[go: up one dir, main page]

CN105354414A - Hierarchical analysis-based human body health condition assessment method - Google Patents

Hierarchical analysis-based human body health condition assessment method Download PDF

Info

Publication number
CN105354414A
CN105354414A CN201510695878.6A CN201510695878A CN105354414A CN 105354414 A CN105354414 A CN 105354414A CN 201510695878 A CN201510695878 A CN 201510695878A CN 105354414 A CN105354414 A CN 105354414A
Authority
CN
China
Prior art keywords
health status
judgment matrix
layer
consistency
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510695878.6A
Other languages
Chinese (zh)
Inventor
李成磊
高乃奎
李国超
高鹏飞
任滕悦
王婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201510695878.6A priority Critical patent/CN105354414A/en
Publication of CN105354414A publication Critical patent/CN105354414A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开了一种基于层次分析的人体健康状况评估方法,该方法包括开始时根据人体生理参数信息构建人体健康状况评估模型;确定标度信息,生成判断矩阵;检验判断矩阵一致性检验,若不满足一致性,则返回上一步重新生成判断矩阵直至满足一致性,如满足一致性,则进入下一步骤;对判断矩阵进行层次单排序和层次总排序;根据所述层次总排序的重要程度权值信息,得到评估对象的健康状况评估结果。本发明提供的技术方案整合了目前用于评估人体健康状况的心率、体温、血氧饱和度、血压及血糖等人生理参数信息,构建人体健康状况评估模型,将整个评估体系有条理、有层次地表现出来,有助于非专业人员清晰、明确地了解自身健康状况。

The invention discloses a method for assessing human health status based on hierarchical analysis. The method includes constructing a human health status evaluation model based on human physiological parameter information at the beginning; determining scale information and generating a judgment matrix; checking the consistency of the judgment matrix, if If the consistency is not satisfied, return to the previous step to regenerate the judgment matrix until the consistency is satisfied. If the consistency is satisfied, enter the next step; perform single-level sorting and total-level sorting on the judgment matrix; according to the importance of the total level sorting The weight information is used to obtain the evaluation result of the health status of the evaluation object. The technical solution provided by the invention integrates the information of human physiological parameters such as heart rate, body temperature, blood oxygen saturation, blood pressure and blood sugar currently used to evaluate human health status, constructs a human health status evaluation model, and makes the entire evaluation system organized and hierarchical It will help non-professionals to clearly and clearly understand their own health status.

Description

一种基于层次分析的人体健康状况评估方法A method for assessing human health status based on analytic hierarchy process

技术领域technical field

本发明涉及一种人体健康状况评估方法。The invention relates to a method for assessing human health status.

背景技术Background technique

随着人们医疗保健意识的提高,人们越来越注重身体健康。华盛顿大学、南加州大学和科罗拉多大学的联合研究表明,尤其是随着未来几十年老龄化的发展,对于人体健康状态的评估变得越发重要。随着医学的不断进步,越来越多的人逐渐将关注点从后期的诊断治疗逐渐的向前期的预防方向推移。基于目前生物医学领域的研究现状可知:人体的体温、血压、血氧饱和度、血氧以及血糖等生理参数对人体健康状况有着重要的影响。最近人们关于远程医疗的便携式装置开展了如火如荼的研究,并且现有技术已经存在用于人体相关生理参数监测装置及人体健康检测系统方面,比如,专利文献CN102247128A公开的人体脉搏信息采集装置及人体健康状况监护装置,其可以通过检测脉搏波对人体健康状况进行评估,但是其缺点在于只能监测一个参数,无法对于人体健康状况进行综合、全面地评价;专利文献CN203898280U公开了一种人体健康状态监测装置,其可以实现对血糖、血压、体温、心率、血氧饱和度这五种生理参数的监测,但是其仅仅局限于对各个参数的监测,提供的也只是最原始的专业数据,对于没有太多临床经验的医学工作者以及非专业人员而言,很难根据这些未经过处理的专业数据简单、直观、准确地了解人体当前的健康状况;而专利文献CN104257354A公开了一种具有身体健康评估功能的手机、专利文献CN202960484U中公开了一种人体健康检测系统、专利文献CN204618430U公开了一种家用人体健康检测系统均可以实现实时监测生理参数及向智能终端反馈人体健康状况的功能,但是它们大多是针对单一个体用户,并且对移动互联网络及大型远程医用服务器等外围硬件装置依赖性很大,在一些无力提供这些的偏远山区无疑会失去其人体健康状况评估功能。With the improvement of people's health care awareness, people pay more and more attention to their health. A joint study by the University of Washington, the University of Southern California, and the University of Colorado shows that, especially with the development of aging in the coming decades, the assessment of human health status will become more and more important. With the continuous advancement of medicine, more and more people gradually shift their focus from late diagnosis and treatment to early prevention. Based on the current research status in the field of biomedicine, it can be known that physiological parameters such as body temperature, blood pressure, blood oxygen saturation, blood oxygen, and blood sugar have an important impact on human health. Recently, people have carried out research on portable devices for telemedicine in full swing, and the prior art already exists for human body-related physiological parameter monitoring devices and human health detection systems, such as the human pulse information collection device disclosed in patent document CN102247128A. A condition monitoring device, which can evaluate the health status of the human body by detecting pulse waves, but its disadvantage is that it can only monitor one parameter, and cannot comprehensively and comprehensively evaluate the health status of the human body; patent document CN203898280U discloses a human health status monitoring The device can realize the monitoring of the five physiological parameters of blood sugar, blood pressure, body temperature, heart rate, and blood oxygen saturation, but it is only limited to the monitoring of each parameter, and it only provides the most original professional data. For medical workers with many clinical experiences and non-professionals, it is difficult to simply, intuitively and accurately understand the current health status of the human body based on these unprocessed professional data; The mobile phone, the patent document CN202960484U discloses a human health detection system, and the patent document CN204618430U discloses a household human health detection system, which can realize the functions of real-time monitoring of physiological parameters and feedback of human health status to smart terminals, but most of them are It is aimed at a single individual user and relies heavily on peripheral hardware devices such as mobile Internet and large-scale remote medical servers. In some remote mountainous areas that cannot provide these, it will undoubtedly lose its human health status assessment function.

