CN105372756A - Optical-gain gold nanowire-enhanced surface plasmon transmission device - Google Patents
Optical-gain gold nanowire-enhanced surface plasmon transmission device Download PDFInfo
- Publication number
- CN105372756A CN105372756A CN201510826322.6A CN201510826322A CN105372756A CN 105372756 A CN105372756 A CN 105372756A CN 201510826322 A CN201510826322 A CN 201510826322A CN 105372756 A CN105372756 A CN 105372756A
- Authority
- CN
- China
- Prior art keywords
- layer
- spp
- nanowire
- optical
- surface plasmon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title claims abstract description 8
- 230000005540 biological transmission Effects 0.000 title claims abstract description 6
- 239000002070 nanowire Substances 0.000 claims abstract description 27
- 239000010931 gold Substances 0.000 claims abstract description 23
- 230000003287 optical effect Effects 0.000 claims abstract description 15
- 239000011248 coating agent Substances 0.000 claims 2
- 238000000576 coating method Methods 0.000 claims 2
- 229910052737 gold Inorganic materials 0.000 claims 2
- 239000011521 glass Substances 0.000 abstract description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000004807 localization Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- -1 argon ion Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/107—Subwavelength-diameter waveguides, e.g. nanowires
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/008—Surface plasmon devices
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Optical Integrated Circuits (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种光学增益的金纳米线增强表面等离子体的传播装置,其特征是,包括顺序叠接的基底层、L形玻璃层、染料层、Au纳米线阵列波导层,其中玻璃层L形长边的外端面与染料层叠接,L形长边的内端面与基底层叠接。Au纳米线阵列波导层为Au纳米线阵列波导结构。这种装置能够在可见光频率纳米级数据传输中实现更大的带宽优势、且具备了强模式约束,可以实现SPP增益补偿。
The invention discloses an optical gain gold nanowire enhanced surface plasmon propagation device, which is characterized in that it comprises a base layer, an L-shaped glass layer, a dye layer, and an Au nanowire array waveguide layer sequentially stacked, wherein the glass layer The outer end surface of the L-shaped long side is overlapped with the dye layer, and the inner end surface of the L-shaped long side is overlapped with the base layer. The Au nanowire array waveguide layer is an Au nanowire array waveguide structure. This device can achieve greater bandwidth advantages in nanoscale data transmission at visible light frequencies, and has strong mode constraints, which can realize SPP gain compensation.
Description
技术领域 technical field
本发明涉及光通信技术领域,具体是一种光学增益的金纳米线增强表面等离子体的传播装置。 The invention relates to the technical field of optical communication, in particular to an optical gain gold nanowire enhanced surface plasmon propagation device.
背景技术 Background technique
表面等离子体激元(Surfaceplasmonpolariton,简称SPP)是通过改变金属表面的亚波长结构实现的一种光波与可迁移的表面电荷之间电磁模,可以支持金属与介质界面传输的表面等离子波,从而传输光能量,且不受衍射极限的限制。正因为SPP这种独特的性质,使其在纳米量级操纵光能量发挥着重要的作用。尤其以浙江大学与瑞典皇家理工学院阿尔芬实验室课题组合作在“Novelsurfaceplasmonwaveguideforhighintegrations”一文提出的金属槽SPP波导,设计的波导结构能够实现亚波长量级的光场限制,损耗仅仅为4dB/μm。然而尽管研究人员实现了将光场约束到几十纳米的量级,但设计的波导器件损耗依然很大,无法达到大规模应用的要求。 Surface plasmon polariton (SPP for short) is an electromagnetic mode between a light wave and a migratable surface charge realized by changing the subwavelength structure of the metal surface, which can support the surface plasmon wave transmitted at the interface between the metal and the medium, thereby transmitting Light energy, and is not limited by the diffraction limit. Because of the unique properties of SPP, it plays an important role in manipulating light energy at the nanometer level. In particular, the metal groove SPP waveguide proposed in the article "Novelsurfaceplasmonwaveguideforhighintegrations" by the research group of Zhejiang University and the Alphen Laboratory of the Royal Institute of Technology in Sweden, the designed waveguide structure can achieve sub-wavelength optical field confinement, and the loss is only 4dB/μm. However, although the researchers have achieved the confinement of the optical field to the order of tens of nanometers, the designed waveguide device is still very lossy and cannot meet the requirements of large-scale applications.
