CN105368046A - Composition of cyanate ester resin and thermal conducting filler, and prepreg and application thereof - Google Patents
Composition of cyanate ester resin and thermal conducting filler, and prepreg and application thereof Download PDFInfo
- Publication number
- CN105368046A CN105368046A CN201510850002.4A CN201510850002A CN105368046A CN 105368046 A CN105368046 A CN 105368046A CN 201510850002 A CN201510850002 A CN 201510850002A CN 105368046 A CN105368046 A CN 105368046A
- Authority
- CN
- China
- Prior art keywords
- resin
- cyanate
- thermally conductive
- conductive filler
- filler composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920005989 resin Polymers 0.000 title claims abstract description 133
- 239000011347 resin Substances 0.000 title claims abstract description 133
- 239000000203 mixture Substances 0.000 title claims abstract description 92
- 239000004643 cyanate ester Substances 0.000 title claims abstract description 29
- 239000000945 filler Substances 0.000 title description 5
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 claims abstract description 124
- 239000011231 conductive filler Substances 0.000 claims abstract description 74
- 239000002048 multi walled nanotube Substances 0.000 claims abstract description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000012948 isocyanate Substances 0.000 claims abstract description 29
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 29
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 27
- 239000002131 composite material Substances 0.000 claims abstract description 25
- 239000004744 fabric Substances 0.000 claims abstract description 9
- 230000001070 adhesive effect Effects 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims abstract description 8
- 239000000853 adhesive Substances 0.000 claims abstract description 7
- 238000000576 coating method Methods 0.000 claims abstract description 7
- 239000011248 coating agent Substances 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 62
- 239000003822 epoxy resin Substances 0.000 claims description 49
- 229920000647 polyepoxide Polymers 0.000 claims description 49
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 36
- 239000000178 monomer Substances 0.000 claims description 35
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 22
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 12
- QWDQYHPOSSHSAW-UHFFFAOYSA-N 1-isocyanatooctadecane Chemical group CCCCCCCCCCCCCCCCCCN=C=O QWDQYHPOSSHSAW-UHFFFAOYSA-N 0.000 claims description 11
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 10
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 9
- 239000004917 carbon fiber Substances 0.000 claims description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 8
- HCNHNBLSNVSJTJ-UHFFFAOYSA-N 1,1-Bis(4-hydroxyphenyl)ethane Chemical compound C=1C=C(O)C=CC=1C(C)C1=CC=C(O)C=C1 HCNHNBLSNVSJTJ-UHFFFAOYSA-N 0.000 claims description 7
- 239000004593 Epoxy Substances 0.000 claims description 7
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 claims description 7
- 239000012975 dibutyltin dilaurate Substances 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 6
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 6
- 239000005011 phenolic resin Substances 0.000 claims description 6
- 229920001568 phenolic resin Polymers 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 4
- 125000003698 tetramethyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- YIDSTEJLDQMWBR-UHFFFAOYSA-N 1-isocyanatododecane Chemical compound CCCCCCCCCCCCN=C=O YIDSTEJLDQMWBR-UHFFFAOYSA-N 0.000 claims description 3
- GFLXBRUGMACJLQ-UHFFFAOYSA-N 1-isocyanatohexadecane Chemical compound CCCCCCCCCCCCCCCCN=C=O GFLXBRUGMACJLQ-UHFFFAOYSA-N 0.000 claims description 3
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 claims description 3
- PVFQHGDIOXNKIC-UHFFFAOYSA-N 4-[2-[3-[2-(4-hydroxyphenyl)propan-2-yl]phenyl]propan-2-yl]phenol Chemical compound C=1C=CC(C(C)(C)C=2C=CC(O)=CC=2)=CC=1C(C)(C)C1=CC=C(O)C=C1 PVFQHGDIOXNKIC-UHFFFAOYSA-N 0.000 claims description 3
- 229930185605 Bisphenol Natural products 0.000 claims description 3
- 125000002723 alicyclic group Chemical group 0.000 claims description 3
- 125000002947 alkylene group Chemical group 0.000 claims description 3
- 125000000732 arylene group Chemical group 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 claims description 3
- 239000004845 glycidylamine epoxy resin Substances 0.000 claims description 3
- 125000000623 heterocyclic group Chemical group 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 2
- 230000007123 defense Effects 0.000 abstract description 3
- 239000000835 fiber Substances 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 description 19
- -1 cyanogen halides Chemical class 0.000 description 16
- 229920001187 thermosetting polymer Polymers 0.000 description 11
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 5
- 239000002041 carbon nanotube Substances 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000012779 reinforcing material Substances 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004842 bisphenol F epoxy resin Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 2
- 150000001913 cyanates Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 2
- 238000006266 etherification reaction Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- AFEQENGXSMURHA-UHFFFAOYSA-N oxiran-2-ylmethanamine Chemical class NCC1CO1 AFEQENGXSMURHA-UHFFFAOYSA-N 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- 229920003192 poly(bis maleimide) Polymers 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 238000007363 ring formation reaction Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 241001455273 Tetrapoda Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004841 bisphenol A epoxy resin Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 238000006735 epoxidation reaction Methods 0.000 description 1
- 239000005007 epoxy-phenolic resin Substances 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N glycolonitrile Natural products N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009775 high-speed stirring Methods 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920013657 polymer matrix composite Polymers 0.000 description 1
- 239000011160 polymer matrix composite Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 125000000467 secondary amino group Chemical class [H]N([*:1])[*:2] 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000007039 two-step reaction Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
- C08K7/04—Fibres or whiskers inorganic
- C08K7/06—Elements
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D179/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
- C09D179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/70—Additives characterised by shape, e.g. fibres, flakes or microspheres
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J179/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
- C09J179/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明涉及氰酸酯树脂/导热填料组合物、预浸料及其应用,该组合物包括导热填料和氰酸酯树脂,其中导热填料的质量百分比含量为0.5~10%,氰酸酯树脂的质量百分比含量为90~99.5%,所述导热填料为采用单官能异氰酸酯处理的多壁碳纳米管或采用单官能异氰酸酯处理的石墨烯中的一种或组合,若导热填料为采用单官能异氰酸酯处理的多壁碳纳米管和采用单官能异氰酸酯处理的石墨烯的组合,则二者的质量比为20~80:80~20,该组合物可以与连续纤维或织物混合制备预浸料,本发明组合物及其预浸料导热性能优异,作为高性能复合材料的基体树脂,或用作高性能胶黏剂和涂层,可用于电子工业、航空、航天、国防军工等诸多行业。The invention relates to a cyanate ester resin/thermally conductive filler composition, a prepreg and applications thereof. The composition includes a thermally conductive filler and a cyanate resin, wherein the mass percent content of the thermally conductive filler is 0.5 to 10%, and the mass percentage of the cyanate resin is The percentage content is 90-99.5%. The thermally conductive filler is one or a combination of multi-walled carbon nanotubes treated with monofunctional isocyanate or graphene treated with monofunctional isocyanate. If the thermally conductive filler is treated with monofunctional isocyanate The combination of multi-walled carbon nanotubes and graphene treated with monofunctional isocyanate, the mass ratio of the two is 20-80:80-20, the composition can be mixed with continuous fibers or fabrics to prepare prepregs, the combination of the present invention It can be used as a matrix resin for high-performance composite materials, or as a high-performance adhesive and coating, and can be used in many industries such as electronics, aviation, aerospace, and national defense.
Description
技术领域technical field
本发明涉及氰酸酯树脂/导热填料组合物、预浸料及其应用,该预浸料可用于用于制备高性能复合材料、高性能胶黏剂和涂层。The invention relates to a cyanate ester resin/thermally conductive filler composition, a prepreg and applications thereof. The prepreg can be used to prepare high-performance composite materials, high-performance adhesives and coatings.
背景技术Background technique
氰酸酯树脂是指含有两个或两个以上-OCN官能团的酚衍生物,是一种新型高性能聚合物材料。Cyanate resin refers to phenol derivatives containing two or more -OCN functional groups, and is a new type of high-performance polymer material.
