264/AVC, if all MBs (macroblocks) in a 64×64 area adopt SKIP mode (skip mode), and the MV (motion vector) of these MBs adopting SKIP mode If the variance is less than the threshold 0.01, then during HEVC encoding, during the decomposition process of the LCU (largest coding unit) corresponding to the 64×64 area, the CU Depth (coding unit depth) is selected from 0 or 1, and each PU (prediction The prediction mode of unit) is only selected from SKIP, MERGE or 2N×2N; if all MBs in a 32×32 area adopt SKIP mode, and the variance of the MV of these SKIP mode MBs is less than the threshold 0.01, then During HEVC encoding, during the decomposition process of the CU (coding unit) corresponding to the 32×32 area, the CU Depth is only selected from 1 or 2, and the prediction mode of each PU is only selected from SKIP, MERGE or 2N×2N to choose from.
本发明关注H.264/AVC与HEVC转码技术,采用概率统计分析的方法,找出H.264/AVC视频编码标准和HEVC视频编码标准的编码模式的相关性,提前判决HEVC编码器的可能的编码模式,降低了HEVC编码器的复杂度,提高了转码效率。The present invention focuses on H.264/AVC and HEVC transcoding technology, adopts the method of probability and statistics analysis, finds out the correlation between the coding mode of H.264/AVC video coding standard and HEVC video coding standard, and judges the possibility of HEVC encoder in advance The encoding mode reduces the complexity of the HEVC encoder and improves the transcoding efficiency.
附图说明Description of drawings
图1是本发明H.264/AVC到HEVC的快速转码方法的流程图。Fig. 1 is a flowchart of the fast transcoding method from H.264/AVC to HEVC according to the present invention.
图2是64×64大小区域的H EVC编码过程示意图。Fig. 2 is a schematic diagram of the HEVC encoding process of a 64×64 area.
图3是32×32大小区域的H EVC编码过程示意图。FIG. 3 is a schematic diagram of the HEVC encoding process for a 32×32 area.
图4是应用本发明后HEVC编码与原始HEVC编码的率失真曲线比较图。其中:Origin为原始HEVC标准下编码的率失真曲线;Full_alg为应用本算法后的率失真曲线。图4(a)为视频序列“Flowervase”的率失真曲线比较图,图4(b)为视频序列“SlideEdit”的率失真曲线比较图,图4(c)为视频序列“Cactus”的率失真曲线比较图。Fig. 4 is a graph comparing the rate-distortion curves of HEVC encoding and original HEVC encoding after applying the present invention. Among them: Origin is the rate-distortion curve encoded under the original HEVC standard; Full_alg is the rate-distortion curve after applying this algorithm. Figure 4(a) is the rate-distortion curve comparison of the video sequence "Flowervase", Figure 4(b) is the rate-distortion curve comparison of the video sequence "SlideEdit", and Figure 4(c) is the rate-distortion curve of the video sequence "Cactus" Curve comparison chart.
具体实施方式Detailed ways
本发明的H.264/AVC到HEVC的快速转码方法,是在H.264/AVC的码流信息中,如果一个64×64的区域内所有的MB(宏块)都采用SKIP模式(跳跃模式),并且这些采用SKIP模式的MB的MV(运动矢量)的方差小于阈值0.01,那么在HEVC编码时,该64×64的区域对应的LCU(最大编码单元)在分解过程中,CU Depth(编码单元深度)从0或者1中选择,而每个PU(预测单元)的预测模式则只从SKIP、MERGE或者2N×2N中选择;如果一个32×32的区域内所有的MB都采用SKIP模式,并且这些SKIP模式的MB的MV的方差都小于阈值0.01,那么在HEVC编码时,该32×32的区域对应的CU在分解过程中,CUDepth仅从1或者2中选择,而每个PU的预测模式则只从SKIP、MERGE或者2N×2N中选择。