[go: up one dir, main page]

CN105339791A - Molecular nets on solid phases - Google Patents

Molecular nets on solid phases Download PDF

Info

Publication number
CN105339791A
CN105339791A CN201480025377.0A CN201480025377A CN105339791A CN 105339791 A CN105339791 A CN 105339791A CN 201480025377 A CN201480025377 A CN 201480025377A CN 105339791 A CN105339791 A CN 105339791A
Authority
CN
China
Prior art keywords
molecular
analyte
capture
molecular net
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480025377.0A
Other languages
Chinese (zh)
Other versions
CN105339791B (en
Inventor
艾米丽·斯坦
布鲁斯·菲尔普斯
罗伯特·普莱斯
迪娜·尤兹丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovitch Co ltd
Senna Cancer Diagnosis Co
Original Assignee
SEVIDENT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/938,055 external-priority patent/US9910040B2/en
Application filed by SEVIDENT Inc filed Critical SEVIDENT Inc
Priority to CN201910037871.3A priority Critical patent/CN110068677A/en
Publication of CN105339791A publication Critical patent/CN105339791A/en
Application granted granted Critical
Publication of CN105339791B publication Critical patent/CN105339791B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

在此披露一种用于从样品中特异性地且灵敏地捕获分析物的包括捕获分子、连接子以及间隔子的共价连接的多层三维基体(称为分子网)。在此还披露一种用于从样品中特异性地且灵敏地捕获多于一种类型的分析物的分子网,该分子网包括共价连接的多层三维基体,该基体包括多于一种类型的捕获分子和多于一种类型的连接子,并且可以包括一个或多个间隔子。分子网可以包括伪随机性质。在分子网中使用不同的捕获分子、连接子以及间隔子可以给予分子网独特的结合特性。分子网的孔隙率、结合亲和力、大小排除能力、过滤能力、浓缩能力以及信号放大能力可以改变,并且取决于分子网制造中所使用的组分的性质。分子网的用途可以包括分析物捕获、分析物富集、分析物纯化、分析物检测、分析物测量以及分析物递送。分子网可以在液相中或在固相上使用,固相如纳米材料、修饰的金属表面、纳米球、微球、微量滴定板、载玻片、移液管、盒、筒、圆盘、探针、横流装置、微流体装置、微流体装置、光学纤维以及其他。

Disclosed herein is a covalently linked multilayered three-dimensional matrix (referred to as a molecular net) comprising capture molecules, linkers, and spacers for the specific and sensitive capture of analytes from a sample. Also disclosed herein is a molecular net for the specific and sensitive capture of more than one type of analyte from a sample, the molecular net comprising a covalently linked multilayered three-dimensional matrix comprising more than one One type of capture molecule and more than one type of linker, and may include one or more spacers. Molecular Nets can include pseudorandom properties. The use of different capture molecules, linkers, and spacers in Molecular Nets can give Molecular Nets unique binding properties. The porosity, binding affinity, size exclusion, filtration, concentration, and signal amplification capabilities of a Molecular Net can vary and depend on the nature of the components used in the manufacture of the Molecular Net. Uses of Molecular Nets may include analyte capture, analyte enrichment, analyte purification, analyte detection, analyte measurement, and analyte delivery. Molecular Nets can be used in the liquid phase or on solid phases such as nanomaterials, modified metal surfaces, nanospheres, microspheres, microtiter plates, glass slides, pipettes, cassettes, cartridges, discs, Probes, lateral flow devices, microfluidic devices, microfluidic devices, fiber optics, and others.

Description

固相上的分子网Molecular Nets on Solid Phase

相关申请的交叉引用Cross References to Related Applications

本申请要求2013年3月14日提交的美国临时申请序列号61/783,189的权益,并且是2012年3月22日提交的美国专利申请序列号13/511,364和2013年7月9日提交的美国专利申请序列号13/938,055的部分继续申请,以上申请的全部内容通过引用结合在此。This application claims the benefit of U.S. Provisional Application Serial No. 61/783,189, filed March 14, 2013, and is the result of U.S. Patent Application Serial No. 13/511,364, filed March 22, 2012 and U.S. A continuation-in-part of patent application Serial No. 13/938,055, the entire contents of which are hereby incorporated by reference.