氰酸酯树脂单体的合成有多种方法,最常用且实现工业化的是在碱存在的条件下,卤化氰与酚类化合物反应制备氰酸酯单体。在热或催化剂作用下氰酸酯树脂发生三环化反应,生成含有三嗪环的高交联密度网络结构的大分子。这种结构的氰酸酯树脂具有低介电系数和极小的介电损耗正切值,高玻璃化转变温度、低吸湿率、低收缩率以及优良的力学性能和粘结性能等特点。氰酸酯树脂具有与环氧树脂相似的加工性能,可在177℃下固化,并在固化过程中没有挥发性小分子产生。而且它具有与双马来酰亚胺树脂相当的耐高温性能,具有比聚酰胺亚胺更优异的介电性能,具有与酚醛树脂相当的耐燃烧性能。There are many ways to synthesize cyanate ester resin monomers, the most commonly used and industrialized method is to prepare cyanate ester monomers by reacting cyanogen halides with phenolic compounds in the presence of alkali. Under the action of heat or a catalyst, the cyanate resin undergoes a three-cyclization reaction to generate a macromolecule with a high cross-linking density network structure containing a triazine ring. The cyanate resin with this structure has the characteristics of low dielectric coefficient and extremely small dielectric loss tangent, high glass transition temperature, low moisture absorption rate, low shrinkage rate, excellent mechanical properties and bonding properties. Cyanate resin has similar processability to epoxy resin, can be cured at 177°C, and no volatile small molecules are produced during the curing process. Moreover, it has high temperature resistance equivalent to bismaleimide resin, has better dielectric properties than polyamideimide, and has equivalent combustion resistance to phenolic resin.
有关氰酸酯及其主要合成方法的背景技术可以参考陈祥宝在《高性能树脂基体》(化学工业出版社,1999年版)、闫福胜等在“双酚A型氰酸酯树脂的合成”([J].工程塑料应用,1999,27(8))、SNOWAW在“Thesynthesismanufactureandcharacterizationofcyanateestermonomers”([J].SAMPEJ,2000(36))、Hamerton等在“Recentdevelopmentsinthechemistryofcyanateester”([J].PolymInt,1998,47(4))、ChaplinA等在“Developmentofnovelfunctionalizedarylcyanateesteroligomers1.Synthesisandthermalcharacterizationofthemonomers”([J].Macromolecules,1994,27(18))等著作及文章中所提到的方法及研究背景。The background technology about cyanate and its main synthetic method can refer to Chen Xiangbao in "High Performance Resin Matrix" (Chemical Industry Press, 1999 edition), Yan Fusheng, etc. in "the synthesis of bisphenol A type cyanate resin" ([J ]. Engineering Plastics Application, 1999, 27 (8)), SNOWAW in "The synthesis manufacture and characterization of cyanate ester monomers" ([J]. SAMPEJ, 2000 (36)), Hamerton et al. in "Recent developments in the chemistry of cyanate ester" ([J]. )), ChaplinA et al. in "Development of novel functionalized arylcyanate ester oligomers 1. Synthesis and thermal characterization of the monomers" ([J]. Macromolecules, 1994, 27 (18)) and other works and research background mentioned in the article.
尽管氰酸酯树脂具有优异的性能,但是其固化产物的导热系数仍然偏低,这限制了其在导热材料领域的应用。为提高氰酸酯树脂固化产物的导热系数,已经报道了部分氰酸酯树脂复合材料体系。例如密亚男,2013-苏州大学,高导热氮化铝-碳纳米管/聚合物基复合材料的研究[学位论文],主要探讨了氮化铝-碳纳米管/氰酸酯树脂复合材料,制备了氮化铝-碳纳米管含量分别为40~47.5%和1.5~2.5%,其导热系数可以达到2.28~5W·m-1·K-1,但是其中导热填料含量很高,不适于用作预浸料树脂。Although cyanate resin has excellent properties, the thermal conductivity of its cured product is still low, which limits its application in the field of thermal conductive materials. In order to improve the thermal conductivity of cured products of cyanate resin, some cyanate resin composite systems have been reported. For example, Mi Yanan, 2013-Soochow University, Research on High Thermal Conductivity Aluminum Nitride-Carbon Nanotubes/Polymer Matrix Composites [Dissertation], mainly discusses aluminum nitride-carbon nanotubes/cyanate resin composites, The content of aluminum nitride-carbon nanotubes is 40-47.5% and 1.5-2.5%, respectively, and its thermal conductivity can reach 2.28-5W·m -1 ·K -1 , but the content of thermally conductive filler is very high, which is not suitable for use For prepreg resin.
例如(1)苏磊,2012-南京理工大学,氰酸酯树脂基导热绝缘复合材料的制备与研究[学位论文];(2)赵春宝、苏磊等,氰酸酯树脂/氧化锌晶须复合材料的制备与性能研究,化工新型材料,2013,41(11),62-64;(3)赵春宝、苏磊等,氰酸酯树脂/氧化石墨片复合材料的制备与性能研究,功能材料,2013,44(16),2301-2304.上述报道中主要采用硅烷偶联剂(KH550)对四针状氧化锌晶须(T-ZnOw)、六方氮化硼(h-BN)进行表面处理,选择十二胺(DDA)对氧化石墨(GO)进行表面有机化改性;并制备了T-ZnOw/CE、BN/CE、BN-ZnOw/CE、GO-DDA/CE等一系列氰酸酯树脂基导热绝缘复合材料,其中ZnOw含量为12%时,复合材料的导热系数达到0.79W·m-1·K-1;BN体积份数为24%时,复合材料的导热系数达到1.33W·m-1·K-1;加入20%体积分数的混合填料后(BN-ZnOw),复合材料的热导率达1.19W·m-1·K-1;在GO-DDA含量1%时,导热系数达到0.43W·m-1·K-1。上述工作可以制备多种导热复合材料,但是并不适于制备预浸料用导热树脂,具体为上面所提到的填料密度大,致复合材料重量加大,不适合对结构重量有严格要求的航天器;硅烷偶联剂为低分子物,在空间环境下可能会析出,不能满足复合材料空间环境下对可凝挥发物的要求;另外上面所加入的量都在10%以上,所得树脂的粘度太大、流动性差无法制备预浸料。For example (1) Su Lei, 2012-Nanjing University of Science and Technology, Preparation and Research of Cyanate Resin-Based Thermal Conductive Insulation Composite Materials [Dissertation]; (2) Zhao Chunbao, Su Lei, etc., Cyanate Resin/ZnO Whisker Composite Preparation and Properties of Materials, New Chemical Materials, 2013, 41(11), 62-64; (3) Zhao Chunbao, Su Lei, etc., Preparation and Properties of Cyanate Resin/Graphite Oxide Sheet Composite Materials, Functional Materials, 2013, 44(16), 2301-2304. In the above reports, silane coupling agent (KH550) was mainly used for surface treatment of tetrapod zinc oxide whiskers (T-ZnOw) and hexagonal boron nitride (h-BN), Select dodecylamine (DDA) to modify the surface of graphite oxide (GO); and prepare a series of cyanate esters such as T-ZnOw/CE, BN/CE, BN-ZnOw/CE, GO-DDA/CE, etc. Resin-based thermally conductive and insulating composite material, when the ZnOw content is 12%, the thermal conductivity of the composite material reaches 0.79W·m -1 ·K -1 ; when the volume fraction of BN is 24%, the thermal conductivity of the composite material reaches 1.33W· m -1 ·K -1 ; after adding 20% volume fraction of mixed filler (BN-ZnOw), the thermal conductivity of the composite material reaches 1.19W·m -1 ·K -1 ; when the content of GO-DDA is 1%, The thermal conductivity reaches 0.43W·m -1 ·K -1 . The above work can prepare a variety of thermally conductive composite materials, but it is not suitable for the preparation of thermally conductive resins for prepregs. Specifically, the high density of the fillers mentioned above increases the weight of composite materials, and is not suitable for aerospace applications that have strict requirements on structural weight. The silane coupling agent is a low-molecular substance, which may be precipitated in the space environment, and cannot meet the requirements for condensable volatiles in the space environment of the composite material; in addition, the amount added above is more than 10%, and the viscosity of the obtained resin Too large and poor fluidity cannot prepare prepregs.
发明内容Contents of the invention
本发明的目的在于克服现有技术的上述不足,提供氰酸酯树脂/导热填料组合物,该组合物适于作为纤维复合材料的预浸料用树脂,其固化产物具有较高的导热系数和优异的性能。The purpose of the present invention is to overcome the above-mentioned deficiencies of the prior art, and provide cyanate ester resin/thermally conductive filler composition, and this composition is suitable as the prepreg resin of fiber composite material, and its cured product has higher thermal conductivity and Excellent performance.
本发明的另外一个目的在于提供氰酸酯树脂/导热填料组合物预浸料及其应用。Another object of the present invention is to provide a cyanate ester resin/thermally conductive filler composition prepreg and its application.
