CN105352606A - Reading circuit of uncooled infrared focal plane array detector - Google Patents
Reading circuit of uncooled infrared focal plane array detector Download PDFInfo
- Publication number
- CN105352606A CN105352606A CN201510513217.7A CN201510513217A CN105352606A CN 105352606 A CN105352606 A CN 105352606A CN 201510513217 A CN201510513217 A CN 201510513217A CN 105352606 A CN105352606 A CN 105352606A
- Authority
- CN
- China
- Prior art keywords
- transistor
- circuit
- microbolometer
- detection
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 49
- 230000006641 stabilisation Effects 0.000 claims abstract description 18
- 238000011105 stabilization Methods 0.000 claims abstract description 18
- 230000010354 integration Effects 0.000 claims abstract description 16
- 238000005516 engineering process Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 9
- 230000005855 radiation Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000004297 night vision Effects 0.000 description 4
- 238000001931 thermography Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
本发明实施例公开了一种非制冷红外焦平面阵列探测器的读出电路,包括:偏置热稳定电路10,其包括通道级的参考微测辐射热计Rb并为其提供恒定的偏置电流;检测电路20,连接到像素级的探测微测辐射热计Rs和偏置热稳定电路10,并根据参考微测辐射热计Rb和探测微测辐射热计Rs产生探测输出信号;积分电路30,连接到检测电路20并对检测电路20的探测输出信号进行积分,获得输出信号。本发明的实施例的读出电路利用为参考微测辐射热计提供稳定的电流通路,实现了偏置热的稳定,大大提高整体电路的均匀性及可靠性,同时大大提高了电路的抗高压性及对环境的适应性。
The embodiment of the present invention discloses a readout circuit of an uncooled infrared focal plane array detector, including: a bias thermal stabilization circuit 10, which includes a channel-level reference microbolometer R b and provides a constant bias setting current; the detection circuit 20 is connected to the detection microbolometer R s at the pixel level and the bias thermal stabilization circuit 10, and generates a detection output based on the reference microbolometer R b and the detection microbolometer R s signal; the integration circuit 30 is connected to the detection circuit 20 and integrates the detection output signal of the detection circuit 20 to obtain an output signal. The readout circuit of the embodiment of the present invention provides a stable current path for the reference microbolometer, realizes the stability of the bias heat, greatly improves the uniformity and reliability of the overall circuit, and greatly improves the high voltage resistance of the circuit and adaptability to the environment.
Description
一种非制冷红外焦平面阵列探测器的读出电路 A Readout Circuit of Uncooled Infrared Focal Plane Array Detector
技术领域 technical field
本发明涉及红外焦平面阵列探测器技术领域,尤其是涉及一种非制冷红外焦平面阵列探测器的读出电路。 The invention relates to the technical field of infrared focal plane array detectors, in particular to a readout circuit of an uncooled infrared focal plane array detector.
背景技术 Background technique
夜视技术,分为两个方向:微光成像技术和红外热成像技术。夜视技术在现代战争中具有重要地位,装备夜视器材的武器装备遍及海陆空作战平台,应用于大中小型武器系统,因此掌握先进的夜视技术对于控制战场形势具有至关重要的意义。与微光成像技术相比,红外热成像技术制作工艺复杂,生产维护成本高,但在作用距离、图像质量、昼夜共用问题、可应用领域等方面具有显著优势。 Night vision technology is divided into two directions: low-light imaging technology and infrared thermal imaging technology. Night vision technology plays an important role in modern warfare. The weapons and equipment equipped with night vision equipment are all over the sea, land and air combat platforms, and are used in large, medium and small weapon systems. Therefore, mastering advanced night vision technology is of vital significance for controlling the battlefield situation. Compared with low-light imaging technology, infrared thermal imaging technology has complex manufacturing process and high production and maintenance costs, but it has significant advantages in terms of working distance, image quality, day and night sharing problems, and applicable fields.
红外热成像技术的核心技术是探测器技术。按照工作温度分类,红外探测器分为制冷型和非制冷型。非制冷红外热成像技术具有价格低、体积小、功耗低、性能可靠、操作方便等优点,成为必然的主流技术。 The core technology of infrared thermal imaging technology is detector technology. According to the classification of working temperature, infrared detectors are divided into cooling type and uncooling type. Uncooled infrared thermal imaging technology has the advantages of low price, small size, low power consumption, reliable performance, and convenient operation, and has become an inevitable mainstream technology.
