CN105356728A - 隔离驱动电路 - Google Patents
隔离驱动电路 Download PDFInfo
- Publication number
- CN105356728A CN105356728A CN201510873552.8A CN201510873552A CN105356728A CN 105356728 A CN105356728 A CN 105356728A CN 201510873552 A CN201510873552 A CN 201510873552A CN 105356728 A CN105356728 A CN 105356728A
- Authority
- CN
- China
- Prior art keywords
- circuit
- transformer
- resistor
- switching tube
- primary side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/08—Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0006—Arrangements for supplying an adequate voltage to the control circuit of converters
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明提供一种不受原边占空比大小的影响且驱动能力强的新型隔离驱动电路。本发明的思路是去掉原边激磁电路中的隔直电容,该电容只参与构成原边去磁电路。原边激磁电路由原边PWM控制信号、原边电压源、隔离变压器原边绕组、原边开关管构成;当原边PWM控制信号为高电平时,驱动原边开关管导通,开关管导通电压幅值忽略不计,原边电压源两端的电压直接加在隔离变压器原边绕组两端,通过变压器耦合至副边整流电路,经副边整流电路整流后输出为副边驱动信号,当隔离变压器原、副边匝比为1时,该驱动信号的高电平幅值等于原边电压源两端的电压幅值,与原边PWM信号的占空比大小无关。
Description
技术领域
本发明涉及电路领域,具体的,涉及一种用于开关电源系统中,驱动开关器件的驱动电路,提供隔离、控制的装置。
背景技术
近年来,能源问题日益严峻,光伏太阳能、风力发电等新能源得到国家政策大力支持,该行业发展迅速。光伏辅助供电电源为一种开关变换器,用于为光伏太阳能、风力发电、SVG等控制系统提供稳定、可靠的直流电压。
受应用场合影响,光伏电源工作电压范围很宽,以光伏太阳能发电站为例,受光照强度影响,光伏太阳能发电站的输出电压在几十伏到上千伏,对应的辅助供电电源工作电压范围也在几十伏到上千伏。光伏辅助电源可用到的技术包括双管反激、双管正激等方案,与全桥、半桥变换器类似,双管反激、双管正激电路需要隔离驱动电路来驱动、控制开关管,因工作电压范围宽,其对应的占空比变化范围较大,隔离驱动电路难以设计。
现有常用的隔离驱动电路,与正激拓朴的功率电路的不同在于,正激拓朴电路用于功率的传递。而隔离驱动电路仅实现拓朴中功率开关管(如MOS管、IGBT等)的驱动控制,其主要用于输出控制信号给功率开关管。
图1a为现有常用的隔离驱动电路,图1b为隔离驱动电路在正激变换器中的应用实例图,一种隔离驱动电路,用于驱动开关电源系统中的功率开关管,包括原边电路和副边整流电路,其中,原边电路包括PWM控制器、由PWM控制器控制的开关管TR1、TR2、电阻R1、变压器的原边绕组Np0及电容C1,副边整流电路包括变压器的副边绕组Ns0和电阻R2,变压器的副边绕组Ns0的同名端经电阻R2引出作为隔离驱动电路的输出端A,用于与功率开关管Q01的栅极连接;变压器的副边绕组Ns0的异名端引出作为隔离驱动电路的输出端B,用于与功率开关管Q01的源极连接。即图1a中隔离驱动输出端口A、B接图1b中功率开关管Q01的栅源极,图1a所示的隔离驱动电路仅为图1b所示电路系统中的一个模块电路。
图1a中PWM(脉宽调制信号)为控制电路输出的控制信号,N型三极管TR1、P型三极管TR2组成图腾柱以提升PWM信号的驱动能力,VCC为图腾柱直流供电电压,电阻R1为原边限流电阻,C1为原边隔直驱动电容,T1为隔离变压器匝比为1,R2为副边限流电阻、A、B为副边驱动信号输出端口,VAB表示端口AB两端电压幅值。该电路存在的明显缺陷是:副边隔离驱动信号的高电平幅度受原边信号的占空比影响,PWM信号占空比越大,副边驱动信号高电平幅值越低,副边开关管面临不能驱动的风险;PWM信号占空比较小时,副边驱动信号高电平幅值越高,副边开关管驱动级面临正向击穿风险。