本发明的上述目的主要是通过如下技术方案予以实现的:Above-mentioned purpose of the present invention is mainly achieved through the following technical solutions:
氰酸酯树脂/导热填料组合物,包括导热填料和氰酸酯树脂,其中导热填料的质量百分比含量为0.5~10%,氰酸酯树脂的质量百分比含量为90~99.5%,所述导热填料为采用单官能异氰酸酯处理的多壁碳纳米管或采用单官能异氰酸酯处理的石墨烯中的一种或组合,若导热填料为采用单官能异氰酸酯处理的多壁碳纳米管和采用单官能异氰酸酯处理的石墨烯的组合,则二者的质量比为20~80:80~20。A cyanate ester resin/thermally conductive filler composition, including a thermally conductive filler and a cyanate resin, wherein the mass percentage content of the thermally conductive filler is 0.5-10%, and the mass percentage content of the cyanate resin is 90-99.5%, and the thermally conductive filler It is one or a combination of multi-walled carbon nanotubes treated with monofunctional isocyanate or graphene treated with monofunctional isocyanate, if the thermally conductive filler is multi-walled carbon nanotubes treated with monofunctional isocyanate and graphene treated with monofunctional isocyanate For the combination of graphene, the mass ratio of the two is 20-80:80-20.
在上述氰酸酯树脂/导热填料组合物中,单官能异氰酸酯为十八烷基异氰酸酯、十六烷基异氰酸酯或十二烷基异氰酸酯。In the above cyanate resin/thermally conductive filler composition, the monofunctional isocyanate is octadecyl isocyanate, hexadecyl isocyanate or dodecyl isocyanate.
在上述氰酸酯树脂/导热填料组合物中,采用单官能异氰酸酯处理多壁碳纳米管或石墨烯的具体方法如下:In the above-mentioned cyanate resin/thermally conductive filler composition, the specific method for treating multi-walled carbon nanotubes or graphene with monofunctional isocyanate is as follows:
以甲苯为溶剂,加入多壁碳纳米管或石墨烯、单官能异氰酸酯、二月桂酸二丁基锡,搅拌并加热至65~75℃,恒温反应10~13小时;反应完毕后,将产物过滤,滤渣中加入丙酮搅拌洗涤2小时以上,反复3~4次,随后分离,并真空干燥22~25h,得到产物即为异氰酸酯改性多壁碳纳米管或异氰酸酯改性石墨烯。Using toluene as a solvent, add multi-walled carbon nanotubes or graphene, monofunctional isocyanate, and dibutyltin dilaurate, stir and heat to 65-75°C, and react at a constant temperature for 10-13 hours; after the reaction is completed, filter the product and remove the residue Acetone was added to the mixture, stirred and washed for more than 2 hours, repeated 3-4 times, then separated, and vacuum-dried for 22-25 hours, and the product obtained was isocyanate-modified multi-walled carbon nanotubes or isocyanate-modified graphene.
在上述氰酸酯树脂/导热填料组合物中,加入的多壁碳纳米管或石墨烯、单官能异氰酸酯、二月桂酸二丁基锡的质量比为1:0.9~1.1:0.3~0.6。In the above cyanate resin/thermally conductive filler composition, the mass ratio of multi-walled carbon nanotubes or graphene, monofunctional isocyanate and dibutyltin dilaurate is 1:0.9-1.1:0.3-0.6.
在上述氰酸酯树脂/导热填料组合物中,氰酸酯树脂的通式如下所示:In the above cyanate resin/thermally conductive filler composition, the general formula of the cyanate resin is as follows:
N≡C-O-R′-O-C≡NN≡C-O-R′-O-C≡N
其中:R’为亚烷基、亚芳基、亚不饱和基团或亚脂环基。Wherein: R' is an alkylene group, an arylene group, an unsaturated group or an alicyclic group.
在上述氰酸酯树脂/导热填料组合物中,氰酸酯树脂包括如下任意一种或组合:In the above cyanate resin/thermally conductive filler composition, the cyanate resin includes any one or combination of the following:
(1)双酚A型氰酸酯单体(1) Bisphenol A cyanate monomer
(2)双酚E型氰酸酯单体(2) Bisphenol E cyanate monomer
(3)双酚E型氰酸酯单体,(3) Bisphenol E type cyanate monomer,
(4)四甲基双酚F型氰酸酯单体(4) Tetramethyl bisphenol F type cyanate monomer
(5)四甲基双酚F型氰酸酯单体(5) Tetramethyl bisphenol F cyanate monomer
(6)双酚M型氰酸酯单体(6) Bisphenol M type cyanate monomer
(7)多官能团型氰酸酯单体(7) Multifunctional cyanate monomer
(8)双环戊二烯双酚型氰酸酯单体(8) Dicyclopentadiene bisphenol cyanate monomer
在上述氰酸酯树脂/导热填料组合物中,氰酸酯树脂可以采用氰酸酯树脂与环氧树脂的混合物或预聚物替代,所述环氧树脂为缩水甘油醚类环氧树脂、缩水甘油酯类环氧树脂、缩水甘油胺类环氧树脂、脂肪族环氧化合物或杂环和混合型环氧化合物。In the above cyanate resin/thermally conductive filler composition, the cyanate resin can be replaced by a mixture or prepolymer of cyanate resin and epoxy resin, and the epoxy resin is glycidyl ether epoxy resin, shrink Glyceride epoxy resins, glycidylamine epoxy resins, aliphatic epoxy compounds or heterocyclic and mixed epoxy compounds.
在上述氰酸酯树脂/导热填料组合物中,环氧树脂为双酚A型环氧树脂、环氧化酚醛树脂、TDE-80#环氧树脂、氨基四官能化环氧树脂AG-80#。In the above cyanate ester resin/thermally conductive filler composition, the epoxy resin is bisphenol A type epoxy resin, epoxidized phenolic resin, TDE-80# epoxy resin, amino tetrafunctional epoxy resin AG-80# .
氰酸酯树脂/导热填料组合物预浸料,包括权利要求1~8所述的氰酸酯树脂/导热填料组合物和沥青基导热碳纤维或其织物,其中氰酸酯树脂/导热填料组合物的质量百分比含量为37%~43%,沥青基导热碳纤维或其织物的质量百分比含量为57%~63%。A cyanate resin/thermally conductive filler composition prepreg, comprising the cyanate resin/thermally conductive filler composition and pitch-based thermally conductive carbon fiber or its fabric according to claims 1 to 8, wherein the cyanate resin/thermally conductive filler composition The mass percentage content of the pitch-based heat-conducting carbon fiber or its fabric is 57%-63%.
上述氰酸酯树脂/导热填料组合物的应用,氰酸酯树脂/导热填料组合物作为复合材料的基体树脂,用于制备复合材料;所述氰酸酯树脂/导热填料组合物作为胶黏剂的基体树脂,用于制备胶黏剂;所述氰酸酯树脂/导热填料组合物作为涂层的基体树脂,用于制备涂层。The application of the above-mentioned cyanate ester resin/thermally conductive filler composition, the cyanate ester resin/thermally conductive filler composition is used as the matrix resin of the composite material, and is used to prepare the composite material; the described cyanate ester resin/thermally conductive filler composition is used as an adhesive The matrix resin is used to prepare the adhesive; the cyanate resin/thermal conductive filler composition is used as the matrix resin of the coating and is used to prepare the coating.
本发明与现有技术相比具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)、本发明采用经过单官能异氰酸酯表面处理的多壁碳纳米管(OM-MWCNT)或石墨烯(OM-G)中的一种及其组合物与氰酸酯树脂混合,由此得到氰酸酯树脂/导热填料组合物,该组合物适于作为纤维复合材料的预浸料用树脂,其固化产物具有较高的导热系数和优异的性能。(1), the present invention adopts a kind of in multi-walled carbon nanotube (OM-MWCNT) or graphene (OM-G) and composition thereof through monofunctional isocyanate surface treatment and mixes with cyanate resin, thus obtains The cyanate ester resin/thermally conductive filler composition is suitable as a resin for prepreg of fiber composite materials, and its cured product has high thermal conductivity and excellent performance.