非制冷红外焦平面阵列探测器可在常温下工作,无需制冷设备,并具有质量轻、体积小、寿命长、成本低、功耗小、启动快及稳定性好等优点,满足了民用红外系统和部分军事红外系统对长波红外探测器的迫切需要,因而使这项技术得到了快速的发展和广泛的应用。读出电路(ROIC)是非致冷红外焦平面阵列(IRFPA)的关键部件之一,它的主要功能是对红外探测器感应的微弱信号进行预处理(如积分、放大、滤波、采样/保持等)和阵列信号的并/串行转换。视探测器所用材料和工作方式的不同,读出电路结构随之变化,以在满足帧频的要求下获得最大的信噪比(SNR)。 The uncooled infrared focal plane array detector can work at room temperature without refrigeration equipment, and has the advantages of light weight, small size, long life, low cost, low power consumption, fast startup and good stability, etc., which meets the needs of civilian infrared systems. And the urgent need for long-wave infrared detectors in some military infrared systems, so this technology has been developed rapidly and widely used. The readout circuit (ROIC) is one of the key components of the uncooled infrared focal plane array (IRFPA). Its main function is to preprocess the weak signal induced by the infrared detector (such as integration, amplification, filtering, sampling/holding, etc.) ) and parallel/serial conversion of array signals. Depending on the material used and the working method of the detector, the structure of the readout circuit changes accordingly to obtain the maximum signal-to-noise ratio (SNR) while meeting the requirements of the frame rate.
微测辐射热计焦平面阵列(FPA)具有较高的灵敏度,是应用最广泛的一种非制冷红外焦平面阵列探测器。其工作原理是热敏材料吸收入射的红外辐射后温度改变,从而引起自身电阻值的变化,通过测量其电阻值的变化来探测红外辐射信号的大小。微测辐射热计普遍采用微机械加工技术制作的悬臂梁微桥结构,桥面沉积有一层具有高电阻温度系数(TCR)的热敏材料,桥面由两条具有良好力学性能并镀有导电材料的桥腿支撑,桥腿与衬底的接触点为桥墩,桥墩电学上连接到微测辐射热计FPA下的硅读出电路(ROIC)上。通过桥腿和桥墩,热敏材料连接到读出电路的电学通道中,形成一个对温度敏感并连接到读出电路上的像素单元。热敏材料吸收的热量主要由三个来源:衬底温度变化引起的热敏材料温度变化、吸收红外辐射量导致的热敏材料温度变化以及微测辐射热计偏置电路产生的偏置热引起的热敏材料温度变化。 The microbolometer focal plane array (FPA) has high sensitivity and is the most widely used uncooled infrared focal plane array detector. Its working principle is that the temperature of the heat-sensitive material changes after absorbing the incident infrared radiation, which causes the change of its own resistance value, and detects the size of the infrared radiation signal by measuring the change of its resistance value. The microbolometer generally adopts the micro-bridge structure of cantilever beam made by micro-machining technology. The bridge deck is deposited with a layer of heat-sensitive material with high temperature coefficient of resistance (TCR). The bridge leg of the material is supported, and the contact point between the bridge leg and the substrate is a bridge pier, and the bridge pier is electrically connected to a silicon readout circuit (ROIC) under the microbolometer FPA. Through the bridge legs and piers, the thermally sensitive material is connected to the electrical channel of the readout circuit, forming a pixel unit that is sensitive to temperature and connected to the readout circuit. The heat absorbed by the thermosensitive material is mainly from three sources: the temperature change of the thermosensitive material caused by the temperature change of the substrate, the temperature change of the thermosensitive material caused by the absorbed infrared radiation, and the bias heat generated by the bias circuit of the microbolometer The temperature change of the thermosensitive material.
经过多年的发展和技术的进步,非制冷红外焦平面阵列探测器已在噪声上满足使用需要,然而人们在非制冷红外探测器性能、图像质量、稳定性、功耗、体积和成本上都有了更高的要求。 After years of development and technological progress, uncooled infrared focal plane array detectors have met the needs of use in terms of noise, but people have problems with uncooled infrared detector performance, image quality, stability, power consumption, volume and cost. higher requirements.
发明内容 Contents of the invention
本发明的目的之一是提供一种能够使微测辐射热计的偏置电路的偏置热更稳定从而消除或者减小偏置热的变化带来的不利影响的非制冷红外焦平面阵列探测器的读出电路。 One of the objects of the present invention is to provide an uncooled infrared focal plane array detector that can make the bias heat of the bias circuit of the microbolometer more stable so as to eliminate or reduce the adverse effects caused by the change of the bias heat device readout circuit.