发明内容Contents of the invention

本发明的目的在于提供一种人体健康状况评估方法,该方法基于层次分析法构建人体健康状况评估模型,整合了目前用于评估人体健康状况的心率、体温、血氧饱和度、血压及血糖等人体生理参数信息,通过多源异构参量的融合有效削弱了传统基于单个参量评估所引起的误差,既可以实现单一个体用户实时了解身体健康状况,而且可以实现大密度某特征群体性的身体健康状况分类筛选,同时避免了对大型远程医用服务器或者数据库的过分依赖,方法简单可靠,从而可提高该人体健康评估方法的实用性、有效性以及特殊环境下的适用性。The purpose of the present invention is to provide a method for assessing human health status. The method builds a human health status assessment model based on the analytic hierarchy process, and integrates heart rate, body temperature, blood oxygen saturation, blood pressure, and blood sugar, etc. currently used to assess human health status. Human physiological parameter information, through the fusion of multi-source heterogeneous parameters, effectively weakens the error caused by the traditional evaluation based on a single parameter. It can not only realize the real-time understanding of the physical health status of a single individual user, but also realize the physical health of a large-density certain characteristic group Situation classification and screening, while avoiding excessive dependence on large-scale remote medical servers or databases, the method is simple and reliable, thereby improving the practicability, effectiveness and applicability of the human health assessment method in special environments.

为达到以上目的,本发明是采取如下技术方案予以实现的:To achieve the above object, the present invention is achieved by taking the following technical solutions:

一种基于层次分析的人体健康状况评估方法,其特征在于,包括下述步骤:A method for assessing human health status based on hierarchical analysis, characterized in that it comprises the following steps:

(1)根据人体生理参数信息构建人体健康状况评估模型,其中,人体生理参数信息包括心率B1、体温B2、血氧饱和度B3、血压B4、血糖B5;所述评估模型包括最高层A、中间层B及最低层C,用于大密度同特征群体评估对象C1、…、Cm的健康状况分类筛选;或用于单一评估对象Ci在时刻T1、…、Tm的身体健康状况实时评估,其中最高层为评估对象的健康状况,分为正常范畴、轻度不良范畴及严重不良范畴3个等级,又称为目标层;中间层为决定评估对象健康状况的人体生理参数,又称为准则层;最底层为评估对象,又称为对象层;其中m为评估对象的个数,为一自然数;(1) Construct an assessment model of human health status according to the information of human physiological parameters, wherein the information of human physiological parameters includes heart rate B1, body temperature B2, blood oxygen saturation B3, blood pressure B4, blood sugar B5; Layer B and the lowest layer C are used for the classification and screening of health status of evaluation objects C1, ..., Cm of large-density groups with the same characteristics; The layer is the health status of the evaluation object, which is divided into three levels: normal, mildly unhealthy, and severely unhealthy, also known as the target layer; the middle layer is the physiological parameters of the human body that determine the health status of the evaluation object, also known as the criterion layer; The bottom layer is the evaluation object, also known as the object layer; where m is the number of evaluation objects, which is a natural number;

(2)确定标度信息;(2) Determine the scale information;

(3)生成判断矩阵:(3) Generate a judgment matrix:

相对于最高层A,中间层B各因素相对重要程度比较,判断矩阵A-B如下:Compared with the highest level A, the relative importance of each factor in the middle level B is compared, and the judgment matrix A-B is as follows:

相对于中间层B,最低层C各因素相对重要程度比较,判断矩阵Bk-C如下:Compared with the middle layer B, the relative importance of each factor in the lowest layer C is compared, and the judgment matrix B k -C is as follows:

其中m为评估对象的个数,k=1,2,3,4,5;Where m is the number of evaluation objects, k=1,2,3,4,5;

(4)检验判断矩阵A-B、Bk-C的一致性,其中,一致性指标CI和随机一致性比率CR的计算公式分别为:(4) Check the consistency of the judgment matrix AB, B k -C, where the calculation formulas of the consistency index CI and the random consistency ratio CR are respectively:

CC II == λλ maxmax -- nno nno -- 11 CC RR == CC II RR II

式中,λmax为判断矩阵特征向量的最大值,n为判断矩阵的行数,RI为平均随机一致性指标;当CR<0.1时,认为判断矩阵满足一致性要求,进入下一步骤;否则就需要返回步骤(3)重新调整判断矩阵直至其满足一致性要求;In the formula, λ max is the maximum value of the eigenvector of the judgment matrix, n is the number of rows of the judgment matrix, and RI is the average random consistency index; when CR<0.1, it is considered that the judgment matrix meets the consistency requirements, and enters the next step; otherwise It is necessary to return to step (3) to readjust the judgment matrix until it meets the consistency requirements;

(5)对判断矩阵A-B、Bk-C进行层次单排序及层次总排序;(5) Carry out hierarchical single sorting and hierarchical total sorting to judgment matrix AB, Bk -C;

(6)根据最低层相对最高层的重要程度权值信息,得到m个评估对象的健康状况评估结果。(6) According to the importance weight information of the lowest layer relative to the highest layer, the health status evaluation results of m evaluation objects are obtained.

上述方法中,步骤(2)所述标度信息包括同等重要、稍微重要、比较重要、非常重要、绝对重要,其标度值分别用数字1、3、5、7、9来表示,并用2、4、6、8来表示上述相对重要性判断的中间值。In the above method, the scale information in step (2) includes equally important, slightly important, relatively important, very important, and absolutely important, and its scale values are represented by numbers 1, 3, 5, 7, and 9 respectively, and are represented by 2 , 4, 6, and 8 represent the intermediate values of the above relative importance judgments.

评估对象的个数m≤20。The number of evaluation objects m≤20.

与现有技术相比,本发明的优点是:Compared with prior art, the advantage of the present invention is:

1、本发明既不一味追求高深数学,也不片面的依赖人的经验和主观判断,根据目前层次分析法在于水质评价、企业财务风险评估、电池性能评价以及电力设备绝缘性能评估等领域的成功应用,运用层次分析法构建人体健康状况评估模型,将整个评估体系有条理、有层次地表现出来,给出的评估结果可以使非专业人员清晰、明确地了解自身健康状况,从而对人体相关生命活动的调整甚至疾病的预防甚至治疗有重要指导意义。1. The present invention neither blindly pursues advanced mathematics nor one-sidedly relies on human experience and subjective judgment. According to the current analytic hierarchy process, it is successful in the fields of water quality evaluation, enterprise financial risk evaluation, battery performance evaluation, and power equipment insulation performance evaluation. Application, use the AHP to construct the assessment model of human health status, present the entire assessment system in an orderly and hierarchical manner, and the assessment results given can enable non-professionals to clearly and clearly understand their own health status, so as to improve the quality of life related to the human body. The adjustment of activities and even the prevention and treatment of diseases have important guiding significance.