(2)、本发明优选采用改性的多壁碳纳米管和石墨烯的组合物与氰酸酯树脂混合,石墨烯片与碳纳米管在树脂的导热过程中具有明显的协同效应,能更好的改善复合材料的X、Y、Z向的导热性;(2), the present invention preferably adopts the composition of the multi-walled carbon nanotube of modification and graphene to mix with cyanate resin, and graphene sheet and carbon nanotube have obvious synergistic effect in the thermal conduction process of resin, can be more Better improve the X, Y, Z direction thermal conductivity of the composite material;
(3)、本发明采用氰酸酯树脂与环氧树脂的混合物或预聚物与改性的多壁碳纳米管或石墨烯混合,相比单独采用氰酸酯树脂,环氧树脂会加速氰酸酯树脂的反应,与氰酸酯树脂协同作用,降低其固化温度,延长树脂保存期;(3), the present invention adopts the mixture of cyanate resin and epoxy resin or prepolymer and the multi-walled carbon nanotube or graphene of modification to mix, compares adopting cyanate resin alone, epoxy resin can accelerate cyanide The reaction of ester resin, synergistic effect with cyanate resin, reduces its curing temperature and prolongs the shelf life of the resin;
(4)、本发明中导热填料的添加量在10%以内,甚至在4%以内,就可以达到较高的导热系数,克服了现有技术中加入过多导热填料导致树脂的粘度太大、流动性差无法制备预浸料的缺陷。(4), in the present invention, the addition amount of heat-conducting filler is within 10%, even within 4%, just can reach higher thermal conductivity, has overcome the viscosity of resin that adds too many heat-conducting fillers in the prior art and causes too much, Poor fluidity cannot prepare prepreg defects.
(5)、本发明氰酸酯树脂/导热填料组合物及其预浸料,其中氰酸酯树脂/导热填料组合物可以采用本领域技术人员熟悉的热固性树脂及其复合材料通过各种成型加工工艺制成各种制品,氰酸酯树脂/导热填料组合物及其预浸料制得的复合材料的导热性能优异;作为高性能复合材料的基体树脂,或用作高性能胶黏剂和涂层,可用于电子工业、航空、航天、国防军工等诸多行业。(5), the cyanate ester resin/thermally conductive filler composition and its prepreg of the present invention, wherein the cyanate resin/thermally conductive filler composition can adopt thermosetting resins and composite materials familiar to those skilled in the art through various molding processes The thermal conductivity of the composite material made from the cyanate resin/thermally conductive filler composition and its prepreg is excellent; as a matrix resin for high-performance composite materials, or as a high-performance adhesive and coating Layer, can be used in many industries such as electronics industry, aviation, aerospace, national defense and military industry.
具体实施方式detailed description
下面通过具体实施例对本发明作进一步详细的描述:The present invention is described in further detail below by specific embodiment:
本发明提供一种氰酸酯树脂/导热填料组合物,其中导热填料与氰酸酯树脂组合物的质量百分比含量分别为0.5~10%、90~99.5%;所述导热填料是指经过单官能异氰酸酯表面处理的多壁碳纳米管(OM-MWCNT)或单官能异氰酸酯表面处理的石墨烯(OM-G)中的一种或两种组合物。也可以选择导热填料与氰酸酯树脂组合物的质量百分比含量分别为1.5~3.5%、96.5~98.5%。The invention provides a cyanate resin/thermally conductive filler composition, wherein the mass percent contents of the thermally conductive filler and the cyanate resin composition are respectively 0.5-10%, and 90-99.5%; One or both combinations of isocyanate-surface-treated multi-walled carbon nanotubes (OM-MWCNT) or monofunctional isocyanate-surface-treated graphene (OM-G). It is also possible to select the mass percent contents of the thermally conductive filler and the cyanate resin composition to be 1.5-3.5% and 96.5-98.5% respectively.
若导热填料为采用单官能异氰酸酯处理的多壁碳纳米管和采用单官能异氰酸酯处理的石墨烯的组合物时则二者的质量比为20~80:80~20。If the thermally conductive filler is a composition of multi-walled carbon nanotubes treated with monofunctional isocyanate and graphene treated with monofunctional isocyanate, the mass ratio of the two is 20-80:80-20.
本发明中,氰酸酯树脂是指分子中结构含有至少两个氰酸酯基团的化合物、聚合物及其混合物,通式如下式所示,In the present invention, cyanate resin refers to compounds, polymers and mixtures thereof that contain at least two cyanate groups in the molecule, and the general formula is as follows,
N≡C-O-R′-O-C≡NN≡C-O-R′-O-C≡N
其中R’可以为亚烷基、亚芳基、亚不饱和基团或亚脂环基。Wherein R' can be an alkylene group, an arylene group, an unsaturated group or an alicyclic group.
特别地,在根据本发明的氰酸酯树脂/导热填料组合物的优选实施方式中,氰酸酯树脂是指含有选自以下(1)-(8)中所述结构单元的氰酸酯单体以及它们的混合物:In particular, in a preferred embodiment of the cyanate resin/thermally conductive filler composition according to the present invention, the cyanate resin refers to a cyanate unit containing structural units selected from the following (1)-(8). bodies and their mixtures:
(1)下式所示的双酚A型氰酸酯单体(HF-1)(1) Bisphenol A type cyanate monomer (HF-1) represented by the following formula
该双酚A型氰酸酯单体(HF-1),是最早商品化的一类氰酸酯单体,其价格低廉,适于工业应用;The bisphenol A cyanate monomer (HF-1) is the earliest commercialized cyanate monomer, which is cheap and suitable for industrial applications;
(2)下式所示的双酚E型氰酸酯单体(HF-9)(2) Bisphenol E type cyanate monomer (HF-9) represented by the following formula
该双酚E型氰酸酯单体(HF-9),在室温以低粘度液体形式存在,适于应用;The bisphenol E type cyanate monomer (HF-9) exists in the form of a low-viscosity liquid at room temperature and is suitable for application;
(3)下式所示的双酚E型氰酸酯单体(HF-9)(3) Bisphenol E type cyanate monomer (HF-9) represented by the following formula
(4)下式所示的四甲基双酚F型氰酸酯单体(4) Tetramethylbisphenol F type cyanate monomer shown in the following formula
(5)下式所示的四甲基双酚F型氰酸酯单体(5) Tetramethyl bisphenol F type cyanate monomer shown in the following formula
(6)下式所示的双酚M型氰酸酯单体(HF-7)(6) Bisphenol M type cyanate monomer (HF-7) represented by the following formula
(7)下式所示的多官能团型氰酸酯单体(HF-5)(7) Multifunctional cyanate monomer (HF-5) represented by the following formula
(8)下式所示的双环戊二烯双酚型氰酸酯单体(HF-3)(8) Dicyclopentadiene bisphenol type cyanate monomer (HF-3) represented by the following formula
此外,氰酸酯树脂还可以包括其他种类的氰酸酯树脂单体,例如I.Hamerton在“ChemistryandTechnologyofCyanateEsterResins”中提及其他种类的氰酸酯单体(I.Hamerton,ChemistryandTechnologyofCyanateEsterResins,BlackieAcademic&ProfessionalGlasgow,London,1994.),或者Cida、Lonza、Dow和上海慧峰科贸等公司生产的其他不同结构氰酸酯。In addition, cyanate resin can also comprise other kinds of cyanate resin monomers, for example, I.Hamerton mentions other kinds of cyanate monomers in "ChemistryandTechnologyofCyanateEsterResins" (I.Hamerton, ChemistryandTechnologyofCyanateEsterResins, BlackieAcademic&ProfessionalGlasgow, London, 1994 .), or other different structural cyanate esters produced by companies such as Cida, Lonza, Dow and Shanghai Huifeng Technology and Trade.
本发明中氰酸酯树脂还可以采用氰酸酯树脂与环氧树脂的混合物或预聚物替代,其中环氧树脂可以利用现有环氧树脂,或者利用现有技术合成的环氧树脂,例如汪多仁在“环氧树脂的合成与应用”中([J].热固性树脂,2001,16(1))、陈平等在《环氧树脂及其应用》([M].化学工业出版社,2004)、MING-KUNGLISIMON等在“Epoxyresinpreparationprocess”([P],EP86200962A,1986)、彭炳韧等在“环氧树脂生产的新工艺”([J].涂料工业,1997,4(26))等著作及文章中所提到的环氧树脂及其合成方法。Among the present invention, cyanate resin can also adopt the mixture or prepolymer of cyanate resin and epoxy resin to replace, and wherein epoxy resin can utilize existing epoxy resin, or utilize the epoxy resin synthesized by prior art, for example Wang Duoren in "Synthesis and Application of Epoxy Resin" ([J]. Thermosetting Resin, 2001, 16 (1)), Chen Ping in "Epoxy Resin and Its Application" ([M]. Chemical Industry Press ,2004), MING-KUNGLISIMON etc. in "Epoxyresinpreparation process" ([P], EP86200962A, 1986), Peng Bingren et al. Epoxy resins and their synthesis methods mentioned in books and articles.