背景技术Background technique

存在的用于固相分析物捕获、分析物检测以及分析物测量的当前策略使用吸附至或共价键结至表面上的单层捕获分子以用于直接实时感测,或者以间接检测模态与二次检测步骤结合使用,这些策略在本领域中是众所周知的。直接和间接方法都示出在灵敏度、特异性、信噪比和/或成本上的局限性。Existing current strategies for solid-phase analyte capture, analyte detection, and analyte measurement use a monolayer of capture molecules adsorbed or covalently bonded to a surface for direct real-time sensing, or in an indirect detection modality Used in conjunction with a secondary detection step, these strategies are well known in the art. Both direct and indirect methods show limitations in sensitivity, specificity, signal-to-noise ratio and/or cost.

存在对用于固相表面或装置的分析物捕获技术的需要,该技术可以在很少或没有样品制备的情况下从复杂样品中选择性地捕获分析物并且将所述选择的分析物以最大化捕获分析物测量和/或检测的方式定位,其方式为与大部分技术兼容。There is a need for an analyte capture technology for solid-phase surfaces or devices that can selectively capture analytes from complex samples with little or no sample preparation and maximize the concentration of said selected analytes. Oriented in a manner that maximizes capture analyte measurement and/or detection in a manner that is compatible with most technologies.

发明内容Contents of the invention

描述了用于捕获分析物的装置。在一个实施例中,一个装置可以包括一个固相和一个分子网,该分子网被联接至该固相的表面的至少一部分上。该分子网可以包括至少一种类型的多个捕获分子,这些捕获分子通过多种类型的多个连接分子彼此联接,以便形成一个共价连接的多层三维基体。这些捕获分子可以被配置用于结合该分析物。Devices for capturing analytes are described. In one embodiment, a device can include a solid phase and a molecular net coupled to at least a portion of a surface of the solid phase. The molecular net may comprise a plurality of capture molecules of at least one type linked to each other by a plurality of linker molecules of various types so as to form a covalently linked multilayered three-dimensional matrix. The capture molecules can be configured to bind the analyte.

还描述了一种制造用于捕获分析物的装置的方法。在一个实施例中,一种方法可以包括提供一个固相,并且将一个分子网放置在该固相的表面的至少一部分上。该分子网可以包括至少一种类型的多个捕获分子,这些捕获分子通过多种类型的多个连接分子彼此联接,以便形成一个共价连接的多层三维基体。这些捕获分子可以被配置用于结合该分析物。A method of making a device for capturing an analyte is also described. In one embodiment, a method can include providing a solid phase, and disposing a molecular net on at least a portion of a surface of the solid phase. The molecular net may comprise a plurality of capture molecules of at least one type linked to each other by a plurality of linker molecules of various types so as to form a covalently linked multilayered three-dimensional matrix. The capture molecules can be configured to bind the analyte.

还描述了测量样品中的分析物的量的方法。在一个实施例中,一种方法可以包括提供一个或多个装置,每个装置包括一个固相和一个分子网,该分子网覆盖该固相的表面的至少一部分。该分子网可以包括至少一种类型的多个捕获分子,这些捕获分子通过多种类型的多个连接分子彼此联接,以便形成一个共价连接的多层三维基体。这些捕获分子被配置用于结合该分析物。该方法还包括将这些装置暴露于该样品,并且允许该分析物的至少一部分结合这些装置的分子网的捕获分子。Methods of measuring the amount of an analyte in a sample are also described. In one embodiment, a method can include providing one or more devices, each device comprising a solid phase and a molecular net covering at least a portion of a surface of the solid phase. The molecular net may comprise a plurality of capture molecules of at least one type linked to each other by a plurality of linker molecules of various types so as to form a covalently linked multilayered three-dimensional matrix. The capture molecules are configured to bind the analyte. The method also includes exposing the devices to the sample and allowing at least a portion of the analyte to bind to capture molecules of molecular nets of the devices.

