CN105374664A - Preparation method of InP film composite substrate - Google Patents
Preparation method of InP film composite substrate Download PDFInfo
- Publication number
- CN105374664A CN105374664A CN201510695855.5A CN201510695855A CN105374664A CN 105374664 A CN105374664 A CN 105374664A CN 201510695855 A CN201510695855 A CN 201510695855A CN 105374664 A CN105374664 A CN 105374664A
- Authority
- CN
- China
- Prior art keywords
- inp
- substrate
- preparation
- film laminated
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 137
- 238000002360 preparation method Methods 0.000 title claims description 39
- 239000002131 composite material Substances 0.000 title abstract description 45
- 238000000034 method Methods 0.000 claims abstract description 33
- 230000007547 defect Effects 0.000 claims abstract description 32
- 239000000463 material Substances 0.000 claims abstract description 31
- 238000005468 ion implantation Methods 0.000 claims abstract description 18
- 238000000137 annealing Methods 0.000 claims description 57
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- 239000011521 glass Substances 0.000 claims description 8
- 238000002513 implantation Methods 0.000 claims description 8
- 239000013078 crystal Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 229910002601 GaN Inorganic materials 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 3
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 206010020843 Hyperthermia Diseases 0.000 claims 2
- 239000002178 crystalline material Substances 0.000 claims 1
- 238000004528 spin coating Methods 0.000 claims 1
- 239000010409 thin film Substances 0.000 abstract description 41
- 239000010408 film Substances 0.000 abstract description 14
- 150000002500 ions Chemical class 0.000 description 15
- 239000000243 solution Substances 0.000 description 11
- 230000002950 deficient Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02392—Phosphides
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
本发明提供一种InP薄膜复合衬底的制备方法,包括步骤:提供InP衬底,所述InP衬底具有注入面,从所述注入面进行离子注入,在所述InP衬底的预设深度处形成缺陷层;然后提供支撑衬底,将经过离子注入的衬底的注入面与机械强度较高、密度较小的支撑衬底键合形成复合结构;最后将InP沿缺陷层分离,形成高机械强度衬底上的InP薄膜复合衬底。本发明通过离子注入与键合,可以形成具有高机械强度的InP薄膜复合衬底,薄膜中的位错密度明显低于异质外延的InP薄膜,并且可以从一片InP材料上循环分离出来很多薄膜,提高InP材料的利用率,降低InP耗材成本。利用低密度的支撑衬底可以降低整个复合衬底的重量,适合空间应用。
The invention provides a method for preparing an InP thin film composite substrate, comprising the steps of: providing an InP substrate, the InP substrate has an implanted surface, ion implantation is performed from the implanted surface, and the InP substrate is implanted at a preset depth Form a defect layer; then provide a supporting substrate, bond the implanted surface of the ion-implanted substrate with a supporting substrate with high mechanical strength and low density to form a composite structure; finally separate InP along the defect layer to form a high InP Thin Film Composite Substrates on Mechanically Strong Substrates. The present invention can form an InP film composite substrate with high mechanical strength through ion implantation and bonding, and the dislocation density in the film is obviously lower than that of the heteroepitaxial InP film, and many films can be cyclically separated from a piece of InP material , improve the utilization rate of InP materials, and reduce the cost of InP consumables. The use of a low-density support substrate can reduce the weight of the entire composite substrate, which is suitable for space applications.
Description
技术领域technical field
本发明属于功能性半导体材料制备技术领域,涉及一种InP薄膜复合衬底的制备方法,特别是涉及一种利用离子注入与键合技术制备具有高机械强度的InP薄膜复合衬底的方法。The invention belongs to the technical field of preparation of functional semiconductor materials, and relates to a method for preparing an InP thin film composite substrate, in particular to a method for preparing an InP thin film composite substrate with high mechanical strength by ion implantation and bonding technology.
背景技术Background technique
InP属于第二代半导体,具有电子迁移率高、击穿电场强等特点,被广泛用于高电子迁移率器件的制作。InP材料是直接带隙半导体,禁带宽度为1.34eV,其合金对应的发光波长非常适合光纤通讯,InP基的量子阱结构对太阳光具有很高的吸收效率。因此,InP材料在光通信与光伏产业也具有很广泛的应用范围。InP belongs to the second-generation semiconductor, which has the characteristics of high electron mobility and strong breakdown electric field, and is widely used in the production of high electron mobility devices. InP material is a direct bandgap semiconductor with a forbidden band width of 1.34eV. The luminescent wavelength corresponding to its alloy is very suitable for optical fiber communication. The InP-based quantum well structure has a high absorption efficiency for sunlight. Therefore, InP materials also have a wide range of applications in the optical communication and photovoltaic industries.