其中,环氧树脂是含有选自以下(1)-(4)中所述的环氧树脂单体以及它们的混合物:Wherein, epoxy resin is to contain and be selected from the epoxy resin monomer described in following (1)-(4) and their mixture:
(1)缩水甘油醚类(1) Glycidyl ethers
缩水甘油醚类环氧树脂又主要有双酚A型环氧树脂、双酚S型环氧树脂、双酚F型环氧树脂、环氧化酚醛树脂。Glycidyl ether epoxy resins mainly include bisphenol A epoxy resin, bisphenol S epoxy resin, bisphenol F epoxy resin, and epoxidized phenolic resin.
双酚A型环氧树脂是由双酚A和环氧氯丙烷进醚化和闭环两步反应值得,例如E-55、E-51、E-20;双酚S型环氧树脂是由双酚S和过量环氧氯丙烷在碱性条件下缩聚得到的耐高温环氧树脂;双酚F型环氧树脂是由双酚F和过量环氧氯丙烷(1:10),在四甲基氯化铵和NaOH条件下,经醚化和闭环反应,缩聚而成的;环氧酚醛树脂是由低分子量酚醛树脂与环氧氯丙烷在酸催化剂下缩合而成;Bisphenol A type epoxy resin is made of bisphenol A and epichlorohydrin into etherification and ring-closing two-step reaction value, such as E-55, E-51, E-20; bisphenol S type epoxy resin is made of bisphenol S High temperature resistant epoxy resin obtained by polycondensation of phenol S and excess epichlorohydrin under alkaline conditions; bisphenol F epoxy resin is made of bisphenol F and excess epichlorohydrin (1:10), in tetramethyl Under the condition of ammonium chloride and NaOH, it is formed by polycondensation through etherification and ring closure reaction; epoxy phenolic resin is formed by condensation of low molecular weight phenolic resin and epichlorohydrin under acid catalyst;
(2)缩水甘油酯类(2) Glycidyl esters
缩水甘油酯类环氧树脂是分子结构中有二个或二个以上缩水甘油酯基的化合物。例如711#环氧树脂、TDE-80#环氧树脂、731#环氧树脂、CY-183#环氧树脂;Glycidyl ester epoxy resin is a compound with two or more glycidyl ester groups in its molecular structure. For example, 711# epoxy resin, TDE-80# epoxy resin, 731# epoxy resin, CY-183# epoxy resin;
(3)缩水甘油胺类(3) Glycidylamines
缩水甘油胺类环氧树脂是用伯胺或仲胺与环氧氯丙烷合成的含有二个或两个以上缩水甘油胺基的化合物。例如氨基四官能化环氧树脂(AG-80#)、AFG-90#环氧树脂;Glycidylamine epoxy resins are compounds containing two or more glycidylamine groups synthesized from primary or secondary amines and epichlorohydrin. For example, amino tetrafunctional epoxy resin (AG-80#), AFG-90# epoxy resin;
(4)脂肪族环氧化合物(4) Aliphatic epoxy compounds
脂肪族环氧化合物是从含有不饱和双键结构的脂环族经双键氧化或与次氯酸加成环氧化制得。例如W-95#环氧树脂、6221#环氧树脂、6206#环氧树脂。Aliphatic epoxy compounds are prepared from cycloaliphatics containing unsaturated double bond structures through double bond oxidation or addition epoxidation with hypochlorous acid. For example W-95# epoxy resin, 6221# epoxy resin, 6206# epoxy resin.
此外,还有杂环和混合型环氧化合物,如:海因树脂、三聚氰酸环氧树脂、阻燃树脂等。In addition, there are heterocyclic and mixed epoxy compounds, such as hydantoin resin, cyanuric acid epoxy resin, flame retardant resin, etc.
环氧树脂优选包括双酚A型环氧树脂、环氧化酚醛树脂、TDE-80#环氧树脂、氨基四官能化环氧树脂(AG-80#)。The epoxy resin preferably includes bisphenol A type epoxy resin, epoxidized phenolic resin, TDE-80# epoxy resin, amino tetrafunctional epoxy resin (AG-80#).
本发明中导热填料采用单官能异氰酸酯处理,其中单官能异氰酸酯包括十八烷基异氰酸酯、十六烷基异氰酸酯、十二烷基异氰酸酯。In the present invention, the thermally conductive filler is treated with monofunctional isocyanate, wherein the monofunctional isocyanate includes octadecyl isocyanate, hexadecyl isocyanate, and dodecyl isocyanate.
本发明中导热填料采用单官能异氰酸酯处理的具体方法如下:In the present invention, the specific method for thermally conductive filler to be treated with monofunctional isocyanate is as follows:
在三口瓶中,加入甲苯,加入多壁碳纳米管(或者石墨烯),加入单官能异氰酸酯,滴加几滴二月桂酸二丁基锡,搅拌并加热至65~75℃,恒温反应10~13小时。反应完毕后,将产物过滤,滤渣中加入丙酮搅拌洗涤2小时以上,反复3~4次,随后分离,并真空干燥22~25h,得到产物即为异氰酸酯改性多壁碳纳米管(或异氰酸酯改性石墨烯)。其中加入的多壁碳纳米管或石墨烯、单官能异氰酸酯、二月桂酸二丁基锡的质量比为1:0.9~1.1:0.3~0.6。In the three-neck flask, add toluene, add multi-walled carbon nanotubes (or graphene), add monofunctional isocyanate, add a few drops of dibutyltin dilaurate, stir and heat to 65-75°C, and react at constant temperature for 10-13 hours . After the reaction is completed, filter the product, add acetone to the filter residue, stir and wash for more than 2 hours, repeat 3 to 4 times, then separate, and vacuum dry for 22 to 25 hours, and the product obtained is isocyanate-modified multi-walled carbon nanotubes (or isocyanate-modified permanent graphene). The mass ratio of multi-walled carbon nanotubes or graphene, monofunctional isocyanate and dibutyltin dilaurate added is 1:0.9-1.1:0.3-0.6.
在本发明的氰酸酯树脂/导热填料组合物中,可以向氰酸酯树脂中括添加常用改性剂。In the cyanate resin/thermally conductive filler composition of the present invention, a commonly used modifier may be added to the cyanate resin.
在本发明的氰酸酯树脂/导热填料组合物中,氰酸酯树脂还可以为多种氰酸酯树脂的混合物。In the cyanate resin/thermally conductive filler composition of the present invention, the cyanate resin can also be a mixture of various cyanate resins.
本发明人经过实验和研究发现,添加表面处理的碳纳米材料显著提高氰酸酯树脂固化产物的导热系数,如下文实施例和对比例中所示。The inventors have found through experiments and research that the addition of surface-treated carbon nanomaterials significantly improves the thermal conductivity of cured cyanate resin products, as shown in the following examples and comparative examples.
本发明提出的氰酸酯树脂/导热填料组合物可以和本领域技术人员熟悉的各种增强材料,如无机增强材料例如二氧化硅、碳酸钙、碳纳米管、碳纤维等,有机增强材料如芳纶纤维等配制成各种组合物,以获得不同用途的热固性树脂及其制品。The cyanate ester resin/thermally conductive filler composition proposed by the present invention can be combined with various reinforcing materials familiar to those skilled in the art, such as inorganic reinforcing materials such as silicon dioxide, calcium carbonate, carbon nanotubes, carbon fibers, etc., organic reinforcing materials such as aromatic It can be formulated into various compositions to obtain thermosetting resins and their products for different purposes.
本发明氰酸酯树脂/导热填料组合物的制备方法,该方法包括将氰酸酯树脂与导热填料混合得到氰酸酯树脂/导热填料组合物。The preparation method of the cyanate resin/thermally conductive filler composition of the present invention comprises mixing the cyanate resin and thermally conductive filler to obtain the cyanate resin/thermally conductive filler composition.
作为混合方式,可以采用本领域技术人员所熟知的机械混合、溶液混合、熔融混合、也可以辅助超声分散、高速搅拌等方法。As the mixing method, methods such as mechanical mixing, solution mixing, and melt mixing well-known to those skilled in the art can be used, and methods such as auxiliary ultrasonic dispersion and high-speed stirring can also be used.
本发明提供一种热固性树脂组合物,包含上述氰酸酯树脂/导热填料组合物以及其他热固性树脂。The present invention provides a thermosetting resin composition, comprising the above-mentioned cyanate resin/thermally conductive filler composition and other thermosetting resins.