结合图2所示相关节点电压波形,简述图1a电路的工作过程。图2中,设定驱动信号占空比为D,高电平幅值记为Vpwm,VCC电压记为V0,隔直电容C1两端电压记为Vc0,极性为左正右负。当驱动信号为高电平时,TR1导通,TR2关断,隔离变压器原边绕组Np0两端电压记为Vp0,则Vp0=V0-Vc0,该阶段原边绕组两端的激磁伏秒积为Vp0*D,由此可知,在变压器的激磁过程中,变压器受占空比的影响,其原边绕组Np0两端电压的幅值较低于原边电压VCC的幅值V0;副边绕组Ns0端输出的副边端口A、B的端口电压VAB的幅值也较低于原边电压VCC的幅值V0。而当驱动信号为低电平时,TR2导通,TR1关断,隔离变压器原边绕组两端的电压即为隔直电容C1两端的电压,Vp0=Vc0,该阶段原边绕组两端的去磁伏秒积为Vp0*(1-D),由此可知,在变压器的去磁过程中,变压器受电容在激磁阶段储能的影响,经由电阻、电容所形成的去磁电路中,施加于变压器的反向能量包括变压器中的剩磁能量和电容C1的储能。由伏秒平衡可得:Vp0*D=Vp0*(1-D),通过该式可计算得PWM信号为高电平阶段隔直电容C1两端的电压Vc0=V0*D,原边绕组两端的高电平幅值为V0*(1-D),因此,可得PWM信号占空比越大,副边驱动信号高电平幅值越低。为保证副边驱动信号幅值能够达到待驱动开关管的阈值门限,原边PWM信号的占空比一般低于50%。
专利公开号为CN101621246A公开了一种磁隔离驱动电路,该电路能够避免功率回路主开关的误动作,防止电源因此失效,但该方案采用第三绕组缺点明显:1)绕组增多会导致原、副边之间的漏感增加,会导致更高的驱动开关尖峰;2)该方案设计复杂,成本高。
针对上述电路存在的明显缺点,本案发明人对隔离驱动电路进行深入分析,本案由此产生。
发明内容
有鉴于此,为了解决上述技术问题,本发明提供一种不受原边占空比大小的影响且驱动能力强的新型隔离驱动电路。
由于现有隔离驱动电路中,隔直电容既参与构成原边激磁电路,又参与构成去磁电路,由于隔直电容串联分压,其两端的稳态电压等于原边电压源两端的电压幅值与原边PWM控制信号占空比的乘积,该稳态电压受原边PWM的占空比大小影响;对应的,经隔离变压器传递到副边整流电路的高电平幅值等于原边电压源两端的电压减去隔直电容两端的稳态电压值,同样,副边驱动信号的高电平幅值受原边PWM信号的占空比大小影响。
本发明的思路是去掉原边激磁电路中的隔直电容,该电容只参与构成原边去磁电路。原边激磁电路由原边PWM控制信号、原边电压源、隔离变压器原边绕组、原边开关管构成;当原边PWM控制信号为高电平时,驱动原边开关管导通,开关管导通电压幅值忽略不计,原边电压源两端的电压直接加在隔离变压器原边绕组两端,通过变压器耦合至副边整流电路,经副边整流电路整流后输出为副边驱动信号,当隔离变压器原、副边匝比为1时,该驱动信号的高电平幅值等于原边电压源两端的电压幅值,与原边PWM信号的占空比大小无关。
据此思路,本发明提供一种隔离驱动电路,用于驱动开关电源系统中的功率开关管,包括原边电路和副边整流电路,所述原边电路包括PWM控制器、由PWM控制器控制的N型开关管Q1、变压器的原边绕组及电容,所述副边整流电路包括变压器的副边绕组和二极管D2,所述变压器的副边绕组的同名端经二极管D2引出作为隔离驱动电路的第一输出端,用于与功率开关管的栅极连接;所述变压器的副边绕组的异名端引出作为隔离驱动电路的第二输出端,用于与功率开关管的源极连接,所述隔离驱动电路,在变压器的原边绕组的激磁电路和去磁电路中,电容仅工作于去磁电路中,不参与激磁。
优选的,所述原边电路,还包括电阻R3和二极管D1,其中,变压器的同名端引出作为隔离驱动电路的输入端,用于与电压源连接;变压器的异名端通过N型开关管Q1接地;电容的一端与变压器的同名端连接,电容的另一端与二极管的阴极连接,二极管的阳极与变压器的异名端连接;电阻并联在电容的两端;其中,变压器的原边绕组的激磁电路,仅由N型开关管Q1的导通通路与原边绕组构成;变压器的原边绕组的去磁电路,在N型开关管Q1关断时,,由电容、电阻、二极管与原边绕组构成。
优选的,所述原边电路,还包括电阻R3和二极管D1,其中,变压器的同名端引出作为隔离驱动电路的输入端,用于与电压源连接;变压器的异名端通过N型开关管Q1接地;二极管的阳极与变压器的异名端连接,二极管的阴极与电容的一端连接,电容的另一端接地;电阻并联在电容的两端;其中,变压器的原边绕组的激磁电路,仅由N型开关管Q1的导通通路与原边绕组构成;变压器的原边绕组的去磁电路,在N型开关管Q1关断时,由原边绕组与二极管、电容、电阻构成。