InP基电子器件的制作过程为先在InP衬底材料上通过MBE或MOCVD等方法生长器件有源层,再在有源层上通过微电子加工工艺制作相应的器件。对于InP基的微波器件,通常在InP衬底上生长InAlAs/InGaAs等异质结构并制作高电子迁移率材料。对于光电子器件及光伏器件,通常在InP衬底上生长InxGa1-xAsyP1-y等多层量子阱结构提高激光发射效率或光电转换效率等。同时,可以在InP基衬底上生长多节太阳能电池。The manufacturing process of InP-based electronic devices is to first grow the active layer of the device on the InP substrate material by MBE or MOCVD, and then make the corresponding device on the active layer by microelectronic processing technology. For InP-based microwave devices, heterogeneous structures such as InAlAs/InGaAs are usually grown on InP substrates and high electron mobility materials are fabricated. For optoelectronic devices and photovoltaic devices, multilayer quantum well structures such as In x Ga 1-x As y P 1-y are usually grown on InP substrates to improve laser emission efficiency or photoelectric conversion efficiency. At the same time, multi-junction solar cells can be grown on InP-based substrates.
虽然,InP材料作为衬底材料具有很广泛的应用范围,但是,InP材料的机械性能很差,极为易碎,单片价格很高。所以通常使用的InP衬底的厚度较厚,并在器件制作过程中易碎,降低了InP材料的利用效率并提高了InP衬底的成本。此外,由于InP的机械强度低,导致InP衬底上制备的InP基微波器件、光电子器件及光伏器件在实际应用过程中受到了限制。Although the InP material has a wide range of applications as a substrate material, the InP material has poor mechanical properties, is extremely fragile, and has a high price per piece. Therefore, the commonly used InP substrate is relatively thick and fragile during device fabrication, which reduces the utilization efficiency of the InP material and increases the cost of the InP substrate. In addition, due to the low mechanical strength of InP, the practical application of InP-based microwave devices, optoelectronic devices, and photovoltaic devices fabricated on InP substrates is limited.
因此,提供一种新的InP衬底的制备方法是本领域技术人员需要解决的课题。Therefore, providing a new method for preparing an InP substrate is a problem to be solved by those skilled in the art.
发明内容Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种InP薄膜复合衬底的制备方法,用于解决现有技术中InP衬底材料昂贵且InP材料机械强度不足导致在加工工艺及后续使用过程中易碎的问题。In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a method for preparing an InP thin film composite substrate, which is used to solve the problems caused by the expensive InP substrate material and the insufficient mechanical strength of the InP material in the prior art. Fragile problems during subsequent use.
为实现上述目的及其他相关目的,本发明提供一种InP薄膜复合衬底的制备方法,所述制备方法至少包括:In order to achieve the above purpose and other related purposes, the present invention provides a method for preparing an InP thin film composite substrate, the preparation method at least comprising:
1)提供InP衬底,所述InP衬底具有注入面,从所述注入面进行离子注入,在所述InP衬底的预设深度处形成缺陷层;1) providing an InP substrate, the InP substrate has an implanted surface, ion implantation is performed from the implanted surface, and a defect layer is formed at a predetermined depth of the InP substrate;
2)提供支撑衬底,将所述注入面与所述支撑衬底键合;2) providing a supporting substrate, and bonding the injection surface to the supporting substrate;
3)从所述缺陷层处剥离,获得InP薄膜复合衬底。3) peeling off from the defective layer to obtain an InP thin film composite substrate.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,所述步骤1)中,从所述注入面注入InP衬底的离子为H离子或者He离子。As an optimized solution of the preparation method of the InP thin film composite substrate of the present invention, in the step 1), the ions implanted into the InP substrate from the implanted surface are H ions or He ions.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,所述离子注入过程中,所述InP衬底温度保持在-50℃~300℃之间。As an optimized solution of the preparation method of the InP thin film composite substrate of the present invention, during the ion implantation process, the temperature of the InP substrate is kept between -50°C and 300°C.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,所述H离子或者He离子的注入剂量为1E16cm-2~1E18cm-2之间。As an optimized solution of the preparation method of the InP thin film composite substrate of the present invention, the implantation dose of the H ions or He ions is between 1E16cm −2 and 1E18cm −2 .
