[go: up one dir, main page]

CN105374487A - 一种耐腐蚀高性能稀土永磁材料 - Google Patents

一种耐腐蚀高性能稀土永磁材料 Download PDF

Info

Publication number
CN105374487A
CN105374487A CN201510941590.2A CN201510941590A CN105374487A CN 105374487 A CN105374487 A CN 105374487A CN 201510941590 A CN201510941590 A CN 201510941590A CN 105374487 A CN105374487 A CN 105374487A
Authority
CN
China
Prior art keywords
corrosion
permanent magnet
boron
vanadium
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510941590.2A
Other languages
English (en)
Inventor
仝进峰
张翼
徐建华
张耀东
李卓奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANTONG CHANGJIANG ELECTRICAL APPLIANCE INDUSTRIAL Co Ltd
Original Assignee
NANTONG CHANGJIANG ELECTRICAL APPLIANCE INDUSTRIAL Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANTONG CHANGJIANG ELECTRICAL APPLIANCE INDUSTRIAL Co Ltd filed Critical NANTONG CHANGJIANG ELECTRICAL APPLIANCE INDUSTRIAL Co Ltd
Priority to CN201510941590.2A priority Critical patent/CN105374487A/zh
Publication of CN105374487A publication Critical patent/CN105374487A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明涉及一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:稀土元素20-35%,硼0.8-1.5%,钨0.02-0.2%,硅0.5-5%,钒0.1-3%,镓0.02-0.5%,锆0.02-0.5%,铬0.02-0.5%,铜0.5-5%,余量为铁以及不可避免的杂质。该稀土永磁材料具有高耐腐蚀性能,力学性能优良,并且成本低廉,稳定性高,制造方法简单,容易实现大规模工业化生产。