优选的,所述副边整流电路,还包括加速关断电路,所述加速关断电路由电阻R5、电阻R6、电阻R7、P型开关管Q2组成,其中,电阻R5的一端连接至二极管D2的阳极,电阻R5的另一端连接至P型开关管Q2栅极;电阻R6的一端连接至二极管D2的阴极,另一端连接至P型开关管Q2源极,电阻R7的一端连接P型开关管Q2漏极,另一端连接至变压器T1副边绕组Ns1异名端。
优选的,所述N型开关管Q1为NPN型三极管或N型场效应管;所述P型开关管Q2为PNP型三极管或P型场效应管。
本方案的原边去磁电路为隔离变压器激磁能量去磁,防止隔离变压器饱和,提高本发明方案的可靠性。
与现有技术相比,本发明具有如下有益效果:
1)经隔离变压器传递至副边的驱动信号高电平幅值在整个占空比变化范围内保持恒定不变,不受原边占空比大小的影响,驱动能力强;
2)本发明的占空比工作范围更宽,可超过50%甚至更高;
3)本方案可靠性高,能够有效防止控制电路发出的PWM信号瞬间突变时刻,功率回路因驱动电路误触发信号误开通而失效;
4)本发明电路简单,成本低,易于设计,可靠性高。
附图说明
图1a为现有隔离驱动电路原理图;
图1b为隔离驱动电路在正激变换器中的应用示例图;
图2为现有隔离驱动电路工作原理、相关回路电压波形;
图3为本发明实施例一的电路原理图;
图4为本发明实施例一工作原理、相关回路电压波形;
图5为本发明实施例二电路原理图之一;
图6为本发明实施例二电路原理图之二;
图7为本发明实施例二电路原理图之三;
图8为本发明实施例三电路原理图;
图9为本发明实施例四电路原理图之一;
图10为本发明实施例四电路原理图之二;
图11为本发明实施例四电路原理图之三。
具体实施方式
第一实施例
图3示出了本发明第一实施例原理框图,一种新型隔离驱动电路,包括:包括原边PWM控制信号,设定其占空比为D,高电平幅值记为Vpwm,电压源Vsource,设定其直流电压值为VDD,原边激磁电路、原边去磁电路、隔离变压器T1,假定其原、负边匝比为1、副边整流电路、加速关断电路。
原边激磁电路由电压源Vsource、N型开关管Q2、电阻R3、变压器T1原边绕组Np1、PWM驱动控制信号,其中,PWM经电阻驱动信号经电阻R3输入至开关管Q2栅极;电压源Vsource的正极(图3中Vsource标“+”的一端),连接至变压器T1原边绕组Np1同名端(图3中绕组NP1带黑点的那一端),变压器T1原边绕组Np1异名端(图3中绕组NP1不带黑点的那一端)连接至开关管Q2漏极,开关管Q2源极与电压源Vsource的负极(图3中Vsource标“-”的一端)相连,该公共节点作为原边地。
原边去磁电路由二极管D1、电阻R4、电容C2组成,其中,二极管D1阳极连接至变压器T1原边绕组Np1异名端;电容C2、电阻R4相并联后一端连接至电压源Vsource的正极,另一端连接至二极管D1阴极。
副边整流电路由变压器T1副边绕组Ns1、二极管D2,端口标号C、D组成,其中变压器T1副边绕组Ns1同名端(图3中绕组Ns1带黑点的那一端)与二极管D2阳极相连,变压器T1副边绕组Ns1异名端(图3中绕组Ns1不带黑点的那一端)连接至端口D,二极管D2阴极连接至端口标号C。
加速关断电路由电阻R5、R6、R7,P型开关管Q2组成,其中,电阻R5的一端连接至二极管D2的阳极,电阻R5的另一端连接至P型开关管Q2栅极;电阻R6的一端连接至二极管D2的阴极,另一端连接至P型开关管Q2源极,电阻R7的一端连接P型开关管Q2漏极,另一端连接至变压器T1副边绕组Ns1异名端(图3中绕组Ns1不带黑点的那一端)。
特别的,添加加速关断电路的原因是:PWM信号由高电平变为低电平瞬间,开关管Q1的漏源极间电压有一个逐渐上升的过程,不能立即建立起反向钳位二极管D1的正向偏置电压,因此隔离变压器原边绕组两端电压在驱动信号关断瞬间不能立即反相,导致副边端口C、D所输出的驱动信号关断的下降沿时间太长,进而引起驱动信号波形失真。
添加加速关断电路的有益效果为:在原边PWM信号由高电平下降为低电平阶段,加快副边端口C、D驱动信号由高电平降为低电平的下降速度,缩短驱动信号下降沿时间,进一步的,减少驱动副边端口C、D对应的关断损耗。
参见图3所示电路的连接关系,结合图4电路相关节点电压、电流波形,讲述一下工作原理:
T0~T1阶段:T0时刻,PWM信号为高电平,开关管Q1导通,二极管D1反向截止,变压器T1原边绕组Np1同名端电压为正,异名端电压为负,原边绕组Np1两端电压即为电压源Vsource两端电压(开关管Q1漏源极之间导通压降忽略不计),记为Vp1,幅值为VDD;因变压器同名端耦合关系,变压器T1副边绕组Ns1同名端电压为正,异名端电压为负,副边绕组Ns1两端电压等于电压源Vsource两端电压(开关管Q1漏源极之间导通压降忽略不计),幅值为VDD;
此处是与现有隔离驱动电路最大的区别在于,在该激磁阶段,直流偏置电源输出电压直接加在原边绕组两端,而此时隔直电容C2因二极管的反偏而未形成通路,使变压器原边电压以全幅值方式耦合给副边,因此,变压器原、副边绕组两端的电压始终等于直流偏置电源输出电压,与PWM信号的占空比大小无关。
进一步的,端口C、D两端电压记为VCD,如图4所示。当二极管D2正向导通,端口C、D两端电压为高电平,幅值为VDD(忽略二极管D2的正向导通压降),该阶段,端口C、D一直保持为高电平状态且其幅值始终为VDD,与PWM信号占空比大小无关。
T1~T2阶段:T1时刻PWM信号下降为低电平,开关管Q1关断,变压器T1原边绕组Np1同名端电压为负,异名端电压为正,二极管D1正向导通,原边绕组Np1两端电压即为电容C2两端电压,记为Vc2,如图4所示,变压器原边绕组Np1在上一阶段的激磁能量开始去磁。
在去磁阶段,图1a所示方案的工作过程中,变压器原边电感励磁电流先正向减小至零后再反向增大,反向电流幅值与电容C1的容量、隔离变压器原边绕组电感量、直流电压源以及PWM信号的占空比有关。本方案电路的工作原理与如图1a所示的电路该阶段工作原理明显不同在于:开关管Q1关断瞬间,本方案中的励磁电流从正向最大值逐渐降低,至开关管Q1下一次开通瞬间,该电流可以大于或者等于零,部分励磁能量被电阻R4消耗,而没有由电容C2所提供的反向激磁电流,仅有续流通路,如图3中虚线所示的路径。
在开关管Q1关断瞬间,因变压器同名端关系,变压器副边绕组Ns1同名端为负,异名端电压为负,P型开关管Q2栅源极电压为负,开关管Q2导通,电阻R6、R7用于加快端口C、D两端电压下降速度,在整个T1~T2阶段,端口C、D一直保持为低电平状态。
PWM信号高低电平状态通过如图3所示的隔离驱动电路经T0~T1和T1~T2两个阶段输出到驱动端口C、D,端口C、D的高、低电平状态在任意时刻均与PWM信号保持一致。
第二实施例
第一实施例中,图3所示的原边激磁电路N型开关管也可以是NPN型三极管,副边加速关断电路中的P型开关管也可以是PNP型三极管,二者的排列组合如图5、图6、图7所示,调整后电路的工作原理与第一实施例一样,可实现同等功效。
第三实施例
图8示出了本发明第三实施例原理框图,一种新型隔离驱动电路,包括:原边PWM控制信号、原边激磁电路、原边去磁电路、隔离变压器T1、副边整流电路、加速关断电路,本实施例电路元件连接关系仅原边去磁电路部分与第一实施例不同,其他部分完全一致,本实施例原边去磁电路连接关系为:
原边去磁电路由二极管D1、电阻R4、电容C2组成,其中,二极管D1阳极连接至变压器T1原边绕组Np1异名端(图8中绕组NP1不带黑点的那一端);电容C2、电阻R4相并联后一端连接至电压源Vsource的负极(图8中Vsource标“-”的一端),另一端连接至二极管D1阴极。
调整后电路的工作原理与第一实施例基本相同,不同点仅在去磁阶段:二极管D1正向导通,原边绕组Np1两端电压等于电容C2两端电压减去直流电压源Vsource两端电压之差,其去磁路径如图8中虚线所示。调整后的电路与第一实施例的功效基本相同。
第四实施例
第三实施例中,图8所示的原边激磁电路N型开关管也可以是NPN型三极管,副边加速关断电路中的P型开关管也可以是PNP型三极管,二者的排列组合如图9、图10、图11所示,调整后电路的工作原理与第三实施例一样,可实现相同或相似的功效。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围,这里不再用实施例赘述,本发明的保护范围应当以权利要求所限定的范围为准。
Claims (5)
1.一种隔离驱动电路,用于驱动开关电源系统中的功率开关管,包括原边电路和副边整流电路,所述原边电路包括PWM控制器、由PWM控制器控制的N型开关管Q1、变压器的原边绕组及电容,所述副边整流电路包括变压器的副边绕组和二极管D2,所述变压器的副边绕组的同名端经二极管D2引出作为隔离驱动电路的第一输出端,用于与功率开关管的栅极连接;所述变压器的副边绕组的异名端引出作为隔离驱动电路的第二输出端,用于与功率开关管的源极连接,其特征在于:
所述隔离驱动电路,在变压器的原边绕组的激磁电路和去磁电路中,电容仅工作于去磁电路中,不参与激磁。
2.根据权利要求1所述的隔离驱动电路,其特征在于:所述原边电路,还包括电阻R3和二极管D1,其中,变压器的同名端引出作为隔离驱动电路的输入端,用于与电压源连接;变压器的异名端通过N型开关管Q1接地;电容的一端与变压器的同名端连接,电容的另一端与二极管的阴极连接,二极管的阳极与变压器的异名端连接;电阻并联在电容的两端;其中,
变压器的原边绕组的激磁电路,仅由N型开关管Q1的导通通路与原边绕组构成;
变压器的原边绕组的去磁电路,在N型开关管Q1关断时,由电容、电阻、二极管与原边绕组构成。
3.根据权利要求1所述的隔离驱动电路,其特征在于:所述原边电路,还包括电阻R3和二极管D1,其中,变压器的同名端引出作为隔离驱动电路的输入端,用于与电压源连接;变压器的异名端通过N型开关管Q1接地;二极管的阳极与变压器的异名端连接,二极管的阴极与电容的一端连接,电容的另一端接地;电阻并联在电容的两端;其中,
变压器的原边绕组的激磁电路,仅由N型开关管Q1的导通通路与原边绕组构成;
变压器的原边绕组的去磁电路,在N型开关管Q1关断时,,由原边绕组与二极管、电容、电阻构成。
4.根据权利要求1至3中任一项所述的隔离驱动电路,其特征在于:所述副边整流电路,还包括加速关断电路,所述加速关断电路由电阻R5、电阻R6、电阻R7、P型开关管Q2组成,其中,电阻R5的一端连接至二极管D2的阳极,电阻R5的另一端连接至P型开关管Q2栅极;电阻R6的一端连接至二极管D2的阴极,另一端连接至P型开关管Q2源极,电阻R7的一端连接P型开关管Q2漏极,另一端连接至变压器T1副边绕组Ns1异名端。
5.根据权利要求1至4中任一项所述的隔离驱动电路,其特征在于:所述N型开关管Q1为NPN型三极管或N型场效应管;所述P型开关管Q2为PNP型三极管或P型场效应管。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510873552.8A CN105356728A (zh) | 2015-12-01 | 2015-12-01 | 隔离驱动电路 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510873552.8A CN105356728A (zh) | 2015-12-01 | 2015-12-01 | 隔离驱动电路 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105356728A true CN105356728A (zh) | 2016-02-24 |
Family
ID=55332629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510873552.8A Pending CN105356728A (zh) | 2015-12-01 | 2015-12-01 | 隔离驱动电路 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105356728A (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107359797A (zh) * | 2017-08-21 | 2017-11-17 | 上海空间电源研究所 | 用于高边保护开关管的恒压限流隔离驱动电路及控制方法 |
CN109391021A (zh) * | 2018-11-27 | 2019-02-26 | 每天蓝(深圳)科技有限公司 | 电池防反灌开关的控制装置及太阳能mppt控制系统 |
CN110190736A (zh) * | 2019-07-09 | 2019-08-30 | 杭州飞仕得科技有限公司 | 一种具有高可靠性的多信号磁隔离传输电路及其应用 |
CN111371294A (zh) * | 2020-04-03 | 2020-07-03 | 宁波安信数控技术有限公司 | 一种基于数字条幅技术的频谱搬移mos驱动电路与方法 |
CN111555743A (zh) * | 2020-05-14 | 2020-08-18 | 广州金升阳科技有限公司 | 一种隔离式电子继电器 |
CN112003456A (zh) * | 2020-07-14 | 2020-11-27 | 宁波安信数控技术有限公司 | 一种用于驱动栅极驱动变压器的电路 |