本发明公开的技术方案包括: The technical solutions disclosed in the present invention include:
提供了一种非制冷红外焦平面阵列探测器的读出电路,其特征在于,包括:偏置热稳定电路10,所述偏置热稳定电路10包括通道级的参考微测辐射热计Rb并为所述参考微测辐射热计Rb提供恒定的偏置电流;检测电路20,所述检测电路20连接到像素级的探测微测辐射热计Rs和所述偏置热稳定电路10,并根据所述参考微测辐射热计Rb和所述探测微测辐射热计Rs产生探测输出信号;积分电路30,所述积分电路30连接到所述检测电路20并对所述检测电路20的探测输出信号进行积分,获得输出信号。 A readout circuit of an uncooled infrared focal plane array detector is provided, which is characterized in that it includes: a bias thermal stabilization circuit 10, and the bias thermal stabilization circuit 10 includes a channel-level reference microbolometer R b and providing a constant bias current for said reference microbolometer R b ; a detection circuit 20 connected to a detection microbolometer R s at the pixel level and said bias thermal stabilization circuit 10 , and generate detection output signals according to the reference microbolometer R b and the detection microbolometer R s ; the integration circuit 30, the integration circuit 30 is connected to the detection circuit 20 and detects the The detection output signal of the circuit 20 is integrated to obtain an output signal.
本发明的一个实施例中,所述偏置热稳定电路10还包括芯片级的第一晶体管MP1、芯片级的第二晶体管MP2、通道级的第三晶体管MP3和通道级的第四晶体管MP4,其中:所述第一晶体管MP1的源极连接到系统电源VDD,所述第一晶体管MP1的漏极通过第一恒流源101接地,所述第一晶体管MP1的栅极连接到所述第一晶体管MP1的漏极;所述第二晶体管MP2的源极连接到系统电源VDD,所述第二晶体管MP2的漏极通过第二恒流源102接地,所述第二晶体管MP2的栅极连接到所述第二晶体管MP2的漏极并且连接到所述参考微测辐射热计Rb的一端;所述参考微测辐射热计Rb的另一端连接到所述第三晶体管MP3的源极;所述第三晶体管MP3的漏极连接到所述第四晶体管MP4的源极并且连接到所述检测电路20,所述第三晶体管MP3的栅极连接到所述第四晶体管MP4的栅极;所述第四晶体管MP4的漏极接地。 In an embodiment of the present invention, the bias thermal stabilization circuit 10 further includes a chip-level first transistor MP1, a chip-level second transistor MP2, a channel-level third transistor MP3, and a channel-level fourth transistor MP4, Wherein: the source of the first transistor MP1 is connected to the system power supply V DD , the drain of the first transistor MP1 is grounded through the first constant current source 101 , and the gate of the first transistor MP1 is connected to the first The drain of a transistor MP1; the source of the second transistor MP2 is connected to the system power supply V DD , the drain of the second transistor MP2 is grounded through the second constant current source 102, and the gate of the second transistor MP2 connected to the drain of said second transistor MP2 and to one terminal of said reference microbolometer Rb ; the other terminal of said reference microbolometer Rb is connected to the source of said third transistor MP3 pole; the drain of the third transistor MP3 is connected to the source of the fourth transistor MP4 and connected to the detection circuit 20, and the gate of the third transistor MP3 is connected to the gate of the fourth transistor MP4 pole; the drain of the fourth transistor MP4 is grounded.
本发明的一个实施例中,所述检测电路20包括第五晶体管MP5,其中:所述第五晶体管MP5的源极连接到所述第三晶体管MP3的漏极并且连接到所述积分电路30,所述第五晶体管MP5的漏极连接到所述探测微测辐射热计Rs的一端,所述第五晶体管MP5的栅极连接到偏置电压Vfid;所述探测微测辐射热计Rs的另一端接地。 In one embodiment of the present invention, the detection circuit 20 includes a fifth transistor MP5, wherein: the source of the fifth transistor MP5 is connected to the drain of the third transistor MP3 and connected to the integration circuit 30, The drain of the fifth transistor MP5 is connected to one end of the detection microbolometer R s , the gate of the fifth transistor MP5 is connected to the bias voltage V fid ; the detection microbolometer R The other end of s is grounded.
本发明的一个实施例中,所述第五晶体管MP5的源极通过开关S1连接到所述第三晶体管MP3的漏极和所述积分电路30。 In an embodiment of the present invention, the source of the fifth transistor MP5 is connected to the drain of the third transistor MP3 and the integrating circuit 30 through a switch S1.