《NaturePhotonics》在2010年4卷第6期382-387页上登载了“Amplificationoflong-rangesurfaceplasmonsbyadipolargainmedium”一文,DeLeon和Berini报道了采用条形波导结构实现SPP无损传播损耗补偿。尽管这一结构能够实现光学增益和SPP增强,但目前研究发现条形波导的SPP局域化优势较弱,这在一定程度上降低了SPP亚波长元件的优势。显然实现SPP传播中的损耗-补偿和局域化效应增强是SPP亚波长元件向实用型转变的首要目标。 "Nature Photonics" published the article "Amplification of long-range surface plasmons by adipolar gain medium" on pages 382-387 of Volume 4, Issue 6, 2010. DeLeon and Berini reported the use of a strip waveguide structure to realize SPP lossless propagation loss compensation. Although this structure can achieve optical gain and SPP enhancement, current studies have found that the SPP localization advantage of strip waveguides is weak, which reduces the advantages of SPP subwavelength components to a certain extent. Apparently realizing loss-compensation and enhancement of localization effect in SPP propagation is the primary goal of transforming SPP sub-wavelength components into practical ones.
通过检索和查新发现,目前大都采用条形波导结构和金属薄膜增强SPP局域化效应,但这些结构局域化效果依然无法达到光电子器件集成的要求,而且光传播距离有限。 Through search and novelty search, it is found that strip waveguide structures and metal thin films are currently used to enhance the SPP localization effect, but the localization effects of these structures still cannot meet the requirements of optoelectronic device integration, and the light propagation distance is limited.
发明内容 Contents of the invention
本发明的目的是针对现有技术的不足,而提供一种光学增益的金纳米线增强表面等离子体的传播装置。这种装置能够在可见光频率纳米级数据传输中实现更大的带宽优势、且具备了强模式约束,可以实现SPP增益补偿。 The object of the present invention is to provide an optical gain gold nanowire enhanced surface plasmon propagation device for the deficiencies of the prior art. This device can achieve greater bandwidth advantages in nanoscale data transmission at visible light frequencies, and has strong mode constraints, which can realize SPP gain compensation.
实现本发明目的的技术方案是: The technical scheme that realizes the object of the present invention is:
一种光学增益的金纳米线增强表面等离子体的传播装置,包括顺序叠接的基底层、L形玻璃层、染料层、Au纳米线阵列波导层,其中玻璃层L形长边的外端面与染料层叠接,L形长边的内端面与基底层叠接。 A gold nanowire-enhanced surface plasmon propagation device for optical gain, comprising a base layer, an L-shaped glass layer, a dye layer, and an Au nanowire array waveguide layer sequentially stacked, wherein the outer end surface of the L-shaped long side of the glass layer is connected to the The dye layers are overlapped, and the inner end surface of the L-shaped long side is overlapped with the base layer.
所述的基底层为二氧化硅基底层。 The base layer is a silicon dioxide base layer.
所述的Au纳米线阵列波导层为Au纳米线阵列波导结构。用了阵列结构的设计,能够提高SPP强局域化特点。 The Au nanowire array waveguide layer is an Au nanowire array waveguide structure. The design of the array structure can improve the strong localization characteristics of the SPP.
所述的染料层采用聚甲基丙烯酸甲酯(PMMA),通过电泳的方法沉积在玻璃衬底表面上。 The dye layer is made of polymethyl methacrylate (PMMA), and deposited on the surface of the glass substrate by electrophoresis.