CN113114042A (zh) * | 2021-04-30 | 2021-07-13 | 重庆斯微奇电子技术有限公司 | 一种脉冲信号占空比隔离传递电路 |
CN113872419A (zh) * | 2021-09-28 | 2021-12-31 | 成都芯源系统有限公司 | 隔离驱动电路及隔离驱动方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2753053Y (zh) * | 2004-12-03 | 2006-01-18 | 深圳市核达中远通电源技术有限公司 | 用于同步整流的隔离驱动电路 |
CN101667781A (zh) * | 2009-10-09 | 2010-03-10 | 天宝电子(惠州)有限公司 | 有源钳位开关管的自适应驱动电路 |
CN201536357U (zh) * | 2009-11-13 | 2010-07-28 | 美的集团有限公司 | 一种igbt的驱动装置 |
CN101841243A (zh) * | 2010-05-18 | 2010-09-22 | 深圳市核达中远通电源技术有限公司 | 隔离开关变换器的同步整流自激励驱动电路和方法 |
CN102891607A (zh) * | 2012-10-17 | 2013-01-23 | 中国兵器工业集团第二一四研究所苏州研发中心 | 一种正激原边隔离驱动同步整流电路 |
CN103023282A (zh) * | 2011-09-23 | 2013-04-03 | 南京博兰得电子科技有限公司 | 一种隔离驱动电路 |
CN103066814A (zh) * | 2011-10-24 | 2013-04-24 | 中兴通讯股份有限公司 | 一种隔离驱动电路 |
CN204707027U (zh) * | 2015-05-27 | 2015-10-14 | 昆明理工大学 | 一种隔离mosfet驱动电路 |
CN205377643U (zh) * | 2015-12-01 | 2016-07-06 | 广州金升阳科技有限公司 | 隔离驱动电路 |
-
2015
- 2015-12-01 CN CN201510873552.8A patent/CN105356728A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2753053Y (zh) * | 2004-12-03 | 2006-01-18 | 深圳市核达中远通电源技术有限公司 | 用于同步整流的隔离驱动电路 |
CN101667781A (zh) * | 2009-10-09 | 2010-03-10 | 天宝电子(惠州)有限公司 | 有源钳位开关管的自适应驱动电路 |
CN201536357U (zh) * | 2009-11-13 | 2010-07-28 | 美的集团有限公司 | 一种igbt的驱动装置 |
CN101841243A (zh) * | 2010-05-18 | 2010-09-22 | 深圳市核达中远通电源技术有限公司 | 隔离开关变换器的同步整流自激励驱动电路和方法 |
CN103023282A (zh) * | 2011-09-23 | 2013-04-03 | 南京博兰得电子科技有限公司 | 一种隔离驱动电路 |
CN103066814A (zh) * | 2011-10-24 | 2013-04-24 | 中兴通讯股份有限公司 | 一种隔离驱动电路 |
CN102891607A (zh) * | 2012-10-17 | 2013-01-23 | 中国兵器工业集团第二一四研究所苏州研发中心 | 一种正激原边隔离驱动同步整流电路 |
CN204707027U (zh) * | 2015-05-27 | 2015-10-14 | 昆明理工大学 | 一种隔离mosfet驱动电路 |
CN205377643U (zh) * | 2015-12-01 | 2016-07-06 | 广州金升阳科技有限公司 | 隔离驱动电路 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107359797A (zh) * | 2017-08-21 | 2017-11-17 | 上海空间电源研究所 | 用于高边保护开关管的恒压限流隔离驱动电路及控制方法 |
CN109391021A (zh) * | 2018-11-27 | 2019-02-26 | 每天蓝(深圳)科技有限公司 | 电池防反灌开关的控制装置及太阳能mppt控制系统 |