本发明的实施例的读出电路利用为参考微测辐射热计提供稳定的电流通路,实现了偏置热的稳定,大大提高整体电路的均匀性及可靠性,同时大大提高了电路的抗高压性及对环境的适应性。 The readout circuit of the embodiment of the present invention provides a stable current path for the reference microbolometer, realizes the stability of the bias heat, greatly improves the uniformity and reliability of the overall circuit, and greatly improves the high voltage resistance of the circuit and adaptability to the environment.
附图说明 Description of drawings
图1是本发明一个实施例的非制冷红外焦平面阵列探测器的读出电路的结构示意图。 Fig. 1 is a schematic structural diagram of a readout circuit of an uncooled infrared focal plane array detector according to an embodiment of the present invention.
图2是传统的读出电路输出电压随目标温度在不同衬底温度下的仿真图。 Fig. 2 is a simulation diagram of the output voltage of the traditional readout circuit with the target temperature at different substrate temperatures.
图3是本发明实施例的读出电路输出电压随目标温度在不同衬底温度下的仿真图。 FIG. 3 is a simulation diagram of the output voltage of the readout circuit according to the embodiment of the present invention with the target temperature at different substrate temperatures.
具体实施方式 detailed description
下面将结合附图详细说明本发明的实施例的非制冷红外焦平面阵列探测器的读出电路的具体结构。 The specific structure of the readout circuit of the uncooled infrared focal plane array detector according to the embodiment of the present invention will be described in detail below with reference to the accompanying drawings.
图1为本发明一个实施例的非制冷红外焦平面阵列探测器的读出电路的结构示意图。 FIG. 1 is a schematic structural diagram of a readout circuit of an uncooled infrared focal plane array detector according to an embodiment of the present invention.
如图1所示,本发明一些实施例中,一种非制冷红外焦平面阵列探测器的读出电路包括偏置热稳定电路10、检测电路20和积分电路30。 As shown in FIG. 1 , in some embodiments of the present invention, a readout circuit of an uncooled infrared focal plane array detector includes a bias thermal stabilization circuit 10 , a detection circuit 20 and an integration circuit 30 .
偏置热稳定电路10包括通道级的参考微测辐射热计Rb并为所述参考微测辐射热计Rb提供恒定的偏置电流。检测电路20连接到像素级的探测微测辐射热计Rs和该偏置热稳定电路10,并根据该参考微测辐射热计Rb和该探测微测辐射热计Rs产生探测输出信号。积分电路30连接到检测电路20并接收检测电路20的探测输出信号,并对检测电路20的探测输出信号进行积分,从而获得输出信号。 The bias thermal stabilization circuit 10 includes a channel-level reference microbolometer Rb and provides a constant bias current to said reference microbolometer Rb . The detection circuit 20 is connected to the detection microbolometer R s at the pixel level and the bias thermal stabilization circuit 10 and generates a detection output signal from the reference microbolometer R b and the detection microbolometer R s . The integration circuit 30 is connected to the detection circuit 20 and receives the detection output signal of the detection circuit 20, and integrates the detection output signal of the detection circuit 20 to obtain an output signal.
本发明的实施例中,偏置热稳定电路10为参考微测辐射热计Rb提供恒定的偏置电流,从而保证了偏置电路中盲象元的偏置热恒定,大大提高了整体电路的均匀性及可靠性,同时也大大提高了电路的抗高压性及对环境的适应性。 In the embodiment of the present invention, the bias heat stabilization circuit 10 provides a constant bias current for the reference microbolometer R b , thereby ensuring that the bias heat of the blind pixel in the bias circuit is constant, and greatly improving the overall circuit performance. The uniformity and reliability of the circuit are also greatly improved.
如图1所示,本发明的一些实施例中,偏置热稳定电路10还包括芯片级的第一晶体管MP1、芯片级的第二晶体管MP2、通道级的第三晶体管MP3和通道级的第四晶体管MP4。 As shown in FIG. 1, in some embodiments of the present invention, the bias thermal stabilization circuit 10 further includes a chip-level first transistor MP1, a chip-level second transistor MP2, a channel-level third transistor MP3, and a channel-level first transistor MP3. Four-transistor MP4.
第一晶体管MP1的源极连接到系统电源VDD;第一晶体管MP1的漏极通过第一恒流源101接地;第一晶体管MP1的栅极连接到第一晶体管MP1的漏极。 The source of the first transistor MP1 is connected to the system power supply V DD ; the drain of the first transistor MP1 is grounded through the first constant current source 101 ; the gate of the first transistor MP1 is connected to the drain of the first transistor MP1 .