Description

一种耐腐蚀高性能稀土永磁材料
技术领域
本发明属于合金领域,具体而言涉及一种耐腐蚀高性能能力和力学性能都得到极大提高并且成本低廉的稀土永磁材料。
背景技术
自从1966年以来,永磁材料中增加了一个新成员,它就是“稀土永磁体”。由于稀土永磁材料优异的性能,它的出现为应用打开了一扇全新的大门。特别是1983年问世的第三代稀土永磁材料钕铁硼,一直是当今世界上磁性最强的永磁材料。
钕铁硼稀土永磁材料是支撑现代社会的重要基础材料,与人们的生活息息相关。小到手表、照相机、录音机、CD机、VCD机、计算机硬盘、光盘驱动器,大到汽车、发电
机、悬浮列车、医疗仪器等,永磁材料无所不在。在低碳生活中充满了磁性材料,稀土永磁钕铁硼材料扮演着非常重要的角色,在风力发电、混合动力/电动汽车、节能家电等方面,都离不开稀土永磁材料,其中直流永磁式风电机组、混合动力车的稀土永磁同步电机、变频空调中的稀土永磁变频电机等都采用了钕铁硼稀土永磁材料。
然而烧结钕铁硼的富钕相具有高的电化学活性,且烧结磁体的结构不够致密,存在大量孔隙,耐腐蚀高性能性较差,大大限制了其使用范围。如在室温潮湿空气中,磁体的氧化主要是铁的氧化;在150℃干气或湿气中,主要是钕的氧化,这些都将显著降低磁体的磁性能。NdFeB磁体的腐蚀机理为电化学腐蚀。磁体中Nd2Fe14B、富钕相的电化学电位不同,引起电化学反应而形成原电池。磁体表面的污染物形成导电回路时,低电位的钕(-2.4V)成为阳极而被氧化。由于钕阳极和Nd2Fe14B阴极的相对量差别很大,形成小阳极和大阴极。富钕相承担很大的腐蚀电流密度,因此沿晶界加速腐蚀,形成晶间腐蚀,这将导致磁体矫顽力下降。
发明内容
本发明提供一种耐腐蚀高性能稀土永磁材料,该稀土永磁材料具有高耐腐蚀性能,力学性能优良,并且成本低廉,稳定性高,制造方法简单,容易实现大规模工业化生产。
具体而言,一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:稀土元素20-35%,硼0.8-1.5%,钨0.02-0.2%,硅0.5-5%,钒0.1-3%,镓0.02-0.5%,锆0.02-0.5%,铬0.02-0.5%,铜0.5-5%,余量为铁以及不可避免的杂质。
在本发明一个具体的实施方式中,所述的一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:稀土元素20-35%,硼0.8-1.5%,钨0.02-0.2%,硅0.5-5%,钒0.1-3%,镓0.02-0.5%,锆0.02-0.5%,铬0.02-0.5%,铜0.5-5%,余量为铁以及不可避免的杂质,稀土元素为钕、铈、镝和镱的组合。
在本发明一个具体的实施方式中,所述的一种耐腐蚀高性能稀土永磁材料,其中钕、铈、镝和镱的重量比为20:0.5:2:1.5。
在本发明一个具体的实施方式中,所述的一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.0%,钨0.1%,硅3%,钒1.5%,镓0.3%,锆0.1%,铬0.2%,铜3%,钕20%,铈0.5%,镝2%,镱1.5%,余量为铁以及不可避免的杂质。
在本发明一个具体的实施方式中,述的一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.2%,钨0.14%,硅2%,钒2%,镓0.15%,锆0.3%,铬0.4%,铜2%,钕24%,铈0.6%,镝2.4%,镱1.8%,余量为铁以及不可避免的杂质。
在本发明一个具体的实施方式中,所述的一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.4%,钨0.06%,硅1%,钒2.5%,镓0.45%,锆0.4%、铬0.1%,铜4.5%,钕28%,铈0.7%,镝2.8%,镱2.1%,余量为铁以及不可避免的杂质。
本发明的耐腐蚀高性能稀土永磁材料可以采用普通的生产设备按照常规的方法制备。例如,具体步骤可以包括:
(1)原材料准备:将经过表面清除的原材料按重量配比配料;
(2)铸锭:将原料加入熔炼炉中,抽真空,并在0.05MPa氩气保护下进行熔炼并浇铸成锭,再将铸锭放在真空炉中均匀化处理,所述处理的温度为900-960℃,时间为8-10小时;
(3)制粉:将均匀化处理的铸锭进行氢破碎,至200-250μm的合金粉末,再进行脱氢处理;
(4)磁场成型:将上述磁粉放在1.2T-2.0T的磁场中取向,以10MPa-20MPa的压强压制成型;
(5)烧结:在真空气淬炉中进行烧结,烧结温度为1100-1180℃,烧结时间为4-5小时;
(6)时效处理:将烧结好的磁体进行两次回火热处理,第一次回火热处理温度为900-1000℃,时间为4-5小时,第二次回火热处理温度为400-600℃,时间为7-9小时;
(7)充磁,将经过上述步骤制备的磁体再次进行充磁,即得。
本发明的稀土永磁材料具有高耐腐蚀性能,力学性能优良,并且成本低廉,稳定性高,制造方法简单,容易实现大规模工业化生产。
具体实施方式
下面结合具体实施方式,对本发明作进一步说明。
实施例1:
一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.0%,钨0.1%,硅3%,钒1.5%,镓0.3%,锆0.1%,铬0.2%,铜3%,钕20%,铈0.5%,镝2%,镱1.5%,余量为铁以及不可避免的杂质;
具体步骤包括:
(1)原材料准备:将经过表面清除的原材料按重量配比配料;
(2)铸锭:将原料加入熔炼炉中,抽真空,并在0.05MPa氩气保护下进行熔炼并浇铸成锭,再将铸锭放在真空炉中均匀化处理,所述处理的温度为950℃,时间为9小时;
(3)制粉:将均匀化处理的铸锭进行氢破碎,至200μm的合金粉末,再进行脱氢处理;
(4)磁场成型:将上述磁粉放在1.5T的磁场中取向,以20MPa的压强压制成型;