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,所述步骤1)中,离子注入InP衬底中形成缺陷层的深度范围为10nm至50μm。As an optimized solution of the preparation method of the InP thin film composite substrate of the present invention, in the step 1), the depth of ion implantation into the InP substrate to form a defect layer ranges from 10 nm to 50 μm.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,所述步骤2)中,所述支撑衬底为硅、蓝宝石、碳化硅、金刚石、氮化镓、砷化镓或玻璃。As an optimized solution of the preparation method of the InP thin film composite substrate of the present invention, in the step 2), the supporting substrate is silicon, sapphire, silicon carbide, diamond, gallium nitride, gallium arsenide or glass.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,所述支撑衬底为晶体、多晶或非晶材料。As an optimized solution of the preparation method of the InP thin film composite substrate of the present invention, the supporting substrate is a crystal, polycrystalline or amorphous material.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,所述步骤2)中,键合的方法为直接键合、介质层键合、金属键合或阳极键合。As an optimized solution of the preparation method of the InP thin film composite substrate of the present invention, in the step 2), the bonding method is direct bonding, dielectric layer bonding, metal bonding or anodic bonding.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,所述介质层键合为生长介质层键合、聚合物键合、熔融玻璃键合或旋涂玻璃键合。As an optimized solution of the preparation method of the InP thin film composite substrate of the present invention, the medium layer bonding is growth medium layer bonding, polymer bonding, molten glass bonding or spin-on-glass bonding.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,所述步骤3)中,通过加热退火的方式使InP衬底材料从所述缺陷层剥离。As an optimized solution of the preparation method of the InP thin film composite substrate of the present invention, in the step 3), the InP substrate material is peeled off from the defect layer by heating and annealing.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,所述加热退火为直接高温退火或者低温-高温退火。As an optimized scheme of the preparation method of the InP thin film composite substrate of the present invention, the heating annealing is direct high-temperature annealing or low-temperature-high-temperature annealing.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,采用所述直接高温退火的温度范围为200℃~800℃,退火时间为10秒至24小时。As an optimized solution for the preparation method of the InP thin film composite substrate of the present invention, the temperature range of the direct high-temperature annealing is 200° C. to 800° C., and the annealing time is 10 seconds to 24 hours.
作为本发明InP薄膜复合衬底的制备方法的一种优化的方案,采用所述低温-高温退火方式为先进行低温预退火再进行高温后退火,其中,所述低温预退火的温度范围为室温至250℃,退火时间为1分钟至24小时;所述高温后退火的温度范围为200~800℃,退火时间为10秒至24小时As an optimized solution for the preparation method of the InP thin film composite substrate of the present invention, the low-temperature-high-temperature annealing method is to perform low-temperature pre-annealing and then high-temperature post-annealing, wherein the temperature range of the low-temperature pre-annealing is room temperature to 250°C, the annealing time is 1 minute to 24 hours; the temperature range of the post-high temperature annealing is 200-800°C, and the annealing time is 10 seconds to 24 hours
如上所述,本发明的InP薄膜复合衬底的制备方法,包括步骤:首先提供InP衬底,所述InP衬底具有注入面,从所述注入面进行离子注入,在所述InP衬底的预设深度处形成缺陷层;然后提供支撑衬底,将所述注入面与所述支撑衬底键合;最后从所述缺陷层处剥离,获得InP薄膜复合衬底。通过离子注入,可以调节获得的InP薄膜的厚度。本发明的制备方法通过键合技术将InP薄膜转移到具有高机械强度的衬底上,可以明显提高InP薄膜的机械强度,所形成的高机械强度InP薄膜在加工工艺与后续使用过程中不易碎裂。剥离剩余的InP材料还可以循环利用,提高InP材料的利用率,降低InP耗材成本。同时,由于InP的密度大于支撑衬底的密度,形成的复合衬底可以有效降低整个器件的重量,更适合作为衬底外延生长太阳能电池结构应于空间器件。As mentioned above, the preparation method of the InP thin film composite substrate of the present invention includes the steps of: first providing an InP substrate, the InP substrate has an implanted surface, ion implantation is performed from the implanted surface, and A defect layer is formed at a predetermined depth; then a support substrate is provided, and the injection surface is bonded to the support substrate; finally, the defect layer is peeled off to obtain an InP film composite substrate. By ion implantation, the thickness of the obtained InP film can be adjusted. The preparation method of the present invention transfers the InP thin film to a substrate with high mechanical strength by bonding technology, which can significantly improve the mechanical strength of the InP thin film, and the formed InP thin film with high mechanical strength is not fragile during processing and subsequent use crack. The remaining InP material after stripping can also be recycled to improve the utilization rate of InP material and reduce the cost of InP consumables. At the same time, since the density of InP is greater than that of the supporting substrate, the formed composite substrate can effectively reduce the weight of the entire device, and is more suitable as a substrate for epitaxial growth of solar cell structures for space devices.
附图说明Description of drawings
图1为本发明InP薄膜复合衬底的制备方法的工艺流程图。Fig. 1 is a process flow chart of the preparation method of the InP thin film composite substrate of the present invention.
图2为本发明InP薄膜复合衬底的制备方法步骤1)中呈现的结构示意图。Fig. 2 is a schematic diagram of the structure presented in step 1) of the preparation method of the InP thin film composite substrate of the present invention.