第二晶体管MP2的源极连接到系统电源VDD;第二晶体管MP2的漏极通过第二恒流源102接地;第二晶体管MP2的栅极连接到第二晶体管MP2的漏极并且连接到参考微测辐射热计Rb的一端;参考微测辐射热计Rb的另一端连接到第三晶体管MP3的源极。 The source of the second transistor MP2 is connected to the system power supply V DD ; the drain of the second transistor MP2 is grounded through the second constant current source 102 ; the gate of the second transistor MP2 is connected to the drain of the second transistor MP2 and connected to the reference One terminal of the microbolometer R b ; the other terminal of the reference microbolometer R b is connected to the source of the third transistor MP3.
第三晶体管MP3的漏极连接到第四晶体管MP4的源极并且连接到检测电路20(例如,连接到第五晶体管MP5的源极,如图1所示);第三晶体管MP3的栅极连接到第四晶体管MP4的栅极;第四晶体管MP4的漏极接地。 The drain of the third transistor MP3 is connected to the source of the fourth transistor MP4 and connected to the detection circuit 20 (for example, connected to the source of the fifth transistor MP5, as shown in FIG. 1 ); the gate of the third transistor MP3 is connected to to the gate of the fourth transistor MP4; the drain of the fourth transistor MP4 is grounded.
如图1所示,本发明的一些实施例中,检测电路20包括第五晶体管MP5,其中第五晶体管MP5的源极连接到第三晶体管MP3的漏极并且连接到积分电路30(例如,连接到积分电路30的运算放大器的负向输入端,如图1所示);第五晶体管MP5的漏极连接到探测微测辐射热计Rs的一端,第五晶体管MP5的栅极连接到偏置电压Vfid;探测微测辐射热计Rs的另一端接地。 As shown in FIG. 1 , in some embodiments of the present invention, the detection circuit 20 includes a fifth transistor MP5, wherein the source of the fifth transistor MP5 is connected to the drain of the third transistor MP3 and connected to the integration circuit 30 (for example, connected to to the negative input of the operational amplifier of the integrating circuit 30, as shown in Figure 1); the drain of the fifth transistor MP5 is connected to one end of the detection microbolometer R s , and the gate of the fifth transistor MP5 is connected to the bias Set the voltage V fid ; the other end of the detection microbolometer R s is grounded.
本发明的一些实施例中,检测电路20还可以包括开关S1,第五晶体管MP5的源极通过开关S1连接到第三晶体管MP3的漏极和积分电路30。 In some embodiments of the present invention, the detection circuit 20 may further include a switch S1, and the source of the fifth transistor MP5 is connected to the drain of the third transistor MP3 and the integration circuit 30 through the switch S1.
本发明的实施例中,积分电路30可以是本领域内常用的积分电路,例如如图1所示,在此不再赘述。 In the embodiment of the present invention, the integration circuit 30 may be an integration circuit commonly used in the art, for example, as shown in FIG. 1 , which will not be repeated here.
下面简要说明本发明实施例的电路的工作原理。 The working principle of the circuit of the embodiment of the present invention will be briefly described below.
例如,图1所示的实施例中,由芯片级PMOS管MP1电流镜结构产生的偏置电压Veb给偏置热稳定电路10的PMOS管MP3和MP4的栅极提供输入。MP3的源级连接通道级参考微测辐射热计Rb,参考微测辐射热计Rb的另一端连接到由芯片级PMOS管PM2电流镜结构产生的偏置电压VSK。MP4的漏级连接到地。在扫描空挡,检测电路20没有接通时,通道级参考微测辐射热计Rb、MP3和MP4构成了一个完整的电路,流过MP3漏极的电流为IBIAS。在扫描期间,检测电路20接入偏置热稳定电路10,由于积分电路30中的运算放大器负反馈放大结构,满足虚短条件,运算放大器的正负输入端电压相等。故,检测电路20接入偏置热稳定电路10中时,MP3的漏端电压等于积分器正向输入端电压Vref。由于MP4为PMOS管,当PMOS管栅源电压VGS小于等于阈值电压Vth时,PMOS管导通,产生漏源电流ID。取适当的积分器正向输入端电压Vref与芯片级偏置电压Veb,漏源电压VGS=VG?VS=Vref?Veb满足Vref?Veb>Vth,即,检测电路20接入偏置热稳定电路10时,MP2由于Vref?Veb>Vth关断。取适当的MP2宽长比,可以使得此时流过MP3漏端电流仍为Ibias不变。 For example, in the embodiment shown in FIG. 1 , the bias voltage V eb generated by the current mirror structure of the chip-level PMOS transistor MP1 provides input to bias the gates of the PMOS transistors MP3 and MP4 of the thermal stabilization circuit 10 . The source level of MP3 is connected to the channel-level reference microbolometer Rb, and the other end of the reference microbolometer Rb is connected to the bias voltage V SK generated by the chip-level PMOS transistor PM2 current mirror structure. The drain of MP4 is connected to ground. When the scanning is neutral and the detection circuit 20 is not connected, the channel-level reference microbolometer R b , MP3 and MP4 form a complete circuit, and the current flowing through the drain of MP3 is I BIAS . During the scanning period, the detection circuit 20 is