其他热固性树脂可以是本领域技术人员熟悉的其他常用热固性树脂,例如苯并噁嗪树脂、环氧树脂、双马来酰亚胺树脂、热固性聚酰亚胺等。通过采用不同的热固性树脂,可以获得不同用途的热固性树脂及其制品。Other thermosetting resins can be other commonly used thermosetting resins familiar to those skilled in the art, such as benzoxazine resin, epoxy resin, bismaleimide resin, thermosetting polyimide and the like. By using different thermosetting resins, thermosetting resins and their products for different purposes can be obtained.
本发明还提供氰酸酯树脂/导热填料组合物与沥青基导热碳纤维或其织物制备的预浸料。其中氰酸酯树脂/导热填料组合物的质量百分比含量为37%~43%,沥青基导热碳纤维或其织物的质量百分比含量为57%~63%。The invention also provides a prepreg prepared from the cyanate resin/thermally conductive filler composition and the pitch-based thermally conductive carbon fiber or its fabric. The mass percent content of the cyanate resin/thermal conductive filler composition is 37%-43%, and the mass percent content of the pitch-based thermal conductive carbon fiber or its fabric is 57%-63%.
本发明氰酸酯树脂/导热填料组合物的预浸料的制备方法,通过将氰酸酯树脂/导热填料组合物与沥青基导热碳纤维或其织物,经过干法或湿法的浸渍而制备。其中湿法是指树脂溶液与沥青基导热碳纤维或其织物进行浸渍制备预浸料;干法包括粉末法和热熔树脂法等浸渍工艺。The preparation method of the prepreg of the cyanate resin/thermally conductive filler composition of the present invention is prepared by impregnating the cyanate resin/thermally conductive filler composition with the pitch-based thermally conductive carbon fiber or its fabric through a dry method or a wet method. Among them, the wet method refers to the impregnation of the resin solution and the pitch-based heat-conducting carbon fiber or its fabric to prepare the prepreg; the dry method includes impregnation processes such as the powder method and the hot-melt resin method.
本发明提出的氰酸酯树脂/导热填料组合物及其预浸料,其中氰酸酯树脂/导热填料组合物可以采用本领域技术人员熟悉的热固性树脂及其复合材料通过各种成型加工工艺制成各种制品。氰酸酯树脂/导热填料组合物、预浸料及其制得的复合材料的导热性能优异;作为高性能复合材料的基体树脂,或用作高性能胶黏剂和涂层,可用于电子工业、航空、航天、国防军工等诸多行业。The cyanate ester resin/thermally conductive filler composition and its prepreg proposed by the present invention, wherein the cyanate resin/thermally conductive filler composition can be made by using thermosetting resins and composite materials familiar to those skilled in the art through various molding processes into various products. The cyanate ester resin/thermally conductive filler composition, prepreg and the composite material thereof have excellent thermal conductivity; as a matrix resin for high-performance composite materials, or as a high-performance adhesive and coating, it can be used in the electronics industry, Aviation, aerospace, national defense and many other industries.
实施例Example
以下通过具体实施例对本发明进行更详细说明。The present invention will be described in more detail below through specific examples.
实施例中所用原料、仪器如下:Raw material used in the embodiment, instrument are as follows:
双酚A型氰酸酯单体(HF-1):上虞市盛达生物化工有限公司。Bisphenol A cyanate monomer (HF-1): Shangyu Shengda Biochemical Co., Ltd.
多壁碳纳米管:FloTube9000,北京天奈科技有限公司;Multi-walled carbon nanotubes: FloTube9000, Beijing Tiannai Technology Co., Ltd.;
石墨烯:graphenenanoplatelets,StremChemicals.Graphene: graphenenanoplatelets, StremChemicals.
Perkin-ElmerPyris1型DSC测试仪:用于测量固化产物的比热容,测试条件:N2环境,升温速率为10℃/min,Al2O3为参比物,测试温度范围:0~50℃。Perkin-ElmerPyris1 type DSC tester: used to measure the specific heat capacity of cured products, test conditions: N 2 environment, heating rate 10°C/min, Al 2 O 3 as reference, test temperature range: 0~50°C.
导热测试:激光闪射法导热系数测量仪,LFA447(德国Netzsch公司),25℃,GB/T22588-2008,ASTME1269-5。Thermal conductivity test: laser flash thermal conductivity measuring instrument, LFA447 (Netzsch, Germany), 25°C, GB/T22588-2008, ASTME1269-5.
真密度仪,QuantachromeUltrapycnometer1000(美国康塔公司)。True density meter, QuantachromeUltrapycnometer1000 (United States Quanta company).
多壁碳纳米管和石墨烯的表面处理:Surface treatment of multi-walled carbon nanotubes and graphene:
在1000ml三口瓶(配有聚四氟乙烯搅拌器)中,加入500ml甲苯,加入10克多壁碳纳米管(或者10克石墨烯),加入10克十八烷基异氰酸酯,滴加1~3滴二月桂酸二丁基锡,搅拌并加热至70℃恒温反应12小时。反应完毕后,将产物过滤,将滤渣置于500ml烧杯,向其中加入150~200ml丙酮,电磁搅拌洗涤2小时以上,过滤分离,反复三次,最后所得黑色固体经真空干燥24h,得到产物即为异氰酸酯改性多壁碳纳米管(或异氰酸酯改性石墨烯)。In a 1000ml three-necked bottle (equipped with a Teflon stirrer), add 500ml of toluene, add 10 grams of multi-walled carbon nanotubes (or 10 grams of graphene), add 10 grams of octadecyl isocyanate, drop 1 to 3 Dibutyltin dilaurate was dropped, stirred and heated to 70°C for 12 hours at a constant temperature. After the reaction is complete, filter the product, put the filter residue in a 500ml beaker, add 150-200ml of acetone to it, wash with electromagnetic stirring for more than 2 hours, filter and separate, repeat three times, and finally obtain a black solid that is vacuum-dried for 24 hours to obtain the product that is isocyanate Modified multi-walled carbon nanotubes (or isocyanate-modified graphene).
对比例1Comparative example 1
取5~10克双酚A型氰酸酯树脂置于模具中,在真空烘箱中进行固化。固化工艺为:100℃~1小时,120℃~1小时,140℃~2小时,160℃~2小时,180℃~2小时,200℃~2小时,220℃~2小时,240℃~1小时。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.148W·m-1·K-1。Take 5-10 grams of bisphenol A type cyanate resin, place it in a mold, and cure it in a vacuum oven. The curing process is: 100°C to 1 hour, 120°C to 1 hour, 140°C to 2 hours, 160°C to 2 hours, 180°C to 2 hours, 200°C to 2 hours, 220°C to 2 hours, 240°C to 1 Hour. The thermal conductivity of the cured product is 0.148 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例1Example 1
采用溶液共混法,将0.5克十八烷基异氰酸酯改性多壁碳纳米管与99.5克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。固化工艺为:100℃~1小时,120℃~1小时,140℃~2小时,160℃~2小时,180℃~2小时,200℃~2小时,220℃~2小时,240℃~1小时。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.167W·m-1·K-1。Using the solution blending method, mix 0.5 g of octadecyl isocyanate-modified multi-walled carbon nanotubes with 99.5 g of cyanate, add 500 ml of acetone to dissolve, ultrasonically disperse for 6 hours, and stand for volatilization for 48 hours; then vacuum-dry at 50°C 48 hours; taking 5-10 grams of the mixture and placing it in a mold, and curing it in a vacuum oven. The curing process is: 100°C to 1 hour, 120°C to 1 hour, 140°C to 2 hours, 160°C to 2 hours, 180°C to 2 hours, 200°C to 2 hours, 220°C to 2 hours, 240°C to 1 Hour. The thermal conductivity of the cured product is 0.167 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例2Example 2
采用溶液共混法,将3克十八烷基异氰酸酯改性多壁碳纳米管与97克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.203W·m-1·K-1。Using the solution blending method, mix 3 g of octadecyl isocyanate-modified multi-walled carbon nanotubes with 97 g of cyanate, add 500 ml of acetone to dissolve, ultrasonically disperse for 6 hours, and leave to evaporate for 48 h; then vacuum dry at 50 °C 48 hours; taking 5-10 grams of the mixture and placing it in a mold, and curing it in a vacuum oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.203 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例3Example 3
采用溶液共混法,将10克十八烷基异氰酸酯改性多壁碳纳米管与90克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.332W·m-1·K-1。Using the solution blending method, mix 10 grams of octadecyl isocyanate-modified multi-walled carbon nanotubes with 90 grams of cyanate, add 500 ml of acetone to dissolve, ultrasonically disperse for 6 hours, and stand for 48 hours to evaporate; then vacuum dry at 50 ° C 48 hours; taking 5-10 grams of the mixture and placing it in a mold, and curing it in a vacuum oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.332 W·m -1 ·K -1 as measured by a laser flash thermal conductivity measuring instrument.