图3为本发明InP薄膜复合衬底的制备方法步骤2)中呈现的结构示意图。Fig. 3 is a schematic diagram of the structure presented in step 2) of the preparation method of the InP thin film composite substrate of the present invention.
图4为本发明InP薄膜复合衬底的制备方法步骤3)中呈现的结构示意图。Fig. 4 is a schematic structural diagram presented in step 3) of the preparation method of the InP thin film composite substrate of the present invention.
元件标号说明Component designation description
1InP衬底1InP substrate
11注入面11 injection surface
12InP薄膜12InP film
13缺陷层13 defective layers
14InP衬底的余料14InP substrate remaining material
21支撑衬底21 supporting substrate
31InP薄膜复合衬底31InP thin film composite substrate
具体实施方式detailed description
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific implementation modes, and various modifications or changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅附图1~图4。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to accompanying drawings 1 to 4. It should be noted that the diagrams provided in this embodiment are only schematically illustrating the basic idea of the present invention, and only the components related to the present invention are shown in the diagrams rather than the number, shape and shape of the components in actual implementation. Dimensional drawing, the type, quantity and proportion of each component can be changed arbitrarily during actual implementation, and the component layout type may also be more complicated.
本发明提供一种明InP薄膜复合衬底的制备方法,如图1所示,所述制备方法至少包括以下步骤:The present invention provides a kind of preparation method of bright InP film composite substrate, as shown in Figure 1, described preparation method comprises the following steps at least:
S1,提供InP衬底,所述InP衬底具有注入面,从所述注入面进行离子注入,在所述InP衬底的预设深度处形成缺陷层;S1, providing an InP substrate, the InP substrate has an implanted surface, ion implantation is performed from the implanted surface, and a defect layer is formed at a predetermined depth of the InP substrate;
S2,提供支撑衬底,将所述注入面与所述支撑衬底键合;S2, providing a supporting substrate, and bonding the injection surface to the supporting substrate;
S3,从所述缺陷层处剥离,获得InP薄膜复合衬底。S3, peeling off from the defective layer to obtain an InP thin film composite substrate.
下面结合具体附图来详细介绍本发明的InP薄膜复合衬底的制备方法。The preparation method of the InP thin film composite substrate of the present invention will be described in detail below in conjunction with specific drawings.
首先执行步骤S1,请参阅附图2,提供InP衬底1,所述InP衬底1具有注入面11,从所述注入面11进行离子注入,在所述InP衬底1的预设深度处形成缺陷层13。First execute step S1, please refer to accompanying drawing 2, provide InP substrate 1, described InP substrate 1 has implantation surface 11, carries out ion implantation from described implantation surface 11, at the preset depth of described InP substrate 1 A defect layer 13 is formed.
所述InP衬底1具有上、下两个相对的表面,其中,将上表面作为注入面11,进行离子注入,如图2所示。作为示例,所述InP衬底1可选用商业化的InP单晶晶圆。The InP substrate 1 has two opposite surfaces, upper and lower, wherein the upper surface is used as the implantation surface 11 for ion implantation, as shown in FIG. 2 . As an example, the InP substrate 1 may be a commercialized InP single crystal wafer.
对所述InP衬底1进行离子注入的离子种类可以为H离子或者He离子,当然,也可以是其他合适的离子种类,在此不限。注入离子的能量与预计得到的InP薄膜12的厚度(即缺陷层13的深度)相对应,换句话说,注入的离子能量越大,形成缺陷层13就越深,后续剥离获得InP薄膜12的厚度也就越厚,反之则形成缺陷层13就越浅,后续剥离获得InP薄膜12的厚度也就越薄。本实施例中,所述H离子或者He离子的注入剂量为1E16cm-2~1E18cm-2之间,形成的缺陷层13的深度范围为10nm至50μm。The ion species for ion implantation into the InP substrate 1 may be H ions or He ions, and of course, other suitable ion species may also be used, which is not limited here. The energy of the implanted ions corresponds to the thickness of the expected InP film 12 (i.e. the depth of the defect layer 13). In other words, the greater the energy of the implanted ions, the deeper the defect layer 13 is formed, and the subsequent peeling obtains the thickness of the InP film 12 The thicker the thickness is, on the contrary, the shallower the defect layer 13 is formed, and the thinner the thickness of the InP thin film 12 obtained after peeling off is. In this embodiment, the implantation dose of the H ions or He ions is between 1E16 cm −2 and 1E18 cm −2 , and the defect layer 13 formed has a depth ranging from 10 nm to 50 μm.