所述的玻璃层为高透射率BK7玻璃。 The glass layer is high transmittance BK7 glass.
所述的Au纳米线采用液晶模板法制备。 The Au nanowires are prepared by liquid crystal template method.
所述的二氧化硅基底层能阻挡绝大部分SPP传播中的反射光和折射光,减少SPP传播损耗。 The silicon dioxide base layer can block most of the reflected light and refracted light in the SPP propagation, and reduce the SPP propagation loss.
通过He-Ne激光器出射波长632nm的激光入射玻璃层到NW(nanowire,纳米线)的一端实现SPP激光,488nm的氩离子激光器对Au纳米线中间位置进行宽范围的照射,在Au纳米线阵列的另一端面实现光子与SPP能量转化,由于对称性克服了动量不匹配,这样可以显著增强出射光功率,通过控制光学增益染料浓度实现输出信号强度增加量。 Through the He-Ne laser, the laser with a wavelength of 632nm is incident on the glass layer to one end of the NW (nanowire, nanowire) to realize SPP laser, and the 488nm argon ion laser irradiates the middle position of the Au nanowire in a wide range, in the Au nanowire array. The other end face realizes the photon and SPP energy conversion, because the symmetry overcomes the momentum mismatch, which can significantly enhance the output light power, and realize the increase in the output signal intensity by controlling the concentration of the optical gain dye.
这种装置采用经典的Kretschmann结构激发SPP,采用了亚波长光学元件中Au纳米线实现SPP传播,通过泵浦光进一步增强了SPP强局域效应,采用了染料增益增加SPP传播距离,在无需牺牲波导的亚波长尺寸下实现了提高SPP传播距离,这一种装置可以为SPP在新型光子器件、宽带通讯系统、微小光子回路、光电子集成等方面应用提供关键器件。 This device uses the classic Kretschmann structure to excite SPP, uses Au nanowires in subwavelength optical components to realize SPP propagation, further enhances the strong local effect of SPP through pump light, and uses dye gain to increase the propagation distance of SPP without sacrificing The sub-wavelength size of the waveguide improves the SPP propagation distance. This device can provide key components for the application of SPP in new photonic devices, broadband communication systems, micro photonic circuits, and optoelectronic integration.
这种装置能够在可见光频率纳米级数据传输中实现更大的带宽优势、且具备了强模式约束,可以实现SPP增益补偿。 This device can achieve greater bandwidth advantages in nanoscale data transmission at visible light frequencies, and has strong mode constraints, which can realize SPP gain compensation.
附图说明 Description of drawings
图1为实施例的结构示意图。 Fig. 1 is the structural representation of embodiment.
图中,1.He-Ne激光器2.氩离子激光器3.Au纳米线阵列波导层4.染料层5.玻璃层6.基底层。 In the figure, 1. He-Ne laser 2. Argon ion laser 3. Au nanowire array waveguide layer 4. Dye layer 5. Glass layer 6. Base layer.
具体实施方式 detailed description
下面结合附图和实施例对本发明内容作进一步的阐述,但不是对本发明的限定。 The content of the present invention will be further described below in conjunction with the accompanying drawings and embodiments, but the present invention is not limited thereto.
实施例: Example:
参照图1,一种光学增益的金纳米线增强表面等离子体的传播装置,包括顺序叠接的基底层6、L形玻璃层5、染料层4、Au纳米线阵列波导层3,其中玻璃层5L形长边的外端面与染料层4叠接,L形长边的内端面与基底层6叠接。 Referring to Fig. 1, a gold nanowire-enhanced surface plasmon propagation device for optical gain, comprising sequentially stacked base layer 6, L-shaped glass layer 5, dye layer 4, Au nanowire array waveguide layer 3, wherein the glass layer 5. The outer end surface of the L-shaped long side is overlapped with the dye layer 4 , and the inner end surface of the L-shaped long side is overlapped with the base layer 6 .