connected to the bias thermal stabilization circuit 10. Due to the negative feedback amplification structure of the operational amplifier in the integrating circuit 30, the virtual short condition is satisfied, and the positive and negative input terminal voltages of the operational amplifier are equal. Therefore, when the detection circuit 20 is connected to the bias thermal stabilization circuit 10, the drain terminal voltage of MP3 is equal to the positive input terminal voltage V ref of the integrator. Since MP4 is a PMOS transistor, when the gate-source voltage V GS of the PMOS transistor is less than or equal to the threshold voltage V th , the PMOS transistor is turned on to generate a drain-source current ID . Taking the proper positive input terminal voltage V ref of the integrator and the chip-level bias voltage V eb , the drain-source voltage V GS =V G ?V S =V ref ?V eb satisfies V ref ?V eb >V th , that is, When the detection circuit 20 is connected to the bias thermal stabilization circuit 10, MP2 is turned off due to V ref −V eb >V th . Taking an appropriate width-to-length ratio of MP2 can make the current flowing through the drain terminal of MP3 remain unchanged at I bias .
本发明的实施例的电路中,通过使流过通道级的参考微测辐射热计Rb与PMOS管MP3的电流Ibias保持不变,从而使得得到的积分电流I int 只与像素级探测微测辐射热计Rs相关,即: In the circuit of the embodiment of the present invention, the reference microbolometer R b flowing through the channel level and the current I bias of the PMOS transistor MP3 are kept constant, so that the obtained integrated current I int is only related to the pixel level detection microbolometer The bolometer R s is related, that is:
Iint=IBIAS–Is=b–alpha×ΔTscene(1) I int =I BIAS –I s =b–alpha×ΔT scene (1)
式(1)中b为常数,Is为流过探测微测辐射热计Rs的电流,alpha表示微测辐射热计的温度系数,ΔTscene表示红外辐射引起的探测微测辐射热计Rs的温度变化。。 In formula (1), b is a constant, I s is the current flowing through the detection microbolometer R s , alpha represents the temperature coefficient of the microbolometer, ΔT scene represents the detection microbolometer R caused by infrared radiation s temperature change. .
从式(1)中可以看出,由于积分电流I int 与通道级的参考微测辐射热计Rb的偏置热没有关系,得到最后的积分输出电压V out 为: It can be seen from equation (1) that since the integrated current I int has nothing to do with the bias heat of the channel-level reference microbolometer R b , the final integrated output voltage V out is obtained as:
式(2)中,V ref 为参考电压,t int 为积分时间,Cint为积分电路30中的积分电容的电容值。可见,得到的积分输出电压V out 只与辐射温度、微测辐射热计及电路参数特性相关,与偏置热没有关系。 In formula (2), V ref is the reference voltage, t int is the integration time, and C int is the capacitance value of the integration capacitor in the integration circuit 30 . It can be seen that the obtained integrated output voltage V out is only related to the radiation temperature, microbolometer and circuit parameter characteristics, and has nothing to do with the bias heat.
可见,本发明利用给通道级微测辐射热计Rb提供一个稳定的电流支路得到稳定偏置热的方法,使微测辐射热计的偏置热不随时间变化,从而使微测辐射热计的电阻变化只与其吸收入射的红外辐射强度有关,提高了非制冷红外焦平面读出电路的输出精度。 It can be seen that the present invention utilizes a method of providing a stable current branch for the channel-level microbolometer R b to obtain a stable bias heat, so that the bias heat of the microbolometer does not change with time, thereby making the microbolometer The resistance change of the meter is only related to the intensity of the incident infrared radiation absorbed by it, which improves the output accuracy of the uncooled infrared focal plane readout circuit.
例如,图2和图3分别示出了传统的读出电路及本发明实施例的读出电路输出电压随目标温度在不同衬底温度下的仿真图。可见,本发明实施例的读出电路的偏置热比传统的读出电路更稳定。 For example, FIG. 2 and FIG. 3 respectively show the simulation diagrams of the output voltage of the conventional readout circuit and the readout circuit according to the embodiment of the present invention with the target temperature at different substrate temperatures. It can be seen that the bias heat of the readout circuit of the embodiment of the present invention is more stable than that of the conventional readout circuit.