(5)烧结:在真空气淬炉中进行烧结,烧结温度为1100℃,烧结时间为5小时;
(6)时效处理:将烧结好的磁体进行两次回火热处理,第一次回火热处理温度为950℃,时间为5小时,第二次回火热处理温度为500℃,时间为8小时;
(7)充磁,将经过上述步骤制备的磁体再次进行充磁,即得。
实施例2:
一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.2%,钨0.14%,硅2%,钒2%,镓0.15%,锆0.3%,铬0.4%,铜2%,钕24%,铈0.6%,镝2.4%,镱1.8%,余量为铁以及不可避免的杂质;
具体步骤包括:
(1)原材料准备:将经过表面清除的原材料按重量配比配料;
(2)铸锭:将原料加入熔炼炉中,抽真空,并在0.05MPa氩气保护下进行熔炼并浇铸成锭,再将铸锭放在真空炉中均匀化处理,所述处理的温度为900℃,时间为10小时;
(3)制粉:将均匀化处理的铸锭进行氢破碎,至230μm的合金粉末,再进行脱氢处理;
(4)磁场成型:将上述磁粉放在1.2T的磁场中取向,以15MPa的压强压制成型;
(5)烧结:在真空气淬炉中进行烧结,烧结温度为1100℃,烧结时间为5小时;
(6)时效处理:将烧结好的磁体进行两次回火热处理,第一次回火热处理温度为1000℃,时间为4小时,第二次回火热处理温度为600℃,时间为9小时;
(7)充磁,将经过上述步骤制备的磁体再次进行充磁,即得。
实施例3:
一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.4%,钨0.06%,硅1%,钒2.5%,镓0.45%,锆0.4%、铬0.1%,铜4.5%,钕28%,铈0.7%,镝2.8%,镱2.1%,余量为铁以及不可避免的杂质;
具体步骤包括:
(1)原材料准备:将经过表面清除的原材料按重量配比配料;
(2)铸锭:将原料加入熔炼炉中,抽真空,并在0.05MPa氩气保护下进行熔炼并浇铸成锭,再将铸锭放在真空炉中均匀化处理,所述处理的温度为960℃,时间为9小时;
(3)制粉:将均匀化处理的铸锭进行氢破碎,至250μm的合金粉末,再进行脱氢处理;
(4)磁场成型:将上述磁粉放在1.8T的磁场中取向,以12MPa的压强压制成型;
(5)烧结:在真空气淬炉中进行烧结,烧结温度为1180℃,烧结时间为5小时;
(6)时效处理:将烧结好的磁体进行两次回火热处理,第一次回火热处理温度为900℃,时间为5小时,第二次回火热处理温度为400℃,时间为9小时;
(7)充磁,将经过上述步骤制备的磁体再次进行充磁,即得。
对比例1:
一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.0%,硅3%,钒1.5%,镓0.3%,锆0.1%,铬0.2%,铜3%,钕20%,铈0.5%,镝2%,镱1.5%,余量为铁以及不可避免的杂质;制备方法同实施例1。
对比例2:
一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、锆、铬、铜,各组分的重量百分比为:硼1.0%,钨0.1%,硅3%,钒1.5%,锆0.1%,铬0.2%,铜3%,钕20%,铈0.5%,镝2%,镱1.5%,余量为铁以及不可避免的杂质;制备方法同实施例1。
对比例3:
一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铜,各组分的重量百分比为:硼1.0%,钨0.1%,硅3%,钒1.5%,镓0.3%,锆0.1%,铜3%,钕20%,铈0.5%,镝2%,镱1.5%,余量为铁以及不可避免的杂质;制备方法同实施例1。
对比例4:
一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.0%,钨0.1%,硅3%,钒1.5%,镓0.3%,锆0.1%,铬0.2%,铜3%,钕20%,镝2.5%,镱1.5%,余量为铁以及不可避免的杂质;制备方法同实施例1。
对比例5:
一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.0%,钨0.1%,硅3%,钒1.5%,镓0.3%,锆0.1%,铬0.2%,铜3%,钕20%,铈0.5%,镝3.5%,余量为铁以及不可避免的杂质;制备方法同实施例1。
实施例4:本发明耐腐蚀高性能稀土永磁材料的性能检测
采用中国计量科学研究院的永磁材料不同温度曲线测量系统NIM200C以及万能材料试验机CMT51505测定将实施例1-3以及对照例1-5的磁性能和力学性能,采用PCT实验(温度125℃、100%RH、0.25MPa,时间100h)测定失重,以检测本发明的耐腐蚀性能。结果见表1。
表1本发明稀土永磁材料的性能
失重mg/cm2 (BH)max(MGOe) Hcj(kOe) 抗弯强度(MPa)
实施例1 0.23 38.91 29.78 390.06
实施例2 0.21 38.63 29.56 389.83
实施例3 0.20 38.72 29.87 389.51
对比例1 0.64 33.81 28.38 323.24
对比例2 0.56 33.43 21.14 317.32
对比例3 0.45 37.13 26.77 310.25
对比例4 0.29 34.12 22.19 342.83
对比例5 0.30 32.36 23.89 367.95
从表1可以得出,本发明稀土永磁材料在提高了耐腐蚀高性能的同时,具有较高的矫顽力和抗弯强度,以及稳定的磁能积(BH)max;本发明的各个组分相互协同,缺一不可,对比例1-3分别省略钨、镓、铬后,耐腐蚀性能、矫顽力Hcj以及抗弯强度都会下降;采用钕、铈、镝和镱的组合的稀土元素亦能提高耐腐蚀性能、矫顽力和抗弯强度,而对比例4-5证明省略了某种稀土元素会使耐腐蚀性能、矫顽力和抗弯强度下降。