另外,需要说明的是,在进行离子注入过程中,所述InP衬底1温度要保持在-50℃~300℃之间。优选地,注入过程中,所述InP衬底1的温度可以保持在0℃以下或将温度升至100至300℃间,此时,注入的离子浓度会在InP衬底1中呈高斯型分布,并在材料中引入晶体缺陷形成缺陷层13。In addition, it should be noted that during the ion implantation process, the temperature of the InP substrate 1 should be kept between -50°C and 300°C. Preferably, during the implantation process, the temperature of the InP substrate 1 can be kept below 0°C or the temperature can be raised to between 100 and 300°C. At this time, the concentration of implanted ions in the InP substrate 1 will exhibit a Gaussian distribution. , and introduce crystal defects into the material to form a defect layer 13 .
然后执行步骤S2,请参阅附图3,提供支撑衬底21,将所述注入面11与所述支撑衬底21键合。Then step S2 is performed, referring to FIG. 3 , providing a supporting substrate 21 , and bonding the injection surface 11 to the supporting substrate 21 .
所述支撑衬底21可以是蓝宝石、碳化硅、金刚石、氮化镓、砷化镓或玻璃等。另外,所述支撑衬底21可以是以上材料的晶体、多晶或者非晶材料。本实施例中,所述支撑衬底21选择为蓝宝石晶体材料。The supporting substrate 21 may be sapphire, silicon carbide, diamond, gallium nitride, gallium arsenide, or glass. In addition, the supporting substrate 21 may be crystal, polycrystalline or amorphous material of the above materials. In this embodiment, the supporting substrate 21 is selected as sapphire crystal material.
本步骤中看,所述键合的方法可以选择使用直接键合、介质层键合、金属键合或阳极键合等方式。所述介质层键合包括生长介质层键合、熔融玻璃键合与旋涂玻璃键合等方法。以上键合方式均为常规键合方法,在此不再展开叙述。In this step, the method of bonding can be chosen to use methods such as direct bonding, dielectric layer bonding, metal bonding, or anodic bonding. The dielectric layer bonding includes methods such as growth medium layer bonding, fusion glass bonding, and spin-on-glass bonding. The above bonding methods are all conventional bonding methods, and will not be further described here.
通过以上键合方法将所述注入面11和所述支撑衬底21的一个表面进行牢固键合。The injection surface 11 and one surface of the support substrate 21 are firmly bonded by the above bonding method.
最后执行步骤S3,请参阅附图4,从所述缺陷层13处剥离,获得InP薄膜复合衬底31。Finally, step S3 is executed, please refer to FIG. 4 , and the defective layer 13 is peeled off to obtain an InP thin film composite substrate 31 .
可以通过加热退火的处理方式从所述缺陷层13处剥离。所述加热退火的方式是单一的直接高温退火或者低温-高温相结合的复合退火。若使用直接高温退火,则退火的温度范围为200℃~800℃,退火时间为10秒至24小时。优选地,直接高温退火的温度为250℃~600℃,退火时间为12小时至24小时。The defective layer 13 can be peeled off by heating and annealing. The heating annealing method is a single direct high-temperature annealing or a combined low-temperature-high-temperature annealing. If direct high-temperature annealing is used, the annealing temperature ranges from 200° C. to 800° C., and the annealing time ranges from 10 seconds to 24 hours. Preferably, the temperature of direct high-temperature annealing is 250° C. to 600° C., and the annealing time is 12 hours to 24 hours.
在退火过程中,若直接使用高温退火,会使注入的离子(H或He等)发生扩散,与材料中的缺陷结合。同时,注入过程中的缺陷会因为奥斯瓦尔效应聚集。在退火过程中,H或He的聚集会增加缺陷内部的压强,导致化学键的断裂及缺陷的增值,在缺陷层处形成平台型的缺陷,并最终导致InP薄膜的剥离。During the annealing process, if high temperature annealing is used directly, the implanted ions (H or He, etc.) will diffuse and combine with defects in the material. At the same time, defects during implantation will accumulate due to the Oswald effect. During the annealing process, the accumulation of H or He will increase the pressure inside the defect, resulting in the breakage of chemical bonds and the value addition of defects, forming platform-type defects at the defect layer, and finally leading to the peeling off of the InP film.
若采用低温-高温相结合的复合退火方式,则先进行低温预退火再进行高温后退火,其中,所述低温预退火的温度范围为室温至250℃,退火时间为1分钟至24小时;所述高温后退火的温度范围为200~800℃,退火时间为10秒至24小时。优选地,所述高温后退火的温度范围为250~600℃,退火时间为10秒至10小时。If the composite annealing method combining low temperature and high temperature is adopted, low temperature pre-annealing is performed first and then high temperature post-annealing is performed, wherein the temperature range of the low temperature pre-annealing is from room temperature to 250°C, and the annealing time is from 1 minute to 24 hours; The temperature range of the high temperature post-annealing is 200-800° C., and the annealing time is 10 seconds to 24 hours. Preferably, the temperature range of the high temperature post-annealing is 250-600° C., and the annealing time is 10 seconds to 10 hours.