2、本发明整合了目前用于评估人体健康状况的心率、体温、血氧饱和度、血压及血糖这五个特征参量,通过多源异构参量的融合有效削弱了基于传统单个参量评估所引起的误差;根据基于层次分析的人体健康状况评估方法既可以实现单一个体用户实时了解身体健康状况,而且可以实现大密度某特征群体的身体健康情况筛选,同时避免了对大型远程医用服务器或者数据库的过分依赖,能够比较全面地评估人体健康状况,而且评估方法简单可靠,从而提高了该人体健康评估方法的实用性、有效性以及特殊环境下的适用性。2. The present invention integrates the five characteristic parameters currently used to evaluate human health status, namely heart rate, body temperature, blood oxygen saturation, blood pressure and blood sugar, and effectively weakens the traditional single parameter evaluation through the fusion of multi-source heterogeneous parameters. errors; according to the human health status assessment method based on AHP, a single individual user can not only understand the physical health status in real time, but also can realize the screening of the physical health status of a certain characteristic group in a large density, and at the same time avoid the need for large-scale remote medical servers or databases. Over-reliance can comprehensively assess human health status, and the assessment method is simple and reliable, thus improving the practicability, effectiveness and applicability of the human health assessment method in special environments.

附图说明Description of drawings

图1为本发明方法的流程示意图。Fig. 1 is a schematic flow chart of the method of the present invention.

图2为本发明方法中的评估模型层次结构图。Fig. 2 is a hierarchical structure diagram of the evaluation model in the method of the present invention.

具体实施方式detailed description

下面结合附图并通过具体的实施例对本发明做进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and through specific embodiments.

如图1所示,一种基于层次分析的人体健康状况评估方法,开始时根据人体生理参数信息构建人体健康状况评估模型,其层次结构图如图2所示;进而根据标度信息,确定中间层B各因素相对于最高层A以及最底层C各因素相对于中间层B各因素的重要程度,生成判断矩阵A-B、Bk-C;并检验判断矩阵A-B、Bk-C的一致性,若不满足一致性要求,则返回上一步对判断矩阵A-B、Bk-C进行调整直至满足一致性要求,若满足一致性要求,则对判断矩阵A-B、Bk-C进行层次单排序和层次总排序;最后根据最低层相对最高层的重要程度权值信息,计算机输出m个评估对象的健康状况评估结果。具体包括以下步骤:As shown in Figure 1, a method for assessing human health status based on hierarchical analysis begins by constructing a human health status assessment model based on the information of human physiological parameters, and its hierarchical structure diagram is shown in Figure 2; The importance of each factor of layer B relative to the highest layer A and the lowest layer C relative to the factors of the middle layer B, generate judgment matrix AB, B k -C; and check the consistency of judgment matrix AB, B k -C, If the consistency requirement is not met, return to the previous step to adjust the judgment matrix AB, B k -C until the consistency requirement is met, and if the consistency requirement is met, then perform hierarchical single-level sorting and hierarchical Total sorting; finally, according to the importance weight information of the lowest layer relative to the highest layer, the computer outputs the health status evaluation results of m evaluation objects. Specifically include the following steps:

步骤1)本实施例中m=5,即选取5个评估对象,并给出其实际生理参数信息,具体数据如表1所示,其中这5个评估对象均为空腹安静状态下30岁成年男性,根据文献资料可知评估对象C1健康状况属于正常,评估对象C2、…、C5都存在不同程度的不正常状况,并且评估对象C1、…、C5的健康状况依次变差。Step 1) In this embodiment, m=5, that is, 5 evaluation objects are selected, and their actual physiological parameter information is given. The specific data are shown in Table 1, wherein these 5 evaluation objects are all 30-year-old adults in a fasting and quiet state Male, according to the literature, it can be seen that the health status of the evaluation object C1 is normal, and the evaluation objects C2, ..., C5 are all abnormal to varying degrees, and the health status of the evaluation objects C1, ..., C5 is getting worse in turn.

表1人体生理参数信息数据Table 1 Information data of human physiological parameters

步骤2)人体健康状况评估模型如图2所示,包括最高层A、中间层B及最低层C,其中最高层为评估对象的健康状况,又称为目标层;中间层为决定评估对象健康状况的人体生理参数,又称为准则层;最底层为评估对象,又称为对象层。Step 2) The human health status assessment model is shown in Figure 2, including the highest layer A, the middle layer B and the lowest layer C, where the highest layer is the health status of the evaluation object, also known as the target layer; The human physiological parameters of the situation are also called the criterion layer; the bottom layer is the evaluation object, also called the object layer.

步骤3)根据标度信息,确定中间层B各因素相对于最高层A以及最底层C各因素相对于相对中间层B各因素的重要程度。标度作为每层次各因素相对重要程度的评判依据,即对下一层次各因素相对与上一层次各因素的重要程度给出科学精确的定量表示。标度信息包括同等重要、稍微重要、比较重要、非常重要及绝对重要,其标度值分别用1、3、5、7、9表示,同时用2、4、6、8分别表示相邻标度值的中间值。数字1到9即为9分位比率,具体标度值如表2所示。Step 3) According to the scale information, determine the importance of the factors of the middle layer B relative to the factors of the highest layer A and the factors of the bottom layer C relative to the factors of the middle layer B. The scale is used as the basis for judging the relative importance of each factor at each level, that is, it gives a scientific and accurate quantitative expression of the importance of each factor at the next level relative to the factors at the previous level. Scale information includes equally important, slightly important, relatively important, very important, and absolutely important. The scale values are represented by 1, 3, 5, 7, and 9, and the adjacent scale values are represented by 2, 4, 6, and 8, respectively. The middle value of the degree value. Numbers 1 to 9 are the 9th percentile ratio, and the specific scale values are shown in Table 2.

表2标度含义表Table 2 scale meaning table

本实施例根据不同生理参数对人体健康状况的影响程度大小,设定中间层B的心率B1、体温B2、血氧饱和度B3、血压B4、血糖B5相对于最高层A的重要程度分别为1、3、4、5、7;同理,根据评估对象的实际情况可以设定最低层C各因素相对于中间层B各因素的重要程度。In this embodiment, according to the degree of influence of different physiological parameters on the health status of the human body, the importance of heart rate B1, body temperature B2, blood oxygen saturation B3, blood pressure B4, and blood sugar B5 in the middle layer B relative to the highest layer A is set to 1 respectively. , 3, 4, 5, 7; similarly, according to the actual situation of the evaluation object, the importance of the factors of the lowest level C relative to the factors of the middle level B can be set.