基底层6为二氧化硅基底层。二氧化硅基底层能阻挡绝大部分SPP传播中的反射光和折射光,减少SPP传播损耗。 The base layer 6 is a silicon dioxide base layer. The silicon dioxide base layer can block most of the reflected light and refracted light in the SPP propagation, reducing the SPP propagation loss.
Au纳米线阵列波导层3为Au纳米线阵列波导结构。用了阵列结构的设计,能够提高SPP强局域化特点。Au纳米线采用液晶模板法制备。 The Au nanowire array waveguide layer 3 is an Au nanowire array waveguide structure. The design of the array structure can improve the strong localization characteristics of the SPP. Au nanowires were prepared by liquid crystal template method.
染料层4采用聚甲基丙烯酸甲酯(PMMA),通过电泳的方法沉积在玻璃衬底表面上。 The dye layer 4 is made of polymethyl methacrylate (PMMA), and deposited on the surface of the glass substrate by electrophoresis.
L形玻璃层5为高透射率BK7玻璃。 The L-shaped glass layer 5 is BK7 glass with high transmittance.
通过He-Ne激光器1出射波长632nm的激光入射玻璃层5到NW(nanowire,纳米线)的一端实现SPP激光,488nm的氩离子激光器2对Au纳米线中间位置出射488nm的泵浦光进行宽范围的照射,在Au纳米线阵列的另一端面实现光子与SPP能量转化,由于对称性克服了动量不匹配,这样可以显著增强出射光功率,通过控制光学增益染料浓度实现输出信号强度增加量。 Through the He-Ne laser 1, the laser with a wavelength of 632nm is incident on the glass layer 5 to one end of the NW (nanowire, nanowire) to realize the SPP laser, and the 488nm argon ion laser 2 performs a wide range of pumping light emitted from the middle position of the Au nanowire at 488nm The energy conversion between photons and SPP is realized on the other end of the Au nanowire array. Because the symmetry overcomes the momentum mismatch, the outgoing light power can be significantly enhanced, and the output signal intensity can be increased by controlling the concentration of the optical gain dye.
这种装置采用经典的Kretschmann结构激发SPP,采用了亚波长光学元件中Au纳米线实现SPP传播,通过泵浦光进一步提高了SPP强局域效应,采用了染料增益增加SPP传播距离,在无需牺牲波导的亚波长尺寸下实现了提高SPP传播距离。 This device uses the classic Kretschmann structure to excite SPP, uses Au nanowires in subwavelength optical elements to realize SPP propagation, further improves the strong local effect of SPP through pump light, and uses dye gain to increase the propagation distance of SPP without sacrificing The sub-wavelength dimension of the waveguide achieves improved SPP propagation distance.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510826322.6A CN105372756A (en) | 2015-11-25 | 2015-11-25 | Optical-gain gold nanowire-enhanced surface plasmon transmission device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510826322.6A CN105372756A (en) | 2015-11-25 | 2015-11-25 | Optical-gain gold nanowire-enhanced surface plasmon transmission device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105372756A true CN105372756A (en) | 2016-03-02 |
Family
ID=55375100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510826322.6A Pending CN105372756A (en) | 2015-11-25 | 2015-11-25 | Optical-gain gold nanowire-enhanced surface plasmon transmission device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105372756A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105842784A (en) * | 2016-05-12 | 2016-08-10 | 广西师范大学 | Apparatus for controlling mutual effect between local SPP and conductive SPP through multilayer graphene |
CN106918852A (en) * | 2017-04-11 | 2017-07-04 | 华南师范大学 | A kind of off-axis focussing plane lens of wide-angle |
CN107037535A (en) * | 2017-05-24 | 2017-08-11 | 广西师范大学 | A kind of metal semiconductor double nano line style blending surface plasma wave guide structure |
CN108445563A (en) * | 2018-04-10 | 2018-08-24 | 中国科学院上海技术物理研究所 | A kind of metal nano optical antenna being monolithically integrated on photodetector |