如图1,具体包括以下步骤:The fast transcoding method from H.264/AVC to HEVC of the present invention is that in the code stream information of H.264/AVC, if all MBs (macroblocks) in a 64×64 area adopt the SKIP mode (skip mode), and the variance of the MV (motion vector) of these MBs using SKIP mode is less than the threshold 0.01, then during HEVC encoding, the LCU (largest coding unit) corresponding to the 64×64 area is in the decomposition process, CU Depth( Coding unit depth) is selected from 0 or 1, and the prediction mode of each PU (prediction unit) is only selected from SKIP, MERGE or 2N×2N; if all MBs in a 32×32 area use SKIP mode , and the variance of the MV of these MBs in SKIP mode is less than the threshold 0.01, then during HEVC encoding, during the decomposition process of the CU corresponding to the 32×32 area, CUDepth is only selected from 1 or 2, and each PU’s The prediction mode can only be selected from SKIP, MERGE or 2N×2N. As shown in Figure 1, it specifically includes the following steps:
(1)将视频的每一帧图像划分为若干个64×64大小的区域,如果解析H.264/AVC码流过程中发现,当前64×64区域内包含的所有MB都是SKIP模式,并且该64×64区域内所有运动矢量在水平与垂直方向上的方差之和小于阈值0.01,则将该64×64区域设定快速转码标记L1,否则设为L0;(1) Divide each frame of the video into several 64×64 areas. If it is found in the process of parsing the H.264/AVC code stream, all the MBs contained in the current 64×64 area are in SKIP mode, and The sum of the variances of all motion vectors in the 64×64 area in the horizontal and vertical directions is less than the threshold 0.01, then set the fast transcoding flag L 1 in the 64×64 area, otherwise set it as L 0 ;
(2)将视频的每一帧图像划分为若干个32×32大小的区域,如果解析H.264/AVC码流过程中发现,当前32×32区域内包含的4个MB都是SKIP模式,并且该32×32区域内所有运动矢量在水平与垂直方向上的方差之和小于阈值0.01,则在HEVC编码过程中,对当前32×32区域设定快速转码标志位为S1,否则设为S0;(2) Divide each frame of the video into several 32×32 areas. If it is found in the process of parsing the H.264/AVC code stream, the 4 MBs contained in the current 32×32 area are all in SKIP mode, And the sum of the variances of all motion vectors in the 32×32 area in the horizontal and vertical directions is less than the threshold 0.01, then during the HEVC encoding process, set the fast transcoding flag to S 1 for the current 32×32 area, otherwise set is S 0 ;
(3)参见图2,在HEVC的编码过程中,若发现一个LCU(尺寸为64×64)所对应的64×64的区域的转码标志位为L1,那么该LCU在分解过程中,CU Depth只从0或者1中选择,而该LCU中所有PU的预测模式都只从SKIP、MERGE、或者2N×2N中选择。(3) Referring to Figure 2, in the HEVC encoding process, if the transcoding flag of the 64×64 area corresponding to an LCU (64×64 in size) is found to be L 1 , then during the decomposition process of the LCU, CU Depth is only selected from 0 or 1, and the prediction modes of all PUs in the LCU are only selected from SKIP, MERGE, or 2N×2N.
(4)参见图3,在HEVC的编码过程中,若发现一个LCU(尺寸为64×64)所对应的64×64的区域的转码标志位为L0,并且该64×64的区域所包含的4个32×32的区域的转码标志位不全是S1(即这4个32×32的区域转码标志位既包括S1又包括S0),那么该LCU在分解过程中,跳过CU深度为0的情况。该LCU中的某个32×32的CU,如果其快速转码标志位为S1,那么该CU只在CU Depth为1和2的范围内进行分解,CU中所有PU的最优预测模式只能在SKIP、MERGE或2N×2N中进行选择;如果其快速编码标志位为S0,那么该CU的CU Depth在0以外的其他范围内选择,所有PU的最优预测模式则从HEVC规定的全部预测模式中选择。(4) Referring to Figure 3, during HEVC encoding, if it is found that the transcoding flag of a 64×64 area corresponding to an LCU (64×64 in size) is L 0 , and the 64×64 area is The transcoding flags of the four 32×32 areas included are not all S 1 (that is, the four 32×32 area transcoding flags include both S 1 and S 0 ), then during the decomposition process of the LCU, Skip the case where the CU depth is 0. For a 32×32 CU in the LCU, if its fast transcoding flag is S 1 , then the CU is only decomposed within the range of CU Depth between 1 and 2, and the optimal prediction mode of all PUs in the CU is only It can be selected among SKIP, MERGE or 2N×2N; if its quick encoding flag is S 0 , then the CU Depth of the CU can be selected in a range other than 0, and the optimal prediction mode of all PUs is from the HEVC specified Select from all prediction modes.