步骤4)生成判断矩阵A-B和判断矩阵Bk-C如下。Step 4) Generate judgment matrix AB and judgment matrix Bk -C as follows.

AA -- BB == 11 11 // 33 11 // 44 11 // 55 11 // 77 33 11 33 // 44 33 // 55 33 // 77 44 44 // 33 11 44 // 55 44 // 77 55 55 // 33 55 // 44 11 55 // 77 77 77 // 33 77 // 44 77 // 55 11 55 &times;&times; 55 BB 11 -- CC == 11 11 // 22 11 // 33 11 // 44 11 // 55 22 11 22 // 33 11 // 22 22 // 55 33 33 // 22 11 33 // 44 33 // 55 44 22 44 // 33 11 44 // 55 55 55 // 22 55 // 33 55 // 44 11 55 &times;&times; 55

BB 22 -- CC == 11 22 // 33 11 // 22 22 // 55 11 // 33 33 // 22 11 33 // 44 33 // 55 11 // 22 22 44 // 33 11 44 // 55 22 // 33 55 // 22 55 // 33 55 // 44 11 55 // 77 33 22 33 // 22 66 // 55 11 55 &times;&times; 55 BB 33 -- CC == 11 33 // 44 33 // 55 11 // 22 33 // 77 44 // 33 11 44 // 55 22 // 33 44 // 77 55 // 33 55 // 44 11 55 // 66 55 // 77 22 33 // 22 66 // 55 11 66 // 77 77 // 33 77 // 44 77 // 55 77 // 66 11 55 &times;&times; 55

BB 44 -- CC == 11 44 // 55 22 // 33 44 // 77 11 // 22 55 // 44 11 55 // 66 55 // 77 55 // 88 33 // 22 66 // 55 11 66 // 77 33 // 44 77 // 44 77 // 55 77 // 66 11 77 // 88 22 88 // 55 44 // 33 88 // 77 11 55 &times;&times; 55 BB 55 -- CC == 11 55 // 66 55 // 77 55 // 88 55 // 99 66 // 55 11 66 // 77 33 // 44 22 // 33 77 // 55 77 // 66 11 77 // 88 77 // 99 88 // 55 44 // 33 88 // 77 11 88 // 99 99 // 55 33 // 22 99 // 77 99 // 88 11 55 &times;&times; 55

步骤5)检验判断矩阵的一致性及并进行层次单排序。Step 5) Check the consistency of the judgment matrix and perform hierarchical single sorting.

首先根据方根法分别计算判断矩阵A-B、Bk-C的最大特征根λmax及其对相应的标准化特征向量S,具体如下:Firstly, according to the square root method, the largest characteristic root λ max of the judgment matrix AB, Bk -C and its corresponding normalized characteristic vector S are calculated, as follows:

(1)对判断矩阵A-B、Bk-C分别进行归一化,使各列元素之和均为1,即(1) Normalize the judgment matrix AB and B k -C respectively, so that the sum of the elements in each column is 1, that is

vv ii jj == uu ii jj // &Sigma;&Sigma; ii == 11 nno uu ii jj == uu ii jj // &Sigma;&Sigma; ii == 11 55 uu ii jj jj == 11 ,, 22 ,, 33 ,, 44 ,, 55

式中uij表示因素i与因素j的重要程度之比,比值越大,则表示因素i重要程度越高,否则说明因素i重要程度越低。In the formula, u ij represents the ratio of the importance of factor i to factor j. The larger the ratio, the higher the importance of factor i, otherwise, the lower the importance of factor i.

(2)将归一化后的判断矩阵按行求和得(2) Sum the normalized judgment matrix by row to get

ww ii == &Sigma;&Sigma; jj == 11 nno vv ii jj == &Sigma;&Sigma; jj == 11 55 vv ii jj ii == 11 ,, 22 ,, 33 ,, 44 ,, 55

(3)对wi进行归一化处理,即可得到和判断矩阵A-B、Bk-C对应的标准化特征向量,具体如下:(3) Perform normalization on w i to obtain the standardized eigenvector corresponding to the judgment matrix AB, B k -C, as follows:

sthe s ii == ww ii // &Sigma;&Sigma; ii == 11 nno ww ii == ww ii // &Sigma;&Sigma; ii == 11 55 ww ii ii == 11 ,, 22 ,, 33 ,, 44 ,, 55

S=(s1,s2,s3,s4,s5)Τ S=(s 1 ,s 2 ,s 3 ,s 4 ,s 5 ) Τ

(4)综合步骤(1)、(2)、(3)可以计算得到判断矩阵A-B、Bk-C的最大特征根如下:(4) Comprehensive steps (1), (2), and (3) can be calculated to obtain the maximum characteristic root of the judgment matrix AB, B k -C as follows:

&lambda;&lambda; maxmax == 11 nno &Sigma;&Sigma; ii == 11 nno AsAs ii sthe s ii == 11 55 &Sigma;&Sigma; ii == 11 55 AsAs ii sthe s ii

其次检验判断矩阵的一致性,需要计算出一致性指标CI,并查询平均随机一致性指标RI,如表3所示。当随机一致性比率CR=CI/RI<0.10时,可以认为基于层次分析法排序的结果满足一致性要求,也即权重系数的分配是合理;否则,需要重新返回步骤4)调整判断矩阵的元素值,并重新生成判断矩阵直至满足一致性要求。Secondly, to check the consistency of the judgment matrix, it is necessary to calculate the consistency index CI and query the average random consistency index RI, as shown in Table 3. When the random consistency ratio CR=CI/RI<0.10, it can be considered that the results of sorting based on AHP meet the consistency requirements, that is, the distribution of weight coefficients is reasonable; otherwise, it is necessary to return to step 4) to adjust the elements of the judgment matrix value, and regenerate the judgment matrix until the consistency requirements are met.

表3平均随机一致性指标RITable 3 average random consistency index RI

nno 11 22 33 44 55 66 77 88 99 1010 1111 1212 1313 1414 1515 RIRI 00 00 0.520.52 0.890.89 1.121.12 1.261.26 1.361.36 1.411.41 1.461.46 1.491.49 1.521.52 1.541.54 1.561.56 1.581.58 1.591.59

判断矩阵A-B、Bk-C的一致性检验结果如下:The consistency test results of the judgment matrix AB and B k -C are as follows:

(1)判断矩阵A-B的一致性检验结果如下。(1) The consistency test results of the judgment matrix A-B are as follows.