CN108700705A (en) * | 2015-12-29 | 2018-10-23 | 生物辐射实验室股份有限公司 | Systems for optical inspection with Optical Sampling |
CN109212640A (en) * | 2017-07-04 | 2019-01-15 | 中国科学院化学研究所 | Organic/metal nanometer line hetero-junctions of one kind and its preparation method and application |
CN110007538A (en) * | 2019-04-24 | 2019-07-12 | 西安柯莱特信息科技有限公司 | An Electroluminescent Surface Plasmon Source with Overheating Protection |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070116420A1 (en) * | 2002-03-20 | 2007-05-24 | Estes Michael J | Surface Plasmon Devices |
CN101821652A (en) * | 2007-10-15 | 2010-09-01 | 惠普发展公司,有限责任合伙企业 | Be used to strengthen the plasmon high speed device of the performance of microelectronic component |
WO2012024793A1 (en) * | 2010-07-30 | 2012-03-01 | Quantum Solar Power Corp. | Apparatus for manipulating plasmons |
CN102662210A (en) * | 2012-03-09 | 2012-09-12 | 中国科学院苏州纳米技术与纳米仿生研究所 | Plasma excimer gain waveguide |
CN104614806A (en) * | 2015-01-19 | 2015-05-13 | 广西师范大学 | A surface plasmon propagation device with glass-loaded asymmetric SiO2-gold film-SiO2 waveguide structure |
WO2015104555A2 (en) * | 2014-01-10 | 2015-07-16 | King's College London | Device and method |
CN205193312U (en) * | 2015-11-25 | 2016-04-27 | 广西师范大学 | Surperficial plasma's of jenner's rice noodles reinforcing of optical gain propagation device |
-
2015
- 2015-11-25 CN CN201510826322.6A patent/CN105372756A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070116420A1 (en) * | 2002-03-20 | 2007-05-24 | Estes Michael J | Surface Plasmon Devices |
CN101821652A (en) * | 2007-10-15 | 2010-09-01 | 惠普发展公司,有限责任合伙企业 | Be used to strengthen the plasmon high speed device of the performance of microelectronic component |
WO2012024793A1 (en) * | 2010-07-30 | 2012-03-01 | Quantum Solar Power Corp. | Apparatus for manipulating plasmons |
CN102662210A (en) * | 2012-03-09 | 2012-09-12 | 中国科学院苏州纳米技术与纳米仿生研究所 | Plasma excimer gain waveguide |
WO2015104555A2 (en) * | 2014-01-10 | 2015-07-16 | King's College London | Device and method |
CN104614806A (en) * | 2015-01-19 | 2015-05-13 | 广西师范大学 | A surface plasmon propagation device with glass-loaded asymmetric SiO2-gold film-SiO2 waveguide structure |
CN205193312U (en) * | 2015-11-25 | 2016-04-27 | 广西师范大学 | Surperficial plasma's of jenner's rice noodles reinforcing of optical gain propagation device |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108700705A (en) * | 2015-12-29 | 2018-10-23 | 生物辐射实验室股份有限公司 | Systems for optical inspection with Optical Sampling |
CN108700705B (en) * | 2015-12-29 | 2021-01-08 | 生物辐射实验室股份有限公司 | Optical detection system with optical sampling |
CN105842784B (en) * | 2016-05-12 | 2019-07-26 | 广西师范大学 | A device for multi-layer graphene to control the interaction between localized SPP and conductive SPP |
CN105842784A (en) * | 2016-05-12 | 2016-08-10 | 广西师范大学 | Apparatus for controlling mutual effect between local SPP and conductive SPP through multilayer graphene |
CN106918852A (en) * | 2017-04-11 | 2017-07-04 | 华南师范大学 | A kind of off-axis focussing plane lens of wide-angle |
CN106918852B (en) * | 2017-04-11 | 2019-02-01 | 华南师范大学 | A kind of off-axis focussing plane lens of wide-angle |
CN107037535A (en) * | 2017-05-24 | 2017-08-11 | 广西师范大学 | A kind of metal semiconductor double nano line style blending surface plasma wave guide structure |