实验结果表明,利用H.264/AVC标准的编码信息,可以在保证HEVC的压缩性能基本不变的情况下,大幅度降低HEVC的编码复杂度,提高了转码器的效率。图4给出了应用本发明后HEVC编码与原始HEVC编码的率失真曲线比较,图4(a)为视频序列“Flowervase”的率失真曲线比较图,图4(b)为视频序列“SlideEdit”的率失真曲线比较图,图4(c)为视频序列“Cactus”的率失真曲线比较图。采用本发明的方法后,HEVC编码器编码复杂度的下降程度(ΔTime)如下表(ΔTime表示节约的时间,绝对值越大表示复杂度降低越多,转码器效率越高):Experimental results show that using the coding information of the H.264/AVC standard can greatly reduce the coding complexity of HEVC and improve the efficiency of the transcoder while keeping the compression performance of HEVC basically unchanged. Figure 4 shows the comparison of rate-distortion curves between HEVC encoding and original HEVC encoding after applying the present invention, Figure 4(a) is a comparison of the rate-distortion curves of the video sequence "Flowervase", and Figure 4(b) is the video sequence "SlideEdit" The rate-distortion curve comparison chart of the video sequence "Cactus" is shown in Fig. 4(c). After adopting the method of the present invention, the reduction degree (ΔTime) of the encoding complexity of the HEVC encoder is as follows (ΔTime represents the time saved, and the larger the absolute value, the more the complexity is reduced, and the transcoder efficiency is higher):
本发明提出的方法与HEVC标准的编码平台相比,编码时间可以缩短23.32%~63.13%,平均缩短39.19%,而在同样编码码率条件下,解码视频的质量仅降低0.026dB。Compared with the encoding platform of the HEVC standard, the method proposed by the present invention can shorten the encoding time by 23.32%-63.13%, and the average shortening is 39.19%, and under the same encoding bit rate condition, the quality of the decoded video is only reduced by 0.026dB.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510777766.5A CN105430418B (en) | 2015-11-13 | 2015-11-13 | H.264/AVC, one kind arrives HEVC fast transcoding methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510777766.5A CN105430418B (en) | 2015-11-13 | 2015-11-13 | H.264/AVC, one kind arrives HEVC fast transcoding methods |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105430418A CN105430418A (en) | 2016-03-23 |
CN105430418B true CN105430418B (en) | 2018-04-10 |
Family
ID=55508303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510777766.5A Expired - Fee Related CN105430418B (en) | 2015-11-13 | 2015-11-13 | H.264/AVC, one kind arrives HEVC fast transcoding methods |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105430418B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105872564B (en) * | 2016-05-27 | 2019-02-19 | 武汉拓宝科技股份有限公司 | Intra prediction mode determination method and system for H.264/AVC to H.265/HEVC transcoding |
CN106534849B (en) * | 2016-12-30 | 2019-07-16 | 杭州当虹科技股份有限公司 | A kind of quick HEVC inter-frame encoding methods |
CN106888379B (en) * | 2017-01-13 | 2019-07-05 | 同济大学 | Applied to the interframe fast video code-transferring method for H.264 arriving HEVC |
CN115883835B (en) * | 2023-03-03 | 2023-04-28 | 腾讯科技(深圳)有限公司 | Video coding method, device, equipment and storage medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104079937A (en) * | 2014-07-16 | 2014-10-01 | 山东大学 | H.264-to-HEVC fast inter-frame transcoding method and device based on motion vector analysis |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3886433A3 (en) * | 2013-03-07 | 2021-10-27 | Telefonaktiebolaget LM Ericsson (publ) | Video transcoding |
US9924183B2 (en) * | 2014-03-20 | 2018-03-20 | Nanjing Yuyan Information Technology Ltd. | Fast HEVC transcoding |
-
2015
- 2015-11-13 CN CN201510777766.5A patent/CN105430418B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104079937A (en) * | 2014-07-16 | 2014-10-01 | 山东大学 | H.264-to-HEVC fast inter-frame transcoding method and device based on motion vector analysis |
Also Published As
Publication number | Publication date |
---|---|
CN105430418A (en) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111971962B (en) | Video codec device and method | |
US10750177B2 (en) | Image coding apparatus, image coding method, and program, and image decoding apparatus, image decoding method, and program | |
US10178409B2 (en) | Method and apparatus for intra mode coding | |
US12034937B2 (en) | Decoding device, encoding device, decoding method, encoding method, and non-transitory computer readable recording medium | |
CN107005718B (en) | Method for video coding using binary tree block partitioning | |
CN105430407B (en) | Applied to the fast inter mode decision method for H.264 arriving HEVC transcodings | |
TWI571110B (en) | Method of exporting motion information | |
CN107257466B (en) | Method and apparatus for intra-prediction mode coding | |
TWI552572B (en) | Method of decoding video data | |
US20120106636A1 (en) | Image encoding/decoding method and apparatus | |
KR101433170B1 (en) | An encoding and decoding method for estimating an intra prediction mode using a spatial prediction directionality of an adjacent block, | |
CN104023241B (en) | Video coding method and video coding device for intra-frame predictive coding | |
CN105430418B (en) | H.264/AVC, one kind arrives HEVC fast transcoding methods | |
CN105939476A (en) | Method and apparatus for decoding video | |
KR101516347B1 (en) | Method and Apparatus of Intra Coding for HEVC | |
CN114009015A (en) | Converting and omitting block messaging coding | |
CN104702958A (en) | HEVC intraframe coding method and system based on spatial correlation | |
BR112020000166A2 (en) | apparatus for dividing a portion of the image improving the forced border partition, encoder and decoder comprising the same and corresponding methods | |
CN105681808A (en) | A fast decision-making method for SCC inter coding unit mode | |
CN103297774B (en) | The fast encoding method of B frame in a kind of Video coding | |
Bai et al. | Fast coding tree unit decision for HEVC intra coding | |
CN106303548A (en) | HEVC intra-frame predictive encoding method | |
CN104954806A (en) | Intra-frame video optimization coding method | |
CN101867822A (en) | Adaptive Template Image Processing Method for Motion Estimation | |
CN103402101A (en) | AVS loop filtering quick algorithm based on boundary smoothness |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180410 Termination date: 20211113 |
|
CF01 | Termination of patent right due to non-payment of annual fee |