CN110190736A (zh) * | 2019-07-09 | 2019-08-30 | 杭州飞仕得科技有限公司 | 一种具有高可靠性的多信号磁隔离传输电路及其应用 |
CN110190736B (zh) * | 2019-07-09 | 2024-04-26 | 杭州飞仕得科技股份有限公司 | 一种具有高可靠性的多信号磁隔离传输电路及其应用 |
CN111371294A (zh) * | 2020-04-03 | 2020-07-03 | 宁波安信数控技术有限公司 | 一种基于数字条幅技术的频谱搬移mos驱动电路与方法 |
CN111555743A (zh) * | 2020-05-14 | 2020-08-18 | 广州金升阳科技有限公司 | 一种隔离式电子继电器 |
CN111555743B (zh) * | 2020-05-14 | 2023-04-11 | 广州金升阳科技有限公司 | 一种隔离式电子继电器 |
CN112003456A (zh) * | 2020-07-14 | 2020-11-27 | 宁波安信数控技术有限公司 | 一种用于驱动栅极驱动变压器的电路 |
CN113114042A (zh) * | 2021-04-30 | 2021-07-13 | 重庆斯微奇电子技术有限公司 | 一种脉冲信号占空比隔离传递电路 |
CN113114042B (zh) * | 2021-04-30 | 2023-05-02 | 重庆斯微奇电子技术有限公司 | 一种脉冲信号占空比隔离传递电路 |
CN113872419A (zh) * | 2021-09-28 | 2021-12-31 | 成都芯源系统有限公司 | 隔离驱动电路及隔离驱动方法 |
CN113872419B (zh) * | 2021-09-28 | 2024-05-10 | 成都芯源系统有限公司 | 隔离驱动电路及隔离驱动方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105356728A (zh) | 隔离驱动电路 | |
CN111654193B (zh) | 一种驱动控制方法及其电路 | |
CN103199677B (zh) | 单路隔离型mosfet驱动电路 | |
US8860471B2 (en) | Isolated gate driver adapted for PWM-based switching power supply | |
CN102594101A (zh) | 一种隔离型可快速关断的mosfet驱动电路 | |
CN109450418B (zh) | 一种带开关控制单元的igbt隔离驱动电路及其控制方法 | |
JP2011188178A (ja) | ゲートドライブ回路 | |
WO2013174137A1 (zh) | 绝缘栅双极型晶体管的驱动电路 | |
CN109347311B (zh) | 一种双管正激同步整流电路的自驱驱动电路 | |
CN113676029A (zh) | 一种基于igbt的有源钳位电路 | |
CN210075089U (zh) | 一种隔离驱动电路 | |
CN210380657U (zh) | 一种dc/dc变换器 | |
JP2002153054A (ja) | スイッチング電源回路 | |
CN205377643U (zh) | 隔离驱动电路 | |
CN114465459B (zh) | SiC/GaN MOSFET驱动电路和集成电路 | |
JP4385090B2 (ja) | 整流回路および電圧変換回路 | |
SE0100225D0 (sv) | An arrangement for demagnetizing a transformer | |
CN114465450A (zh) | 一种隔离驱动电路 | |
CN107086789B (zh) | 一种次级控制准谐振的开关电源变换器 | |
CN216056818U (zh) | 一种同步整流控制电路 | |
CN217034092U (zh) | 一种抑制光电耦合器的温度漂移的交流电压检测电路 | |
CN109921649B (zh) | 一种桥式直流变换器 | |
CN110071491B (zh) | 负载拖尾电流消除电路 | |
CN109039022B (zh) | 一种芯片关断电路及包含该电路的开关电源 | |
CN109245052B (zh) | 一种短路保护电路和包含该电路的开关电源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160224 |