AA -- BB == 11 // 2020 11 // 2020 11 // 2020 11 // 2020 11 // 2020 33 // 2020 33 // 2020 33 // 2020 33 // 2020 33 // 2020 11 // 55 11 // 55 11 // 55 11 // 55 11 // 55 11 // 44 11 // 44 11 // 44 11 // 44 11 // 44 77 // 2020 77 // 2020 77 // 2020 77 // 2020 77 // 2020 55 &times;&times; 55 &DoubleRightArrow;&DoubleRightArrow; SS AA -- BB == 0.050.05 0.150.15 0.200.20 0.250.25 0.350.35 55 &times;&times; 11 &DoubleRightArrow;&DoubleRightArrow;

&lambda; max A - B = 5.00 &DoubleRightArrow; CI A - B = 0 &DoubleRightArrow; CR A - B = CI A - B / R I = 0 / 1.12 = 0 < 0.10 &DoubleRightArrow; 判断矩阵A-B满足一致性要求。 &lambda; max A - B = 5.00 &DoubleRightArrow; CI A - B = 0 &DoubleRightArrow; CR A - B = CI A - B / R I = 0 / 1.12 = 0 < 0.10 &DoubleRightArrow; Judgment matrix AB meets the consistency requirement.

(2)判断矩阵B1-C的一致性检验结果如下:(2) The consistency test results of the judgment matrix B 1 -C are as follows:

BB 11 -- CC == 11 // 1515 11 // 1515 11 // 1515 11 // 1515 11 // 1515 22 // 1515 22 // 1515 22 // 1515 22 // 1515 22 // 1515 11 // 55 11 // 55 11 // 55 11 // 55 11 // 55 44 // 1515 44 // 1515 44 // 1515 44 // 1515 44 // 1515 11 // 33 11 // 33 11 // 33 11 // 33 11 // 33 55 &times;&times; 55 &DoubleRightArrow;&DoubleRightArrow; SS BB 11 -- CC == 0.070.07 0.130.13 0.200.20 0.270.27 0.330.33 55 &times;&times; 11 &DoubleRightArrow;&DoubleRightArrow;

&lambda; maxB 1 - C = 5.01 &DoubleRightArrow; CI B 1 - C = 0.003 &DoubleRightArrow; CR B 1 - C = CI B 1 - C / R I = 0.003 / 1.12 = 0.0027 < 0.10 &DoubleRightArrow; 判断矩阵B1-C满足一致性要求。 &lambda; max B 1 - C = 5.01 &DoubleRightArrow; CI B 1 - C = 0.003 &DoubleRightArrow; CR B 1 - C = CI B 1 - C / R I = 0.003 / 1.12 = 0.0027 < 0.10 &DoubleRightArrow; Judgment matrix B 1 -C meets the consistency requirement.

(3)判断矩阵B2-C的一致性检验结果如下。(3) The consistency test results of the judgment matrix B 2 -C are as follows.

BB 22 -- CC == 11 // 1010 11 // 1010 11 // 1010 11 // 1010 11 // 1010 33 // 2020 33 // 2020 33 // 2020 33 // 2020 33 // 2020 11 // 55 11 // 55 11 // 55 11 // 55 11 // 55 11 // 44 11 // 44 11 // 44 11 // 44 11 // 44 33 // 1010 33 // 1010 33 // 1010 33 // 1010 33 // 1010 55 &times;&times; 55 &DoubleRightArrow;&DoubleRightArrow; SS BB 22 -- CC == 0.100.10 0.150.15 0.200.20 0.250.25 0.300.30 55 &times;&times; 11 &DoubleRightArrow;&DoubleRightArrow;

&lambda; maxB 2 - C = 5.00 &DoubleRightArrow; CI B 2 - C = 0 &DoubleRightArrow; CR B 2 - C = CI B 2 - C / R I = 0 / 1.12 = 0 < 0.10 &DoubleRightArrow; 判断矩阵B2-C满足一致性要求。 &lambda; max B 2 - C = 5.00 &DoubleRightArrow; CI B 2 - C = 0 &DoubleRightArrow; CR B 2 - C = CI B 2 - C / R I = 0 / 1.12 = 0 < 0.10 &DoubleRightArrow; Judgment matrix B 2 -C meets the consistency requirement.

(4)判断矩阵B3-C的一致性检验结果如下。(4) The consistency test results of the judgment matrix B 3 -C are as follows.

BB 33 -- CC == 33 // 2525 33 // 2525 33 // 2525 33 // 2525 33 // 2525 44 // 2525 44 // 2525 44 // 2525 44 // 2525 44 // 2525 11 // 55 11 // 55 11 // 55 11 // 55 11 // 55 66 // 2525 66 // 2525 66 // 2525 66 // 2525 66 // 2525 77 // 2525 77 // 2525 77 // 2525 77 // 2525 77 // 2525 55 &times;&times; 55 &DoubleRightArrow;&DoubleRightArrow; SS BB 33 -- CC == 0.120.12 0.160.16 0.200.20 0.240.24 0.280.28 55 &times;&times; 11 &DoubleRightArrow;&DoubleRightArrow;

&lambda; maxB 3 - C = 5.00 &DoubleRightArrow; CI B 3 - C = 0 &DoubleRightArrow; CR B 3 - C = CI B 3 - C / R I = 0 / 1.12 = 0 < 0.10 &DoubleRightArrow; 判断矩阵B3-C满足一致性要求。 &lambda; max B 3 - C = 5.00 &DoubleRightArrow; CI B 3 - C = 0 &DoubleRightArrow; CR B 3 - C = CI B 3 - C / R I = 0 / 1.12 = 0 < 0.10 &DoubleRightArrow; Judgment matrix B 3 -C meets the consistency requirement.

(5)判断矩阵B4-C的一致性检验结果如下。(5) The consistency test results of the judgment matrix B 4 -C are as follows.