附图说明Description of drawings

图1示出在IgG纯化中传统轭合微颗粒与分子网微颗粒的比较;Figure 1 shows a comparison of conventional conjugated microparticles and molecular net microparticles in IgG purification;

图2示出传统捕获分子与微颗粒的轭合以及相对应的分析物测量能力;Figure 2 shows the conjugation of traditional capture molecules to microparticles and the corresponding analyte measurement capabilities;

图3示出分子网微颗粒在测量分析物中的有效性;Figure 3 shows the effectiveness of Molecular Net microparticles in measuring analytes;

图4示出具有拓扑结构的分子网在测量分析物中的有效性;Figure 4 shows the effectiveness of molecular nets with topology in measuring analytes;

图5示出在TauELISA中传统轭合微颗粒与分子网微颗粒的比较;Figure 5 shows a comparison of conventional conjugated microparticles and Molecular Net microparticles in TauELISA;

图6示出在TSHLuminex夹心免疫测定中传统轭合微颗粒与分子网微颗粒的比较;Figure 6 shows a comparison of conventional conjugated microparticles and Molecular Net microparticles in a TSH Luminex sandwich immunoassay;

图7示出颗粒上的示例性分子网;Figure 7 shows an exemplary molecular net on a particle;

图8示出颗粒上的示例性分子网拓扑特征;Figure 8 shows exemplary Molecular Net topological features on particles;

图9示出用于分析物递送的示例性分子网。Figure 9 shows an exemplary molecular net for analyte delivery.

具体实施方式detailed description

美国专利序列号61/281,991、61/337,257、61/340,287、61/343,467、61/410,837、61/489,646以及61/489,648中已示出构造和使用一个共价连接的伪随机多层三维基体使得能够快速且特异性地捕获来自未处理样品的蛋白质、核酸、碳水化合物、脂质、细胞或者其他分析物,并且示出使用这种分子网可能是对常规分析物结合方法的明显改进,这些专利中的每一个通过引用结合在此。分子网的设计和制造The construction and use of a covalently linked pseudorandom multilayer three-dimensional matrix is shown in U.S. Patent Serial Nos. 61/281,991, 61/337,257, 61/340,287, 61/343,467, 61/410,837, 61/489,646, and 61/489,648 enabling rapid and specific capture of proteins, nucleic acids, carbohydrates, lipids, cells, or other analytes from unprocessed samples, and showing that the use of such molecular nets may be a significant improvement over conventional analyte binding methods, these Each of the patents is hereby incorporated by reference. Molecular Net Design and Fabrication

分子网的特性可以通过以下赋予:选择以供使用的捕获分子(捕获分子的实例可以包括抗体、核酸探针、酶类、重组蛋白、肽以及其他);所述捕获分子赋予的所得特异性;选择的捕获分子的大小和数量;捕获分子在该或这些分子网层中的放置和间隔;捕获分子的组合;可以使用捕获分子的顺序;以及使用的捕获分子与连接分子和间隔分子的比率。Molecular Net properties can be conferred by: the capture molecules selected for use (examples of capture molecules may include antibodies, nucleic acid probes, enzymes, recombinant proteins, peptides, and others); the resulting specificity conferred by the capture molecules; The size and number of capture molecules selected; the placement and spacing of capture molecules within the Molecular Net layer or layers; the combination of capture molecules; the order in which capture molecules can be used; and the ratio of capture molecules to linker and spacer molecules used.

分子网的特性还可以通过以下赋予:选择以供使用的连接分子(连接分子的实例包括同双功能的、异双功能的、三功能的以及多功能的类型);连接分子的化学特异性;连接分子的埃长度;连接分子的组合;可以使用连接分子的顺序;以及使用的捕获分子与连接分子和间隔分子的比率。Molecular Net properties can also be conferred by: the linker molecule chosen for use (examples of linker molecules include homobifunctional, heterobifunctional, trifunctional and multifunctional types); the chemical specificity of the linker molecule; The Angstrom length of the linker molecules; the combination of linker molecules; the order in which linker molecules can be used; and the ratio of capture molecules to linker and spacer molecules used.

分子网的特性还可以通过以下赋予:选择以供使用的间隔分子(间隔分子的实例包括PEG、聚合物、核酸、白蛋白、Fc区、肽以及其他);间隔分子的化学特性;间隔分子的大小和数量;可以使用间隔分子的顺序;以及使用的间隔分子与连接分子和捕获分子的比率。Molecular Net properties can also be imparted by: the spacer molecule chosen for use (examples of spacer molecules include PEG, polymers, nucleic acids, albumin, Fc regions, peptides, and others); the chemical properties of the spacer molecule; The size and number; the order in which spacer molecules can be used; and the ratio of spacer molecules to linker and capture molecules used.