实施例4Example 4
采用溶液共混法,将0.5克十八烷基异氰酸酯改性石墨烯与99.5克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.158W·m-1·K-1。Using the solution blending method, mix 0.5 g of octadecyl isocyanate modified graphene with 99.5 g of cyanate, add 500 ml of acetone to dissolve, ultrasonically disperse for 6 hours, and stand for volatilization for 48 h; then vacuum dry at 50 ° C for 48 h; take 5-10 grams of the mixture is placed in a mold and cured in a vacuum oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.158 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例5Example 5
采用溶液共混法,将3克十八烷基异氰酸酯改性石墨烯与97克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.297W·m-1·K-1。Using the solution blending method, mix 3 grams of octadecyl isocyanate-modified graphene with 97 grams of cyanate, add 500 ml of acetone to dissolve, ultrasonically disperse for 6 hours, and let it stand for volatilization for 48 hours; then vacuum dry at 50 ° C for 48 hours; take 5-10 grams of the mixture is placed in a mold and cured in a vacuum oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.297 W·m -1 ·K -1 as measured by a laser flash thermal conductivity measuring instrument.
实施例6Example 6
采用溶液共混法,将8克十八烷基异氰酸酯改性石墨烯与92克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.737W·m-1·K-1。Using the solution blending method, mix 8 grams of octadecyl isocyanate-modified graphene with 92 grams of cyanate, add 500ml of acetone to dissolve, ultrasonically disperse for 6 hours, and let it stand for volatilization for 48 hours; then vacuum dry at 50°C for 48 hours; take 5-10 grams of the mixture is placed in a mold and cured in a vacuum oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.737 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例7Example 7
采用溶液共混法,将10克十八烷基异氰酸酯改性石墨烯与90克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.759W·m-1·K-1。Using the solution blending method, mix 10 grams of octadecyl isocyanate-modified graphene with 90 grams of cyanate, add 500 ml of acetone to dissolve, ultrasonically disperse for 6 hours, and let it stand for volatilization for 48 hours; then vacuum dry at 50 ° C for 48 hours; take 5-10 grams of the mixture is placed in a mold and cured in a vacuum oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.759 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例8Example 8
采用溶液共混法,将十八烷基异氰酸酯改性多壁碳纳米管(OM-MWCNT)、十八烷基异氰酸酯改性石墨烯(OM-G)合计10克,其中OM-MWCNT/OM-G=4/1,与90克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.377W·m-1·K-1。Using solution blending method, octadecyl isocyanate modified multi-wall carbon nanotube (OM-MWCNT), octadecyl isocyanate modified graphene (OM-G) add up to 10 grams, wherein OM-MWCNT/OM- G=4/1, mixed with 90 grams of cyanate, added 500ml of acetone to dissolve, ultrasonically dispersed for 6 hours, left to volatilize for 48 hours; then vacuum dried at 50°C for 48 hours; 5-10 grams of the mixture was placed in a mold and dried in a vacuum Curing in an oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.377 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例9Example 9
采用溶液共混法,将十八烷基异氰酸酯改性多壁碳纳米管(OM-MWCNT)、十八烷基异氰酸酯改性石墨烯(OM-G)合计10克,其中OM-MWCNT/OM-G=3/1,与90克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.319W·m-1·K-1。Using solution blending method, octadecyl isocyanate modified multi-wall carbon nanotube (OM-MWCNT), octadecyl isocyanate modified graphene (OM-G) add up to 10 grams, wherein OM-MWCNT/OM- G=3/1, mixed with 90 grams of cyanate, dissolved in 500ml of acetone, ultrasonically dispersed for 6 hours, left to volatilize for 48 hours; then vacuum dried at 50°C for 48 hours; 5-10 grams of the mixture was placed in a mold, Curing in an oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.319 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例10Example 10
采用溶液共混法,将十八烷基异氰酸酯改性多壁碳纳米管(OM-MWCNT)、十八烷基异氰酸酯改性石墨烯(OM-G)合计10克,其中OM-MWCNT/OM-G=2/1,与90克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.454W·m-1·K-1。Using solution blending method, octadecyl isocyanate modified multi-wall carbon nanotube (OM-MWCNT), octadecyl isocyanate modified graphene (OM-G) add up to 10 grams, wherein OM-MWCNT/OM- G=2/1, mixed with 90g of cyanate ester, dissolved in 500ml of acetone, ultrasonically dispersed for 6 hours, left to volatilize for 48h; then vacuum dried at 50°C for 48h; Curing in an oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.454W·m -1 ·K -1 as measured by a laser flash thermal conductivity measuring instrument.
实施例11Example 11
采用溶液共混法,将十八烷基异氰酸酯改性多壁碳纳米管(OM-MWCNT)、十八烷基异氰酸酯改性石墨烯(OM-G)合计10克,其中OM-MWCNT/OM-G=1/1,与90克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.474W·m-1·K-1。Using solution blending method, octadecyl isocyanate modified multi-wall carbon nanotube (OM-MWCNT), octadecyl isocyanate modified graphene (OM-G) add up to 10 grams, wherein OM-MWCNT/OM- G=1/1, mixed with 90g of cyanate ester, dissolved in 500ml of acetone, ultrasonically dispersed for 6 hours, left to volatilize for 48h; then vacuum-dried at 50°C for 48h; 5-10g of the mixture was placed in a mold, Curing in an oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.474W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例12Example 12
采用溶液共混法,将十八烷基异氰酸酯改性多壁碳纳米管(OM-MWCNT)、十八烷基异氰酸酯改性石墨烯(OM-G)合计10克,其中OM-MWCNT/OM-G=1/2,与90克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.633W·m-1·K-1。Using solution blending method, octadecyl isocyanate modified multi-wall carbon nanotube (OM-MWCNT), octadecyl isocyanate modified graphene (OM-G) add up to 10 grams, wherein OM-MWCNT/OM- G=1/2, mixed with 90 grams of cyanate, dissolved in 500ml of acetone, ultrasonically dispersed for 6 hours, left to volatilize for 48 hours; then vacuum dried at 50°C for 48 hours; 5-10 grams of the mixture was placed in a mold, Curing in an oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.633 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例13Example 13
采用溶液共混法,将十八烷基异氰酸酯改性多壁碳纳米管(OM-MWCNT)、十八烷基异氰酸酯改性石墨烯(OM-G)合计10克,其中OM-MWCNT/OM-G=1/3,与90克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.673W·m-1·K-1。Using solution blending method, octadecyl isocyanate modified multi-wall carbon nanotube (OM-MWCNT), octadecyl isocyanate modified graphene (OM-G) add up to 10 grams, wherein OM-MWCNT/OM- G=1/3, mixed with 90 grams of cyanate ester, dissolved in 500ml of acetone, ultrasonically dispersed for 6 hours, left to volatilize for 48 hours; then vacuum dried at 50°C for 48 hours; 5-10 grams of the mixture was placed in a mold and placed in a vacuum Curing in an oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.673 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
实施例14Example 14
采用溶液共混法,将十八烷基异氰酸酯改性多壁碳纳米管(OM-MWCNT)、十八烷基异氰酸酯改性石墨烯(OM-G)合计10克,其中OM-MWCNT/OM-G=1/4,与90克氰酸酯混合,加入500ml丙酮溶解,超声分散6小时,静置挥发48h;再经过真空干燥50℃48h;取5~10克混合物置于模具中,在真空烘箱中进行固化。其固化工艺与实施例1一致。固化产物采用激光闪射法导热系数测量仪测得其导热系数为0.682W·m-1·K-1。Using solution blending method, octadecyl isocyanate modified multi-wall carbon nanotube (OM-MWCNT), octadecyl isocyanate modified graphene (OM-G) add up to 10 grams, wherein OM-MWCNT/OM- G=1/4, mixed with 90 grams of cyanate ester, dissolved in 500ml of acetone, ultrasonically dispersed for 6 hours, left to volatilize for 48 hours; then vacuum dried at 50°C for 48 hours; 5-10 grams of the mixture was placed in a mold and placed in a vacuum Curing in an oven. Its curing process is consistent with embodiment 1. The thermal conductivity of the cured product is 0.682 W·m -1 ·K -1 as measured by a laser flash method thermal conductivity measuring instrument.