BB 44 -- CC == 22 // 1515 22 // 1515 22 // 1515 22 // 1515 22 // 1515 11 // 66 11 // 66 11 // 66 11 // 66 11 // 66 11 // 55 11 // 55 11 // 55 11 // 55 11 // 55 77 // 3030 77 // 3030 77 // 3030 77 // 3030 77 // 3030 44 // 1515 44 // 1515 44 // 1515 44 // 1515 44 // 1515 55 &times;&times; 55 &DoubleRightArrow;&DoubleRightArrow; SS BB 44 -- CC == 0.130.13 0.170.17 0.200.20 0.230.23 0.270.27 55 &times;&times; 11 &DoubleRightArrow;&DoubleRightArrow;

&lambda;&lambda; maxBmax B 44 -- CC == 5.015.01 &DoubleRightArrow;&DoubleRightArrow; CICI BB 44 -- CC == 0.010.01 // 44 == 0.00250.0025 &DoubleRightArrow;&DoubleRightArrow;

CR B 4 - C = CI B 4 - C / R I = 0.0025 / 1.12 = 0.0022 < 0.10 &DoubleRightArrow; 判断矩阵B4-C满足一致性要求。 CR B 4 - C = CI B 4 - C / R I = 0.0025 / 1.12 = 0.0022 < 0.10 &DoubleRightArrow; Judgment matrix B 4 -C meets the consistency requirement.

(5)判断矩阵B5-C的一致性检验结果如下。(5) The consistency test results of the judgment matrix B 5 -C are as follows.

BB 55 -- CC == 11 // 77 11 // 77 11 // 77 11 // 77 11 // 77 66 // 3535 66 // 3535 66 // 3535 66 // 3535 66 // 3535 11 // 55 11 // 55 11 // 55 11 // 55 11 // 55 88 // 3535 88 // 3535 88 // 3535 88 // 3535 88 // 3535 99 // 3535 99 // 3535 99 // 3535 99 // 3535 99 // 3535 55 &times;&times; 55 &DoubleRightArrow;&DoubleRightArrow; SS BB 55 -- CC == 0.140.14 0.170.17 0.200.20 0.230.23 0.260.26 55 &times;&times; 11 &DoubleRightArrow;&DoubleRightArrow;

&lambda;&lambda; maxBmax B 55 -- CC == 5.0015.001 &DoubleRightArrow;&DoubleRightArrow; CICI BB 55 -- CC == 0.0010.001 // 44 == 0.000250.00025 &DoubleRightArrow;&DoubleRightArrow;

CR B 5 - C = CI B 5 - C / R I = 0.0025 / 1.12 = 0.00022 < 0.10 &DoubleRightArrow; 判断矩阵B5-C满足一致性要求。 CR B 5 - C = CI B 5 - C / R I = 0.0025 / 1.12 = 0.00022 < 0.10 &DoubleRightArrow; Judgment matrix B 5 -C meets the consistency requirement.

步骤6)层次总排序。Step 6) Hierarchical total sorting.

利用以上层次单排序的结果,计算出每层次因素的组合权重,进行层次总排序。计算得出最低层各因素的重要程度权值,根据各因素重要程度由低到高排序,从而得到评估对象C1、…、C5的健康状况情况。Using the results of the single sorting of the above levels, the combination weight of each level factor is calculated, and the total level sorting is carried out. The weights of the importance of each factor in the lowest layer are calculated, and the importance of each factor is sorted from low to high, so as to obtain the health status of the evaluation objects C1, ..., C5.

评估对象C1的重要程度=The importance of evaluation object C1 =

0.05×0.07+0.15×0.10+0.20×0.12+0.25×0.13+0.35×0.14=0.1240.05×0.07+0.15×0.10+0.20×0.12+0.25×0.13+0.35×0.14=0.124

评估对象C2的重要程度=The importance of evaluation object C2 =

0.05×0.13+0.15×0.15+0.20×0.16+0.25×0.17+0.35×0.17=0.1630.05×0.13+0.15×0.15+0.20×0.16+0.25×0.17+0.35×0.17=0.163

评估对象C3的重要程度=The importance of evaluation object C3 =

0.05×0.20+0.15×0.20+0.20×0.20+0.25×0.20+0.35×0.20=0.2000.05×0.20+0.15×0.20+0.20×0.20+0.25×0.20+0.35×0.20=0.200

评估对象C4的重要程度=The importance of evaluation object C4 =

0.05×0.27+0.15×0.25+0.20×0.24+0.25×0.23+0.35×0.23=0.2370.05×0.27+0.15×0.25+0.20×0.24+0.25×0.23+0.35×0.23=0.237

评估对象C5的重要程度=The importance of evaluation object C5 =

0.05×0.33+0.15×0.30+0.20×0.28+0.25×0.27+0.35×0.26=0.2620.05×0.33+0.15×0.30+0.20×0.28+0.25×0.27+0.35×0.26=0.262

步骤7)根据最低层相对最高层的重要程度权值信息,得到5个评估对象的健康状况评估结果。Step 7) According to the importance weight information of the lowest layer relative to the highest layer, the health status evaluation results of the five evaluation objects are obtained.

从总排序结果可以看出:评估对象C1权值最小,健康状况属于正常范畴,因而设定其权值为正常和轻度不良的界限;根据最大权值原则,可知评估对象C5的健康状况最为糟糕,属于严重不良范畴,因而设定其权值为轻度不良和严重不良的界限;根据就近一致原则,可以确定其他评估对象的健康状况,从而得到评估对象的状况评估结果。评估对象C1、…、C5健康状况依次降低由于评估对象C2、…、C4权值介于评估对象C1和C5之间,因而其健康状况也介于正常范畴和严重不良范畴之间,且评估对象C2、…、C4的健康状况不良程度越来越严重;评估对象C4权值离评估对象C5更近些,因而评估对象C4、C5属于严重不良范畴,需要提高关注度并及时就医;评估对象C2、C3属于轻度不良范畴,需要特别注意适当调理以使身体状况恢复到最佳状态,从而完成了对实施例中5人小群体的健康状况筛选。本实施例中的数据若为某单一评估对象在不同时刻的人体生理参数信息,通过本发明并结合实时监测装置可以了解单一评估对象的在不同时刻的身体健康状况。本发明根据实际算例所得结果与前文中通过文献资料查阅得出的结论一致,因而证明了基于层次分析的人体健康状况评估方法的有效性。From the results of the total sorting, it can be seen that the weight of the evaluation object C1 is the smallest, and the health status belongs to the normal category, so its weight is set as the boundary between normal and mildly bad; according to the principle of the largest weight, it can be known that the health status of the evaluation object C5 is the most Oops, it belongs to the serious bad category, so its weight is set as the boundary between mild bad and serious bad; according to the principle of nearest consistency, the health status of other evaluation objects can be determined, so as to obtain the status evaluation results of the evaluation objects. The health status of evaluation objects C1, ..., C5 decreases sequentially. Because the weights of evaluation objects C2, ..., C4 are between evaluation objects C1 and C5, their health status is also between normal and serious bad categories, and evaluation objects The health status of C2, ..., C4 is becoming more and more serious; the weight of evaluation object C4 is closer to the evaluation object C5, so the evaluation object C4 and C5 belong to the serious bad category, and need to pay more attention and seek medical treatment in time; evaluation object C2 , C3 belongs to the mild adverse category, and special attention needs to be paid to proper conditioning to restore the physical condition to the best state, thus completing the screening of the health status of the small group of 5 people in the embodiment. If the data in this embodiment is the physiological parameter information of a single evaluation object at different times, the physical health status of the single evaluation object at different times can be understood through the present invention combined with a real-time monitoring device. The result obtained by the present invention according to the actual calculation example is consistent with the conclusion obtained by consulting the literature in the foregoing, thus proving the effectiveness of the method for evaluating the health status of a human body based on the analytic hierarchy process.