捕获分子、连接分子以及间隔分子的放置和间隔可以:给予在分子网表面上的特征拓扑结构;给予在一个分子网的每个层中的特征密度;给予分子网的特征孔隙率;消除空间限制和由此的空间位阻;改进结合能力;减少非特异性结合;使得能够结合多种形式的分析物(例如,同时捕获降解的分析物、完整分析物以及复合的分析物),以及其他。The placement and spacing of capture molecules, linker molecules, and spacer molecules can: give characteristic topologies on the Molecular Net surface; give characteristic densities in each layer of a Molecular Net; give Molecular Nets characteristic porosity; eliminate spatial constraints and thus steric hindrance; improving binding capacity; reducing non-specific binding; enabling binding of multiple forms of analyte (eg, simultaneous capture of degraded analyte, intact analyte, and complexed analyte), and others.

分子网中的孔隙可以是随机的、伪随机的、或者不规则散布的。分子网的孔隙可以用于过滤样品;可以用于通过大小排除来区分样品中的结合势分子;可以用于实现由于空间位阻减少,大分子或细胞的结合、或者其他。分子网的孔隙包含多个捕获分子、多个连接分子,并且可以包含多个间隔分子。在固相上产生孔隙的传统方法涉及对固相表面的机械修饰,并且采用如激光刻蚀、层压、平板印刷、激光打印或者其他的方法来在固体表面中产生孔隙、孔、或者其他结构。随后制备这种固体表面以用于接收轭合捕获分子。使用分子网消除了对表面的机械修饰的需要,并且因此是更有成本效益的。此外,传统方法仍受到高非特异性结合的问题的妨碍,并且需要结合至机械修饰的固相上的捕获化学品,这不是一个改进。此外,与传统捕获形式相比,由于由分子网的每个层中建立的孔隙率给予的大小排除特性,柔性可赋予至分子网中。在一些层中,孔隙直径和深度可以是类似的或者可以根据应用而变化。在一些层中,孔隙大小可以改变,孔隙大小的变化可以取决于应用。Pores in molecular nets can be random, pseudorandom, or irregularly distributed. The pores of molecular nets can be used to filter samples; they can be used to distinguish binding potential molecules in samples by size exclusion; they can be used to realize the binding of macromolecules or cells due to the reduction of steric hindrance, or others. The pores of the Molecular Net contain multiple capture molecules, multiple linker molecules, and may contain multiple spacer molecules. Traditional methods of creating porosity in solid phases involve mechanical modification of the solid surface and employ methods such as laser etching, lamination, lithography, laser printing, or other methods to create pores, pores, or other structures in the solid surface . This solid surface is then prepared for receiving conjugated capture molecules. Using Molecular Nets eliminates the need for mechanical modification of the surface and is therefore more cost-effective. Furthermore, traditional methods are still hampered by the problem of high non-specific binding and require capture chemicals bound to mechanically modified solid phases, which is not an improvement. Furthermore, flexibility can be imparted into Molecular Nets due to the size exclusion properties imparted by the porosity built up in each layer of Molecular Nets compared to traditional trapping formats. In some layers, pore diameters and depths may be similar or may vary depending on the application. In some layers, the pore size may vary, and the variation in pore size may depend on the application.

可以被赋予在一个分子网上的孔隙可以包括但是不限于皮孔、纳米孔、微孔、滤孔、筛孔、袋或者其他。可以通过选择特异性捕获分子、连接分子以及间隔分子以及将它们并入分子网的每个层中的方法来将孔隙赋予到分子网中。还可以通过选择以及并入用于制造连续层的特异性捕获分子、连接分子以及间隔分子的方法来将孔隙赋予到分子网中。Pores that may be imparted on a molecular net may include, but are not limited to, picopores, nanopores, micropores, filters, meshes, pockets, or others. Pores can be imparted into the Molecular Net by selecting and incorporating specific capture, linker, and spacer molecules into each layer of the Molecular Net. Porosity can also be imparted into molecular nets by the selection and incorporation of specific capture molecules, linker molecules and spacer molecules used to make the continuous layer.