由上述实施例和对比例结果可知,对于表面处理的多壁碳纳米管、表面处理的石墨烯,以及表面处理的多壁碳纳米管与表面处理的石墨烯的组合物,这些导热填料可以显著提高氰酸酯树脂固化产物的导热系数,导热填料含量越高,氰酸酯树脂固化产物的导热系数越高。From above-mentioned embodiment and comparative example result as can be known, for surface-treated multi-walled carbon nanotubes, surface-treated graphene, and the composition of surface-treated multi-walled carbon nanotubes and surface-treated graphene, these thermally conductive fillers can significantly Improve the thermal conductivity of the cured product of the cyanate resin, the higher the content of the thermally conductive filler, the higher the thermal conductivity of the cured product of the cyanate resin.
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。The above is only the best specific implementation mode of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art can easily conceive of changes or modifications within the technical scope disclosed in the present invention. Replacement should be covered within the protection scope of the present invention.
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。The content that is not described in detail in the specification of the present invention belongs to the well-known technology of those skilled in the art.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510850002.4A CN105368046B (en) | 2015-11-27 | 2015-11-27 | Cyanate ester resin/heat conduction filler composition, prepreg and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510850002.4A CN105368046B (en) | 2015-11-27 | 2015-11-27 | Cyanate ester resin/heat conduction filler composition, prepreg and its application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105368046A true CN105368046A (en) | 2016-03-02 |
CN105368046B CN105368046B (en) | 2018-06-01 |
Family
ID=55370706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510850002.4A Expired - Fee Related CN105368046B (en) | 2015-11-27 | 2015-11-27 | Cyanate ester resin/heat conduction filler composition, prepreg and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105368046B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107298777A (en) * | 2017-06-22 | 2017-10-27 | 河北科技大学 | A kind of graphene-based high abrasion nitile-butadiene rubber composite material and preparation method thereof |
CN109796759A (en) * | 2017-11-16 | 2019-05-24 | 长春长光宇航复合材料有限公司 | A kind of high thermal conductivity coefficient cyanate base carbon fiber composite material and preparation method thereof |
CN110079087A (en) * | 2019-05-07 | 2019-08-02 | 中国电子科技集团公司第三十八研究所 | A kind of modified nano graphite/cyanate composite material, preparation method and application |
CN110452534A (en) * | 2019-08-23 | 2019-11-15 | 付福来 | A cyanate ester resin-based composite with excellent thermal conductivity |
CN112251188A (en) * | 2020-10-28 | 2021-01-22 | 哈尔滨工业大学 | A thermally conductive adhesive film suitable for optical load structure bonding and preparation method thereof |
CN109266187B (en) * | 2018-08-10 | 2021-02-05 | 恒力盛泰(厦门)石墨烯科技有限公司 | Heat dissipation coating containing isocyanate modified graphene and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101177527A (en) * | 2007-11-16 | 2008-05-14 | 东华大学 | A kind of preparation method of carbon nanotube/polyimide composite material |
US7976731B2 (en) * | 2005-10-26 | 2011-07-12 | Maverick Corporation | Metal complexes for enhanced dispersion of nanomaterials, compositions and methods therefor |
CN104231624A (en) * | 2014-08-22 | 2014-12-24 | 南京信息职业技术学院 | Modified cyanate ester resin heat-conducting composite material and preparation method thereof |
-
2015
- 2015-11-27 CN CN201510850002.4A patent/CN105368046B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7976731B2 (en) * | 2005-10-26 | 2011-07-12 | Maverick Corporation | Metal complexes for enhanced dispersion of nanomaterials, compositions and methods therefor |
CN101177527A (en) * | 2007-11-16 | 2008-05-14 | 东华大学 | A kind of preparation method of carbon nanotube/polyimide composite material |
CN104231624A (en) * | 2014-08-22 | 2014-12-24 | 南京信息职业技术学院 | Modified cyanate ester resin heat-conducting composite material and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
CHUNBAO ZHAO,SUICHUN XU ET AL: "Thermally conductive cyanate ester nanocomposites filled with graphene nanosheets and multiwalled carbon nanotubes", 《POLYMERS ADVANCED TECHNOLOGIES》 * |
中国航空工业集团公司复合材料技术中心: "《航空复合材料技术》", 31 December 2013, 航空工业出版社 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107298777A (en) * | 2017-06-22 | 2017-10-27 | 河北科技大学 | A kind of graphene-based high abrasion nitile-butadiene rubber composite material and preparation method thereof |
CN107298777B (en) * | 2017-06-22 | 2019-01-11 | 河北科技大学 | A kind of graphene-based high abrasion nitile-butadiene rubber composite material and preparation method thereof |
CN109796759A (en) * | 2017-11-16 | 2019-05-24 | 长春长光宇航复合材料有限公司 | A kind of high thermal conductivity coefficient cyanate base carbon fiber composite material and preparation method thereof |
CN109796759B (en) * | 2017-11-16 | 2021-12-24 | 长春长光宇航复合材料有限公司 | Cyanate ester-based carbon fiber composite material with high thermal conductivity coefficient and preparation method thereof |
CN109266187B (en) * | 2018-08-10 | 2021-02-05 | 恒力盛泰(厦门)石墨烯科技有限公司 | Heat dissipation coating containing isocyanate modified graphene and preparation method thereof |
CN110079087A (en) * | 2019-05-07 | 2019-08-02 | 中国电子科技集团公司第三十八研究所 | A kind of modified nano graphite/cyanate composite material, preparation method and application |
CN110452534A (en) * | 2019-08-23 | 2019-11-15 | 付福来 | A cyanate ester resin-based composite with excellent thermal conductivity |
CN112251188A (en) * | 2020-10-28 | 2021-01-22 | 哈尔滨工业大学 | A thermally conductive adhesive film suitable for optical load structure bonding and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105368046B (en) | 2018-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105368046B (en) | Cyanate ester resin/heat conduction filler composition, prepreg and its application | |
Ren et al. | Modification on glass fiber surface and their improved properties of fiber-reinforced composites via enhanced interfacial properties | |
CN103665863B (en) | Containing the compositions of thermosetting resin of double-tower type epoxy silsesquioxane | |
JP6720181B2 (en) | "Production method and curable composition suitable for liquid resin injection" | |
CN105367793A (en) | Cyanate ester resin prepolymer with excellent space environment property, and prepreg, preparation method and application thereof | |
CN106753218B (en) | A kind of low dielectric high tenacity cyanate ester adhesive and preparation method thereof | |
US10155851B2 (en) | System and method for synthesis of POSS-starch derivatives as effective fillers for developing high performance composites | |
CN103012780B (en) | Benzoxazine resin/ionic liquid composition | |
CN105568694B (en) | A kind of thermoplasticity sizing agent and preparation method and application | |
He et al. | Significantly enhanced thermal conductivity in polyimide composites with the matching of graphene flakes and aluminum nitride by in situ polymerization | |
Li et al. | Preparation of low-dielectric permittivity polyimide resins with high surface activity from chemically bonded hyperbranched polysiloxane | |
CN105484041A (en) | A kind of composite aqueous emulsion sizing agent for carbon fiber and preparation method thereof | |
CN103304999A (en) | Cyanate ester/metal aluminum or titanium-containing silsesquioxane composition | |
Zhang et al. | Enhancement of impact strength of poly (lactic acid)/silicon carbide nanocomposites through surface modification with titanate-coupling agents | |
CN110256812A (en) | A kind of latency medium temperature rapid curing halogen-free flame retardant epoxy resin composition and its prepreg method | |
CN104031355A (en) | Epoxy resin composition cured and modified by carboxyl-containing polyether nitrile sulphone ketone copolymer as well as preparation method and application of epoxy resin composition | |
Bazzar et al. | 1, 2, 4-Triazole and quinoxaline based polyimide reinforced with neat and epoxide-end capped modified SiC nanoparticles: Study thermal, mechanical and photophysical properties | |
Jia et al. | Mechanical and thermal properties of elastic epoxy thermoset cured by cardanol-based diglycidyl epoxy modified polyetheramine | |
Zhang et al. | Hyperbranched polysiloxane functionalized graphene oxide for dicyclopentadiene bisphenol dicyanate ester nanocomposites with high performance. | |
JP6845141B2 (en) | Resin composition | |
CN103788123B (en) | Bifunctional benzoxazine resin containing twin-tower silsesquioxane | |
CN110804409A (en) | A kind of benzoxazine type adhesive for polyimide and its preparation and use method | |
CN103387669B (en) | The silsesquioxane composition of benzoxazine colophony/containing metal aluminium, titanium or magnesium | |
JP7451058B2 (en) | Thermosetting citraconimide resin composition | |
Venu et al. | Amphiphilic block‐copolymer exfoliated transition metal dichalcogenides as novel epoxy toughening agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180601 |