本发明整合了目前用于评估人体健康状况的心率、体温、血氧饱和度、血压及血糖等人体生理参数信息,通过多源异构参量的融合有效削弱了基于传统单个参量评估所引起的误差;根据基于层次分析的人体健康状况评估方法,既可以实现单一个体用户实时了解身体健康状况,而且可以实现大密度同特征群体的身体健康情况筛选,同时避免了对大型远程医用服务器或者数据库的过分依赖,能够比较全面地评估人体健康状况,而且评估方法简单可靠,从而提高了该人体健康评估方法的实用性、有效性以及特殊环境下的适用性。The present invention integrates the information of human physiological parameters such as heart rate, body temperature, blood oxygen saturation, blood pressure and blood sugar, which are currently used to evaluate the health status of the human body, and effectively weakens the errors caused by traditional single parameter evaluation through the fusion of multi-source heterogeneous parameters ;According to the human health status assessment method based on hierarchical analysis, it can not only realize the real-time understanding of the physical health status of a single individual user, but also realize the screening of the physical health status of large-density groups with the same characteristics, while avoiding excessive use of large-scale remote medical servers or databases. Dependence, it can evaluate the health status of the human body more comprehensively, and the evaluation method is simple and reliable, thus improving the practicability, effectiveness and applicability of the human health evaluation method in special environments.

Claims (3)

1.一种基于层次分析的人体健康状况评估方法,其特征在于,包括下述步骤:1. A method for assessing human health status based on hierarchical analysis, characterized in that, comprising the steps of: (1)根据人体生理参数信息构建人体健康状况评估模型,其中,人体生理参数信息包括心率B1、体温B2、血氧饱和度B3、血压B4、血糖B5;所述评估模型包括最高层A、中间层B及最低层C,用于大密度同特征群体评估对象C1、…、Cm的健康状况分类筛选;或用于单一评估对象Ci在时刻T1、…、Tm的身体健康状况实时评估,其中最高层为评估对象的健康状况,分为正常范畴、轻度不良范畴及严重不良范畴3个等级,又称为目标层;中间层为决定评估对象健康状况的人体生理参数,又称为准则层;最底层为评估对象,又称为对象层;其中m为评估对象的个数,为一自然数;(1) Construct an assessment model of human health status according to the information of human physiological parameters, wherein the information of human physiological parameters includes heart rate B1, body temperature B2, blood oxygen saturation B3, blood pressure B4, blood sugar B5; Layer B and the lowest layer C are used for the classification and screening of health status of evaluation objects C1, ..., Cm of large-density groups with the same characteristics; The layer is the health status of the evaluation object, which is divided into three levels: normal, mildly unhealthy, and severely unhealthy, also known as the target layer; the middle layer is the physiological parameters of the human body that determine the health status of the evaluation object, also known as the criterion layer; The bottom layer is the evaluation object, also known as the object layer; where m is the number of evaluation objects, which is a natural number; (2)确定标度信息;(2) Determine the scale information; (3)生成判断矩阵:(3) Generate a judgment matrix: 相对于最高层A,中间层B各因素相对重要程度比较,判断矩阵A-B如下:Compared with the highest level A, the relative importance of each factor in the middle level B is compared, and the judgment matrix A-B is as follows: 相对于中间层B,最低层C各因素相对重要程度比较,判断矩阵Bk-C如下:Compared with the middle layer B, the relative importance of each factor in the lowest layer C is compared, and the judgment matrix B k -C is as follows: 其中m为评估对象的个数,k=1,2,3,4,5;Where m is the number of evaluation objects, k=1,2,3,4,5; (4)检验判断矩阵A-B、Bk-C的一致性,其中,一致性指标CI和随机一致性比率CR的计算公式分别为:(4) Check the consistency of the judgment matrix AB, B k -C, where the calculation formulas of the consistency index CI and the random consistency ratio CR are respectively: CC II == &lambda;&lambda; mm aa xx -- nno nno -- 11 CC RR == CC II RR II 式中,λmax为判断矩阵特征向量的最大值,n为判断矩阵的行数,RI为平均随机一致性指标;当CR<0.1时,认为判断矩阵满足一致性要求,进入下一步骤;否则就需要返回步骤(3)重新调整判断矩阵直至其满足一致性要求;In the formula, λ max is the maximum value of the eigenvector of the judgment matrix, n is the number of rows of the judgment matrix, and RI is the average random consistency index; when CR<0.1, it is considered that the judgment matrix meets the consistency requirements, and enters the next step; otherwise It is necessary to return to step (3) to readjust the judgment matrix until it meets the consistency requirements; (5)对判断矩阵A-B、Bk-C进行层次单排序及层次总排序;(5) Carry out hierarchical single sorting and hierarchical total sorting to judgment matrix AB, Bk -C; (6)根据最低层相对最高层的相对重要程度权值信息,得到m个评估对象的健康状况评估结果。(6) According to the relative importance weight information of the lowest layer relative to the highest layer, the health status evaluation results of m evaluation objects are obtained. 2.如权利要求1所述的基于层次分析的人体健康状况评估方法,其特征在于,步骤(2)所述标度信息包括同等重要、稍微重要、比较重要、非常重要、绝对重要,其标度值分别用数字1、3、5、7、9来表示,并用2、4、6、8来表示上述相对重要性判断的中间值。2. the human health assessment method based on AHP as claimed in claim 1, is characterized in that, the scale information described in step (2) includes equally important, slightly important, comparatively important, very important, absolutely important, and its scale Degree values are represented by numbers 1, 3, 5, 7, and 9, and 2, 4, 6, and 8 are used to represent the intermediate values of the above relative importance judgments. 3.如权利要求1所述的基于层次分析的人体健康状况评估方法,其特征在于,所述评估对象的个数m≤20。3. The method for assessing human health status based on AHP according to claim 1, wherein the number of said assessment objects is m≤20.
CN201510695878.6A 2015-10-21 2015-10-21 Hierarchical analysis-based human body health condition assessment method Pending CN105354414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510695878.6A CN105354414A (en) 2015-10-21 2015-10-21 Hierarchical analysis-based human body health condition assessment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510695878.6A CN105354414A (en) 2015-10-21 2015-10-21 Hierarchical analysis-based human body health condition assessment method