在退火过程中,若使用低温预退火与高温后退火结合的复合退火过程。低温预退火会促进H或He在材料中的扩散并与材料中的缺陷结合,但是这个过程并不会导致材料的剥离。在高温后退火过程中,已经与材料缺陷结合的H或He会导致缺陷内部的压强迅速变大,出现平台型的缺陷并导致InP薄膜的剥离。低温预退火与高温后退火结合的复合退火过程与直接退火过程相比,可以更加缩短退火时间。In the annealing process, if a composite annealing process combining low-temperature pre-annealing and high-temperature post-annealing is used. Low temperature pre-annealing will promote the diffusion of H or He in the material and combine with the defects in the material, but this process will not lead to the exfoliation of the material. During the high-temperature post-annealing process, the H or He that has been combined with the material defect will cause the pressure inside the defect to increase rapidly, and the platform-type defect will appear and cause the peeling of the InP film. Compared with the direct annealing process, the composite annealing process combining low-temperature pre-annealing and high-temperature post-annealing can shorten the annealing time.
本实施例中,采用低温-高温相结合的复合退火方式,先进行150℃的低温预退火,退火时间5小时,再进行300℃的高温后退火,退火1小时。形成的InP薄膜复合衬底31包括支撑衬底21、形成在支撑衬底21上的InP薄膜12。剥离后缺陷层很薄,也是InP材料。In this embodiment, a composite annealing method combining low temperature and high temperature is adopted, first performing low temperature pre-annealing at 150° C. for 5 hours, and then performing high temperature post-annealing at 300° C. for 1 hour. The formed InP thin film composite substrate 31 includes a supporting substrate 21 and an InP thin film 12 formed on the supporting substrate 21 . After peeling off, the defect layer is very thin, and it is also an InP material.
还需要说明的是,将InP薄膜12转移到支撑衬底21后,InP衬底的余料14经过处理后可以循环利用,即作为图2中的InP衬底1继续使用。It should also be noted that after the InP thin film 12 is transferred to the support substrate 21, the remainder 14 of the InP substrate can be recycled after being processed, that is, it can continue to be used as the InP substrate 1 in FIG. 2 .
转移后的InP薄膜复合衬底31具有很好的机械性能,可以利用MBE或MOCVD方法在或得的InP薄膜复合衬底31上外延生长高迁移率异质结、激光器、探测器及光伏器件的多层量子阱结构等等。The transferred InP thin film composite substrate 31 has good mechanical properties, and can utilize MBE or MOCVD to epitaxially grow high-mobility heterojunctions, lasers, detectors and photovoltaic devices on the obtained InP thin film composite substrate 31. Multilayer quantum well structure and so on.
综上所述,本发明提供一种InP薄膜复合衬底的制备方法,包括步骤:首先提供InP衬底,所述InP衬底具有注入面,从所述注入面进行离子注入,在所述InP衬底的预设深度处形成缺陷层;然后提供支撑衬底,将所述注入面与所述支撑衬底键合;最后从所述缺陷层处剥离,获得InP薄膜复合衬底。通过离子注入,可以调节获得的InP薄膜的厚度。本发明的制备方法通过键合技术将InP薄膜转移到具有高机械强度的衬底上,可以明显提高InP薄膜的机械强度,所形成的高机械强度InP薄膜在加工工艺与后续使用过程中不易碎裂。剥离剩余的InP材料还可以循环利用,提高InP材料的利用率,降低InP耗材成本。同时,由于InP的密度大于支撑衬底的密度,形成的复合衬底可以有效降低整个器件的重量,更适合作为衬底外延生长太阳能电池结构应于空间器件。In summary, the present invention provides a method for preparing an InP thin film composite substrate, comprising the steps of: first providing an InP substrate, the InP substrate has an implanted surface, ion implantation is performed from the implanted surface, and the InP A defect layer is formed at a preset depth of the substrate; then a support substrate is provided, and the injection surface is bonded to the support substrate; finally, the defect layer is peeled off to obtain an InP film composite substrate. By ion implantation, the thickness of the obtained InP film can be adjusted. The preparation method of the present invention transfers the InP thin film to a substrate with high mechanical strength by bonding technology, which can significantly improve the mechanical strength of the InP thin film, and the formed InP thin film with high mechanical strength is not fragile during processing and subsequent use crack. The remaining InP material after stripping can also be recycled to improve the utilization rate of InP material and reduce the cost of InP consumables. At the same time, since the density of InP is greater than that of the supporting substrate, the formed composite substrate can effectively reduce the weight of the entire device, and is more suitable as a substrate for epitaxial growth of solar cell structures for space devices.