CN107037535B (en) * | 2017-05-24 | 2023-02-28 | 广西师范大学 | Metal-semiconductor double-nanowire type mixed surface plasma waveguide structure |
CN109212640B (en) * | 2017-07-04 | 2020-08-21 | 中国科学院化学研究所 | An organic/metal nanowire heterojunction and its preparation method and application |
CN109212640A (en) * | 2017-07-04 | 2019-01-15 | 中国科学院化学研究所 | Organic/metal nanometer line hetero-junctions of one kind and its preparation method and application |
CN108445563A (en) * | 2018-04-10 | 2018-08-24 | 中国科学院上海技术物理研究所 | A kind of metal nano optical antenna being monolithically integrated on photodetector |
CN110007538A (en) * | 2019-04-24 | 2019-07-12 | 西安柯莱特信息科技有限公司 | An Electroluminescent Surface Plasmon Source with Overheating Protection |
CN110007538B (en) * | 2019-04-24 | 2022-01-18 | 中国地质大学(武汉) | Overheat protection electroluminescent surface plasmon light source |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105372756A (en) | Optical-gain gold nanowire-enhanced surface plasmon transmission device | |
Choy et al. | Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings | |
Dionne et al. | Highly confined photon transport in subwavelength metallic slot waveguides | |
Wei et al. | Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits | |
Bian et al. | Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale | |
CN102148476B (en) | Deep sub-wavelength surface plasmon polariton microcavity laser | |
CN101630038A (en) | Low-loss surface plasmon optical waveguide structure | |
CN202103312U (en) | Deep sub-wavelength surface plasmon micro-cavity laser | |
CN108493527A (en) | One kind embedding rectangular cavity plasma wave-filter based on MIM waveguides | |
CN104614806B (en) | A kind of asymmetrical SiO of glass-loaded2Golden film SiO2The surface plasma excimer transmission device of waveguiding structure | |
CN107329207B (en) | A graphene-semiconductor double-ridge hybrid surface plasmon waveguide structure | |
CN107147006A (en) | Surface plasmon lasers based on graphene and ridge waveguides | |
CN102662210B (en) | A plasmonic gain waveguide | |
CN205193312U (en) | Surperficial plasma's of jenner's rice noodles reinforcing of optical gain propagation device | |
CN206594323U (en) | A kind of SPP devices based on semiconductor gain and graphene | |
CN204462441U (en) | A kind of asymmetrical SiO of glass-loaded 2-Jin film-SiO 2the surface plasma excimer transmission device of waveguiding structure | |
CN107037535B (en) | Metal-semiconductor double-nanowire type mixed surface plasma waveguide structure | |
CN104090449B (en) | Method for achieving surface plasmon polariton band gap broadband tuning by means of double-pump light interference | |
CN206362960U (en) | A kind of SPP transmission devices based on cadmium sulfide nano wires and graphene nanobelt | |
CN108414115B (en) | Tunable surface plasma waveguide with temperature sensing function | |
CN114142341B (en) | On-chip supercontinuum light source based on free nanowire-silicon waveguide structure | |
CN206757090U (en) | A kind of metal semiconductor double nano line style blending surface plasma wave guide structure | |
CN207992502U (en) | A kind of double ridge blending surface plasma wave guide structures of graphene-semiconductor | |
CN208795877U (en) | A long-range dielectric-loaded hybrid plasmonic waveguide based on molybdenum disulfide | |
CN208043283U (en) | A kind of tunable surface plasma waveguide having temperature sensing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160302 |