可见,本发明的实施例的读出电路利用为参考微测辐射热计提供稳定的电流通路,实现了偏置热的稳定,大大提高整体电路的均匀性及可靠性,同时大大提高了电路的抗高压性及对环境的适应性。 It can be seen that the readout circuit of the embodiment of the present invention provides a stable current path for the reference microbolometer, realizes the stability of bias heat, greatly improves the uniformity and reliability of the overall circuit, and greatly improves the reliability of the circuit. High pressure resistance and adaptability to the environment.
以上通过具体的实施例对本发明进行了说明,但本发明并不限于这些具体的实施例。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等,这些变换只要未背离本发明的精神,都应在本发明的保护范围之内。此外,以上多处所述的“一个实施例”表示不同的实施例,当然也可以将其全部或部分结合在一个实施例中。 The present invention has been described above through specific examples, but the present invention is not limited to these specific examples. Those skilled in the art should understand that various modifications, equivalent replacements, changes, etc. can also be made to the present invention. As long as these changes do not deviate from the spirit of the present invention, they should all be within the protection scope of the present invention. In addition, "one embodiment" described in many places above represents different embodiments, and of course all or part of them may be combined in one embodiment.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510513217.7A CN105352606B (en) | 2015-08-20 | 2015-08-20 | A kind of reading circuit of non-refrigerate infrared focal plane array seeker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510513217.7A CN105352606B (en) | 2015-08-20 | 2015-08-20 | A kind of reading circuit of non-refrigerate infrared focal plane array seeker |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105352606A true CN105352606A (en) | 2016-02-24 |
CN105352606B CN105352606B (en) | 2018-09-21 |
Family
ID=55328615
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510513217.7A Expired - Fee Related CN105352606B (en) | 2015-08-20 | 2015-08-20 | A kind of reading circuit of non-refrigerate infrared focal plane array seeker |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105352606B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106768377A (en) * | 2017-03-31 | 2017-05-31 | 苏州芯通微电子有限公司 | It is multiplexed the un-cooled infrared focal plane array gating circuit of contact hole |
CN107727243A (en) * | 2017-11-22 | 2018-02-23 | 北方广微科技有限公司 | Un-cooled infrared focal plane array reading circuit |
CN111829670A (en) * | 2019-04-16 | 2020-10-27 | 杭州海康微影传感科技有限公司 | Uncooled infrared focal plane array reading circuit |
CN116295861A (en) * | 2023-03-24 | 2023-06-23 | 电子科技大学 | An uncooled infrared focal plane dual-channel column-level readout circuit and method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030213910A1 (en) * | 1999-10-07 | 2003-11-20 | Anderson Shane M. | Microbolometer focal plane array with temperature compensated bias |
US20090014653A1 (en) * | 2007-07-12 | 2009-01-15 | Parrish William J | Bolometer array compensation |
CN201464051U (en) * | 2009-06-17 | 2010-05-12 | 北京空间机电研究所 | Low temperature working infrared detector focal plane temperature monitoring circuit |
CN202885976U (en) * | 2012-08-15 | 2013-04-17 | 无锡萌涉传感技术有限公司 | Infrared focal-plane array read-out circuit |
CN103234642A (en) * | 2013-04-15 | 2013-08-07 | 电子科技大学 | Integrating pre-circuit of reading circuit in infrared focal plane array detector |
CN103776544A (en) * | 2014-01-09 | 2014-05-07 | 电子科技大学 | Readout circuit of uncooled infrared focal plane array |
CN103913700A (en) * | 2014-04-18 | 2014-07-09 | 电子科技大学 | Detection circuit of infrared focal plane reading circuit |
CN104251741A (en) * | 2014-09-18 | 2014-12-31 | 电子科技大学 | Self-adaptive infrared focal plane array reading circuit |
CN104251740A (en) * | 2014-09-18 | 2014-12-31 | 电子科技大学 | Readout circuit of uncooled infrared focal plane array |
CN104819779A (en) * | 2015-04-03 | 2015-08-05 | 无锡艾立德智能科技有限公司 | Micro-bolometer type infrared read-out circuit with bias thermo-compensation function |
-
2015
- 2015-08-20 CN CN201510513217.7A patent/CN105352606B/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030213910A1 (en) * | 1999-10-07 | 2003-11-20 | Anderson Shane M. | Microbolometer focal plane array with temperature compensated bias |
US20090014653A1 (en) * | 2007-07-12 | 2009-01-15 | Parrish William J | Bolometer array compensation |