所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention shall still be covered by the claims of the present invention.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510695855.5A CN105374664A (en) | 2015-10-23 | 2015-10-23 | Preparation method of InP film composite substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510695855.5A CN105374664A (en) | 2015-10-23 | 2015-10-23 | Preparation method of InP film composite substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105374664A true CN105374664A (en) | 2016-03-02 |
Family
ID=55376753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510695855.5A Pending CN105374664A (en) | 2015-10-23 | 2015-10-23 | Preparation method of InP film composite substrate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105374664A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106653583A (en) * | 2016-11-11 | 2017-05-10 | 中国科学院上海微系统与信息技术研究所 | Preparation method of large-size III-V heterogeneous substrate |
CN106711027A (en) * | 2017-02-13 | 2017-05-24 | 中国科学院上海微系统与信息技术研究所 | Wafer bonding method and preparation method for foreign substrate |
CN106711026A (en) * | 2017-02-09 | 2017-05-24 | 中国科学院上海微系统与信息技术研究所 | Method for preparing InP thin film heterogeneous substrate |
CN111146681A (en) * | 2019-12-19 | 2020-05-12 | 中国科学院上海微系统与信息技术研究所 | A SiC-based InP photonic integrated module and preparation method thereof |
WO2020098401A1 (en) * | 2018-11-15 | 2020-05-22 | 中国科学院上海微系统与信息技术研究所 | Gallium oxide semiconductor structure and preparation method therefor |
CN111262127A (en) * | 2020-02-04 | 2020-06-09 | 中国科学院上海微系统与信息技术研究所 | Preparation method of silicon-based InGaAs laser substrate, substrate and laser |
CN111883649A (en) * | 2020-07-23 | 2020-11-03 | 中国科学院上海微系统与信息技术研究所 | Thin film structure on heterogeneous substrate and preparation method thereof |
CN112951713A (en) * | 2021-02-07 | 2021-06-11 | 长春长光圆辰微电子技术有限公司 | Processing method of small-size wafer |
CN113555277A (en) * | 2020-04-23 | 2021-10-26 | 无锡华润上华科技有限公司 | Silicon carbide device and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1408545A2 (en) * | 2002-10-07 | 2004-04-14 | S.O.I. Tec Silicon on Insulator Technologies | A method of producing a substrate by transferring a donor wafer comprising foreign species, and an associated donor wafer |
US20050167002A1 (en) * | 2003-01-07 | 2005-08-04 | Bruno Ghyselen | Recycling of a wafer comprising a multi-layer structure after taking-off a thin layer |
CN1723553A (en) * | 2003-01-07 | 2006-01-18 | S.O.I.Tec绝缘体上硅技术公司 | Recycling by mechanical means of a wafer comprising a taking-off structure after taking-off a thin layer thereof |
CN101807626A (en) * | 2010-03-17 | 2010-08-18 | 中国科学院半导体研究所 | GaAs/InP chip low-temperature direct bonding method for multi-junction solar cell |
CN102184882A (en) * | 2011-04-07 | 2011-09-14 | 中国科学院微电子研究所 | Method for forming composite functional material structure |
CN102347219A (en) * | 2011-09-23 | 2012-02-08 | 中国科学院微电子研究所 | Method for forming composite functional material structure |
-
2015
- 2015-10-23 CN CN201510695855.5A patent/CN105374664A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1408545A2 (en) * | 2002-10-07 | 2004-04-14 | S.O.I. Tec Silicon on Insulator Technologies | A method of producing a substrate by transferring a donor wafer comprising foreign species, and an associated donor wafer |
US20050167002A1 (en) * | 2003-01-07 | 2005-08-04 | Bruno Ghyselen | Recycling of a wafer comprising a multi-layer structure after taking-off a thin layer |
CN1723553A (en) * | 2003-01-07 | 2006-01-18 | S.O.I.Tec绝缘体上硅技术公司 | Recycling by mechanical means of a wafer comprising a taking-off structure after taking-off a thin layer thereof |
CN101807626A (en) * | 2010-03-17 | 2010-08-18 | 中国科学院半导体研究所 | GaAs/InP chip low-temperature direct bonding method for multi-junction solar cell |
CN102184882A (en) * | 2011-04-07 | 2011-09-14 | 中国科学院微电子研究所 | Method for forming composite functional material structure |
CN102347219A (en) * | 2011-09-23 | 2012-02-08 | 中国科学院微电子研究所 | Method for forming composite functional material structure |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106653583A (en) * | 2016-11-11 | 2017-05-10 | 中国科学院上海微系统与信息技术研究所 | Preparation method of large-size III-V heterogeneous substrate |
WO2018086380A1 (en) * | 2016-11-11 | 2018-05-17 | 中国科学院上海微系统与信息技术研究所 | Method for preparing large-sized iii-v heterogeneous substrate |