Claims (7)

1.一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:稀土元素20-35%,硼0.8-1.5%,钨0.02-0.2%,硅0.5-5%,钒0.1-3%,镓0.02-0.5%,锆0.02-0.5%,铬0.02-0.5%,铜0.5-5%,余量为铁以及不可避免的杂质。
2.根据权利要求1所述的一种耐腐蚀高性能稀土永磁材料,其中稀土元素为钕、铈、镝和镱的组合。
3.根据权利要求2所述的一种耐腐蚀高性能稀土永磁材料,其中钕、铈、镝和镱的重量比为20:0.5:2:1.5。
4.根据权利要求1-3所述的一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.0%,钨0.1%,硅3%,钒1.5%,镓0.3%,锆0.1%,铬0.2%,铜3%,钕20%,铈0.5%,镝2%,镱1.5%,余量为铁以及不可避免的杂质。
5.根据权利要求1-3所述的一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.2%,钨0.14%,硅2%,钒2%,镓0.15%,锆0.3%,铬0.4%,铜2%,钕24%,铈0.6%,镝2.4%,镱1.8%,余量为铁以及不可避免的杂质。
6.根据权利要求1-3所述的一种耐腐蚀高性能稀土永磁材料,包括稀土元素、铁、硼、钨、硅、钒、镓、锆、铬、铜,各组分的重量百分比为:硼1.4%,钨0.06%,硅1%,钒2.5%,镓0.45%,锆0.4%、铬0.1%,铜4.5%,钕28%,铈0.7%,镝2.8%,镱2.1%,余量为铁以及不可避免的杂质。
7.一种权利要求1-6任一项所述的耐腐蚀高性能稀土永磁材料的制备方法,包括以下步骤:
(1)原材料准备:将经过表面清除的原材料按重量配比配料;
(2)铸锭:将原料加入熔炼炉中,抽真空,并在0.05MPa氩气保护下进行熔炼并浇铸成锭,再将铸锭放在真空炉中均匀化处理,所述处理的温度为900-960℃,时间为8-10小时;
(3)制粉:将均匀化处理的铸锭进行氢破碎,至200-250μm的合金粉末,再进行脱氢处理;
(4)磁场成型:将上述磁粉放在1.2T-2.0T的磁场中取向,以10MPa-20MPa的压强压制成型;
(5)烧结:在真空气淬炉中进行烧结,烧结温度为1100-1180℃,烧结时间为4-5小时;
(6)时效处理:将烧结好的磁体进行两次回火热处理,第一次回火热处理温度为900-1000℃,时间为4-5小时,第二次回火热处理温度为400-600℃,时间为7-9小时;
(7)充磁,将经过上述步骤制备的磁体再次进行充磁,即得。
CN201510941590.2A 2015-12-16 2015-12-16 一种耐腐蚀高性能稀土永磁材料 Pending CN105374487A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510941590.2A CN105374487A (zh) 2015-12-16 2015-12-16 一种耐腐蚀高性能稀土永磁材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510941590.2A CN105374487A (zh) 2015-12-16 2015-12-16 一种耐腐蚀高性能稀土永磁材料

Publications (1)

Publication Number Publication Date
CN105374487A true CN105374487A (zh) 2016-03-02

Family

ID=55376595

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510941590.2A Pending CN105374487A (zh) 2015-12-16 2015-12-16 一种耐腐蚀高性能稀土永磁材料

Country Status (1)