Publications (1)

Publication Number Publication Date
CN105354414A true CN105354414A (en) 2016-02-24

Family

ID=55330386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510695878.6A Pending CN105354414A (en) 2015-10-21 2015-10-21 Hierarchical analysis-based human body health condition assessment method

Country Status (1)

Country Link
CN (1) CN105354414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106109225A (en) * 2016-06-23 2016-11-16 山东建筑大学 Massage control equipment and massage schemes evaluation method based on step analysis thereof
CN107194174A (en) * 2017-05-19 2017-09-22 白胜西 A kind of health monitoring method, system and storage medium
CN109196592A (en) * 2016-04-28 2019-01-11 快天知血合同会社 Health status evaluation system, health status evaluating apparatus and health status evaluation method
CN114242241A (en) * 2021-11-16 2022-03-25 中国民用航空飞行学院 Adaptive assessment method for college students' physical health group
CN118078285A (en) * 2024-02-23 2024-05-28 广东锐联科技有限公司 Student mental health assessment method, device, equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872382A (en) * 2009-04-21 2010-10-27 同济大学 A dynamic detection method for road tunnel operation safety status
CN103065050A (en) * 2012-12-31 2013-04-24 河南省电力公司电力科学研究院 Health level judging method of information system during operation maintenance period
CN103218515A (en) * 2013-03-21 2013-07-24 西北工业大学 Satellite health status evaluation method based on variable-weight hierarchical scores
CN103258104A (en) * 2012-02-15 2013-08-21 曹春香 Environment health remote sensing diagnosing method
CN103605881A (en) * 2013-10-25 2014-02-26 南昌大学 Fault tree and analytic hierarchy process based evaluation method of state of power transformer
CN104021304A (en) * 2014-06-19 2014-09-03 山东大学 Installation priority level evaluation method for on-line monitoring devices of transformers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872382A (en) * 2009-04-21 2010-10-27 同济大学 A dynamic detection method for road tunnel operation safety status
CN103258104A (en) * 2012-02-15 2013-08-21 曹春香 Environment health remote sensing diagnosing method
CN103065050A (en) * 2012-12-31 2013-04-24 河南省电力公司电力科学研究院 Health level judging method of information system during operation maintenance period
CN103218515A (en) * 2013-03-21 2013-07-24 西北工业大学 Satellite health status evaluation method based on variable-weight hierarchical scores
CN103605881A (en) * 2013-10-25 2014-02-26 南昌大学 Fault tree and analytic hierarchy process based evaluation method of state of power transformer
CN104021304A (en) * 2014-06-19 2014-09-03 山东大学 Installation priority level evaluation method for on-line monitoring devices of transformers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱明贤: ""人体健康评估及信息管理平台的设计与实现"", 《万方数据》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109196592A (en) * 2016-04-28 2019-01-11 快天知血合同会社 Health status evaluation system, health status evaluating apparatus and health status evaluation method
CN106109225A (en) * 2016-06-23 2016-11-16 山东建筑大学 Massage control equipment and massage schemes evaluation method based on step analysis thereof
CN107194174A (en) * 2017-05-19 2017-09-22 白胜西 A kind of health monitoring method, system and storage medium
CN114242241A (en) * 2021-11-16 2022-03-25 中国民用航空飞行学院 Adaptive assessment method for college students' physical health group
CN118078285A (en) * 2024-02-23 2024-05-28 广东锐联科技有限公司 Student mental health assessment method, device, equipment and storage medium

Similar Documents

Publication Publication Date Title
Zhao et al. SQI quality evaluation mechanism of single-lead ECG signal based on simple heuristic fusion and fuzzy comprehensive evaluation
CN111524602B (en) Old person&#39;s memory and cognitive function aassessment screening early warning system
Kramer et al. Network inference with confidence from multivariate time series
CN105354414A (en) Hierarchical analysis-based human body health condition assessment method
Kour et al. An advance approach for diabetes detection by implementing machine learning algorithms
CN104983434B (en) Multi-parameter psychological pressure appraisal procedure and device based on analytic hierarchy process (AHP)
CN108905170B (en) Effective movement evaluation method based on cardiopulmonary endurance level and RPE feedback and device for implementing method
Tsyganok Investigation of the aggregation effectiveness of expert estimates obtained by the pairwise comparison method
CN110110854A (en) A method of the deep neural network testing adequacy based on side state
Hamilton et al. Poor estimates of motor variability are associated with longer grooved pegboard times for middle-aged and older adults
CN112768074A (en) Artificial intelligence-based serious disease risk prediction method and system
Karandikar et al. Detection of sleep apnea events via tracking nonlinear dynamic cardio-respiratory coupling from electrocardiogram signals
Ngo et al. Federated deep learning for the diagnosis of cerebellar ataxia: Privacy preservation and auto-crafted feature extractor
Bjørdalsbakke et al. Monitoring variability in parameter estimates for lumped parameter models of the systemic circulation using longitudinal hemodynamic measurements
CN108628432B (en) A workload assessment method and system based on resource occupation and time distribution
CN109363678B (en) System for predicting easily-occurring diseases based on meridian energy balance value
JP7173482B2 (en) Health care data analysis system, health care data analysis method and health care data analysis program
CN113470799B (en) Intelligent editor of comprehensive quality supervision platform for hospitals
CN107913075B (en) Mental stress assessment device based on multiple parameters and assessment method thereof
CN109935327A (en) Hypertensive patient&#39;s cardiovascular risk grading appraisal procedure based on intelligence decision support system
CN109033561A (en) Mine ventilation system anti-disaster ability evaluation method and device
Wong et al. Learning from project monitoring feedback: A case of optimizing behavior of contractors
Miao et al. Cardiovascular disease prediction based on soft voting ensemble model
Rădulescu et al. Health parameters correlation in an IoT monitoring, evaluation and analysis framework for elderly
CN111466877B (en) LSTM network-based oxygen reduction state prediction method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160224