CN201464051U (en) * | 2009-06-17 | 2010-05-12 | 北京空间机电研究所 | Low temperature working infrared detector focal plane temperature monitoring circuit |
CN202885976U (en) * | 2012-08-15 | 2013-04-17 | 无锡萌涉传感技术有限公司 | Infrared focal-plane array read-out circuit |
CN103234642A (en) * | 2013-04-15 | 2013-08-07 | 电子科技大学 | Integrating pre-circuit of reading circuit in infrared focal plane array detector |
CN103776544A (en) * | 2014-01-09 | 2014-05-07 | 电子科技大学 | Readout circuit of uncooled infrared focal plane array |
CN103913700A (en) * | 2014-04-18 | 2014-07-09 | 电子科技大学 | Detection circuit of infrared focal plane reading circuit |
CN104251741A (en) * | 2014-09-18 | 2014-12-31 | 电子科技大学 | Self-adaptive infrared focal plane array reading circuit |
CN104251740A (en) * | 2014-09-18 | 2014-12-31 | 电子科技大学 | Readout circuit of uncooled infrared focal plane array |
CN104819779A (en) * | 2015-04-03 | 2015-08-05 | 无锡艾立德智能科技有限公司 | Micro-bolometer type infrared read-out circuit with bias thermo-compensation function |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106768377A (en) * | 2017-03-31 | 2017-05-31 | 苏州芯通微电子有限公司 | It is multiplexed the un-cooled infrared focal plane array gating circuit of contact hole |
CN107727243A (en) * | 2017-11-22 | 2018-02-23 | 北方广微科技有限公司 | Un-cooled infrared focal plane array reading circuit |
CN107727243B (en) * | 2017-11-22 | 2019-12-10 | 北方广微科技有限公司 | Uncooled infrared focal plane array readout circuit |
CN111829670A (en) * | 2019-04-16 | 2020-10-27 | 杭州海康微影传感科技有限公司 | Uncooled infrared focal plane array reading circuit |
CN111829670B (en) * | 2019-04-16 | 2021-09-21 | 杭州海康微影传感科技有限公司 | Uncooled infrared focal plane array reading circuit |
CN116295861A (en) * | 2023-03-24 | 2023-06-23 | 电子科技大学 | An uncooled infrared focal plane dual-channel column-level readout circuit and method |
Also Published As
Publication number | Publication date |
---|---|
CN105352606B (en) | 2018-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104251741B (en) | A kind of self adaptation infrared focal plane array reading circuit | |
CN104251740A (en) | Readout circuit of uncooled infrared focal plane array | |
CN102735344B (en) | Reading circuit of infrared focal plane array detector | |
CN102494781B (en) | Readout circuit bias structure | |
CN105352606B (en) | A kind of reading circuit of non-refrigerate infrared focal plane array seeker | |
CN104819779B (en) | A kind of micro-metering bolometer type infrared reading circuit with biasing thermal compensation function | |
CN103698019B (en) | A kind of reading circuit of infrared focal plane array seeker | |
US8987667B2 (en) | Systems and methods for image lag mitigation for buffered direct injection readout with current mirror | |
CN103900722B (en) | Reading circuit of uncooled infrared focal plane array | |
CN103234642B (en) | Integrating pre-circuit of reading circuit in infrared focal plane array detector | |
CN102346074B (en) | Readout circuit biasing structure | |
Brown et al. | Digital-pixel focal plane array development | |
Kim et al. | Low-Noise and wide-dynamic-range ROIC with a self-selected capacitor for SWIR focal plane arrays | |
CN103913700B (en) | A kind of detection circuit of infrared focal plane read-out circuit | |
Zheng et al. | A linear-array receiver AFE circuit embedded 8-to-1 multiplexer for direct ToF imaging LiDAR applications | |
CN204535859U (en) | A kind of micro-metering bolometer type infrared reading circuit with biased thermal compensation function | |
Zhou et al. | A high-precision and high-linearity readout integrated circuit for infrared focal plane array applications | |
CN111829670B (en) | Uncooled infrared focal plane array reading circuit | |
Liu et al. | Low‐noise readout circuit for thermo‐electrical cooler‐less uncooled microbolometer infrared imager | |
CN106500845A (en) | Diode-type infrared sensor array Pixel-level calibration structure | |
US9497402B2 (en) | Image lag mitigation for buffered direct injection readout with current mirror | |
Eminoğlu et al. | Uncooled Infrared Focal Plane Arrays with Integrated Readout Circuritry Using MEMS and Standard CMOS Technologies | |
US11125625B2 (en) | Microbolometer readout circuit and calibration method using the same | |
JP2009074898A (en) | Bolometer type uncooled infrared sensor and driving method thereof | |
JP4343144B2 (en) | Infrared sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180921 |