CN106711026A (en) * | 2017-02-09 | 2017-05-24 | 中国科学院上海微系统与信息技术研究所 | Method for preparing InP thin film heterogeneous substrate |
WO2018145411A1 (en) * | 2017-02-09 | 2018-08-16 | 中国科学院上海微系统与信息技术研究所 | Method for fabricating inp thin film heterogeneous substrate |
CN106711027A (en) * | 2017-02-13 | 2017-05-24 | 中国科学院上海微系统与信息技术研究所 | Wafer bonding method and preparation method for foreign substrate |
CN106711027B (en) * | 2017-02-13 | 2021-01-05 | 中国科学院上海微系统与信息技术研究所 | Wafer bonding method and heterogeneous substrate preparation method |
WO2020098401A1 (en) * | 2018-11-15 | 2020-05-22 | 中国科学院上海微系统与信息技术研究所 | Gallium oxide semiconductor structure and preparation method therefor |
US11955373B2 (en) | 2018-11-15 | 2024-04-09 | Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences | Gallium oxide semiconductor structure and preparation method therefor |
CN111146681A (en) * | 2019-12-19 | 2020-05-12 | 中国科学院上海微系统与信息技术研究所 | A SiC-based InP photonic integrated module and preparation method thereof |
CN111146681B (en) * | 2019-12-19 | 2022-03-15 | 中国科学院上海微系统与信息技术研究所 | SiC-based InP photonic integrated module and preparation method thereof |
CN111262127A (en) * | 2020-02-04 | 2020-06-09 | 中国科学院上海微系统与信息技术研究所 | Preparation method of silicon-based InGaAs laser substrate, substrate and laser |
CN111262127B (en) * | 2020-02-04 | 2022-06-10 | 中国科学院上海微系统与信息技术研究所 | Preparation method of silicon-based InGaAs laser substrate, substrate and laser |
CN113555277A (en) * | 2020-04-23 | 2021-10-26 | 无锡华润上华科技有限公司 | Silicon carbide device and preparation method thereof |
CN111883649B (en) * | 2020-07-23 | 2021-04-27 | 中国科学院上海微系统与信息技术研究所 | A thin film structure on a heterogeneous substrate and its preparation method |
CN111883649A (en) * | 2020-07-23 | 2020-11-03 | 中国科学院上海微系统与信息技术研究所 | Thin film structure on heterogeneous substrate and preparation method thereof |
CN112951713A (en) * | 2021-02-07 | 2021-06-11 | 长春长光圆辰微电子技术有限公司 | Processing method of small-size wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105374664A (en) | Preparation method of InP film composite substrate | |
CN108493334B (en) | A kind of preparation method of thin film heterostructure | |
TWI450321B (en) | Direct wafer bonding | |
US8129612B2 (en) | Method for manufacturing single-crystal silicon solar cell and single-crystal silicon solar cell | |
US6602760B2 (en) | Method of producing a semiconductor layer on a substrate | |
JP5128781B2 (en) | Manufacturing method of substrate for photoelectric conversion element | |
WO2018086380A1 (en) | Method for preparing large-sized iii-v heterogeneous substrate | |
WO2018145411A1 (en) | Method for fabricating inp thin film heterogeneous substrate | |
TW200837973A (en) | Fabrication method of single crystal silicon solar battery and single crystal silicon solar battery | |
CN105957831A (en) | Method for manufacturing monocrystal material thin layer structure on supporting substrate | |
CN113097124B (en) | Preparation method of heterogeneous integrated GaN film and GaN device | |
JP2010050356A (en) | Process for manufacturing heterojunction solar cell and heterojunction solar cell | |
CN107910402B (en) | A kind of preparation method of indium gallium arsenide infrared detector material | |
CN109427538A (en) | A kind of preparation method of heterojunction structure | |
EP2831927A1 (en) | Manufacture of multijunction solar cell devices | |
CN111312852B (en) | Gallium oxide semiconductor structure, solar blind photoelectric detector and preparation method | |
CN106328774A (en) | Epitaxial growth method and application of GaN film | |
Bhusari et al. | Direct semiconductor bonding technology (SBT) for high efficiency III-V multi-junction solar cells | |
CN107910403B (en) | A kind of preparation method of quantum well infrared detection device material | |
CN117452677A (en) | Electro-optical modulation chip capable of monolithically integrating active optical device and preparation method | |
Tamboli et al. | Indium zinc oxide mediated wafer bonding for III–V/Si tandem solar cells | |
CN107887452A (en) | A kind of preparation method of zno-based self-supporting film | |
EP2831928A1 (en) | Manufacture of multijunction solar cell devices | |
CN109256437B (en) | A low-temperature bonding photodetector and its preparation method | |
CN104183667B (en) | The method for reducing bonding multijunction solar cell GaAs/InP interfaces electrical losses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160302 |