Country Link
CN (1) CN105374487A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105913991A (zh) * 2016-06-27 2016-08-31 无锡新大力电机有限公司 一种电机用耐热稀土永磁材料
WO2024124810A1 (zh) * 2022-12-15 2024-06-20 浙江英洛华磁业有限公司 一种高性能低镓烧结永磁体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735947A (zh) * 2002-05-24 2006-02-15 代顿大学 纳米晶态和纳米复合稀土永磁体材料及其制造方法
CN101071667A (zh) * 2007-04-12 2007-11-14 北京中科三环高技术股份有限公司 含钆的钕铁硼稀土永磁材料及其制造方法
US20080251159A1 (en) * 2004-04-30 2008-10-16 Neomax Co., Ltd. Methods for Producing Raw Material Alloy for Rare Earth Magnet, Powder and Sintered Magnet
CN103377820A (zh) * 2013-07-17 2013-10-30 烟台首钢磁性材料股份有限公司 一种r-t-b-m系烧结磁体及其制造方法
CN103745823A (zh) * 2014-01-24 2014-04-23 烟台正海磁性材料股份有限公司 一种R-Fe-B系烧结磁体的制备方法
CN104485220A (zh) * 2014-12-31 2015-04-01 北矿磁材科技股份有限公司 一种烧结钕铁硼磁体的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1735947A (zh) * 2002-05-24 2006-02-15 代顿大学 纳米晶态和纳米复合稀土永磁体材料及其制造方法
US20080251159A1 (en) * 2004-04-30 2008-10-16 Neomax Co., Ltd. Methods for Producing Raw Material Alloy for Rare Earth Magnet, Powder and Sintered Magnet
CN101071667A (zh) * 2007-04-12 2007-11-14 北京中科三环高技术股份有限公司 含钆的钕铁硼稀土永磁材料及其制造方法
CN103377820A (zh) * 2013-07-17 2013-10-30 烟台首钢磁性材料股份有限公司 一种r-t-b-m系烧结磁体及其制造方法
CN103745823A (zh) * 2014-01-24 2014-04-23 烟台正海磁性材料股份有限公司 一种R-Fe-B系烧结磁体的制备方法
CN104485220A (zh) * 2014-12-31 2015-04-01 北矿磁材科技股份有限公司 一种烧结钕铁硼磁体的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105913991A (zh) * 2016-06-27 2016-08-31 无锡新大力电机有限公司 一种电机用耐热稀土永磁材料
WO2024124810A1 (zh) * 2022-12-15 2024-06-20 浙江英洛华磁业有限公司 一种高性能低镓烧结永磁体及其制备方法

Similar Documents

Publication Publication Date Title
CN101958171B (zh) 一种耐腐蚀烧结钕铁硼磁体的制备方法
CN101707107B (zh) 一种高剩磁高矫顽力稀土永磁材料的制造方法
CN101521069B (zh) 重稀土氢化物纳米颗粒掺杂烧结钕铁硼永磁的制备方法
CN101615459A (zh) 提高烧结钕铁硼永磁材料性能的方法
CN102651263B (zh) 一种钐钴系烧结材料的制备方法
CN102456458A (zh) 高耐蚀性烧结钕铁硼磁体及其制备方法
CN111383833A (zh) 一种稀土钕铁硼磁体晶界扩散方法
CN106710765A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN104347218A (zh) 一种新型烧结钕铁硼永磁体及其制备方法
CN103426624A (zh) 钕铁硼永磁体的制备方法
CN102360909B (zh) 一种钕铁硼磁体的制备方法
CN105374488A (zh) 一种耐高温高性能稀土永磁材料
CN101246771B (zh) 一种高性能钕铁硼永磁材料的制造方法
CN102768891B (zh) 稀土含氮磁粉制备工艺及设备和制备的产品
CN103624248A (zh) 一种稀土永磁粉的制备方法
CN101246772B (zh) 一种耐腐蚀钕铁硼永磁材料的制造方法
CN105280319B (zh) 由工业纯混合稀土制备的稀土铁硼材料及其制备方法和应用
CN101719405A (zh) 低能耗耐腐蚀铝合金与钕铁硼型稀土永磁的双相复合材料
CN106024234B (zh) 一种轻稀土配合物改性烧结钐钴磁体的制备方法
CN105374487A (zh) 一种耐腐蚀高性能稀土永磁材料
CN105006327A (zh) 一种高性能含钆铸片磁体及其制备方法
CN115083707B (zh) 主辅合金系钕铁硼磁体材料及其制备方法
CN105374489A (zh) 一种电机用耐热稀土永磁材料
CN112071550B (zh) 一种电机用烧结钕铁硼永磁体及其制备方法
CN103060673B (zh) 一种无需镀层的高耐蚀烧结钕-铁-硼永磁材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160302