基于层中使用的捕获分子、连接子以及间隔子的性质,分子网孔隙的直径范围可以从约6埃至大于约1um。在一些情况下,分子网的孔隙可以包括一个孔隙直径范围。示例性直径范围可以是从约5nm至约50nm、从约10nm至约100nm、从约50nm至约200nm、从约250nm至约500nm、从约500nm至约1um以及从约800nm至约1.5um。Molecular Net pores can range in diameter from about 6 Angstroms to greater than about 1 um, based on the nature of the capture molecules, linkers, and spacers used in the layer. In some cases, the pores of the Molecular Net can include a range of pore diameters. Exemplary diameter ranges may be from about 5 nm to about 50 nm, from about 10 nm to about 100 nm, from about 50 nm to about 200 nm, from about 250 nm to about 500 nm, from about 500 nm to about 1 um, and from about 800 nm to about 1.5 um.

在一些情况下,捕获分子可以用于在分子网中产生孔隙。在这些实例中,可在将捕获分子并入分子网层之前,将捕获分子预先连接至彼此。在一些情况下,可基于间隔臂的埃长度选择连接子。在一些实例中,可以使用增充剂将一个第一连接子连接至一个第二连接子上,以便产生一个长的多功能连接子。在一些情况下,间隔子可以用于在分子网中产生孔隙。也可在将间隔子并入分子网层之前,将间隔子预先连接至彼此。在其他实例中,惰性物理插栓可以用于构造孔隙,借此每个物理插栓可以被放置在一个先前构造的层上,同时构建一个新的层。在固化后,可以移除这些物理插栓,因此留下特定直径的孔隙。In some cases, capture molecules can be used to create pores in molecular nets. In these examples, the capture molecules can be pre-linked to each other prior to their incorporation into the Molecular Net layer. In some cases, linkers can be selected based on the Angstrom length of the spacer. In some examples, extenders can be used to link a first linker to a second linker to create a long multifunctional linker. In some cases, spacers can be used to create pores in the Molecular Net. It is also possible to pre-attach the spacers to each other before incorporating the spacers into the Molecular Net layer. In other examples, inert physical plugs can be used to construct apertures whereby each physical plug can be placed on a previously constructed layer while a new layer is constructed. After curing, these physical plugs can be removed, thus leaving pores of a specific diameter.

分子网的柔性性质使得能够使用多种类型的捕获分子。在一些实例中,分子网包括单一类型的捕获分子。在其他实例中,分子网包括多种类型的捕获分子。在一些实例中,在分子网的制造过程中使用多于一种单克隆抗体使得所述分子网能够结合分析物的多于一个表位。多于一种类型的表位特异性捕获分子的使用能够实现分子网分析物捕获的改进,并且与该分子网的性能相关。在一些实例中,多于一种核酸序列的使用可以在制造过程中用于产生能够结合分析物的多于一个表位的分子网。有益的实例取决于分子网的使用,并且可以包括当用于测试中时,在检测的最低水平、灵敏度、阳性预测值、阴性预测值、对降解样品起作用的能力、对各种不同群体起作用的能力以及其他方面的改进的性能;可以包括当用作纯化工具时,在结合能力、纯度、结合动力学、目标分析物耗尽以及其他方便的改进的性能;或者其他。The flexible nature of Molecular Nets enables the use of many types of capture molecules. In some examples, a Molecular Net includes a single type of capture molecule. In other examples, the Molecular Net includes multiple types of capture molecules. In some examples, the use of more than one monoclonal antibody during the manufacture of the Molecular Net enables the Molecular Net to bind more than one epitope of the analyte. The use of more than one type of epitope-specific capture molecule enables improved capture of Molecular Net analytes and correlates to the performance of the Molecular Net. In some examples, the use of more than one nucleic acid sequence can be used in a manufacturing process to generate a molecular network capable of binding more than one epitope of an analyte. Examples of benefit depend on the use of Molecular Nets, and may include, when used in an assay, minimum level of detection, sensitivity, positive predictive value, negative predictive value, ability to function on degraded samples, effect on various populations Functional ability and other aspects of improved performance; may include improved performance in binding capacity, purity, binding kinetics, target analyte depletion, and other conveniences when used as a purification tool; or others.

在一些实例中,针对相互确认的分析物的捕获分子的使用可以被用在分子网中并且与该分子网的性能相关。分子网中相互确认的捕获分子的使用可以以一种确认的方式来使用,借此多于一种分析物的捕获可以提供统计上更显著的阳性结果;可以提供更稳定的测试结果;可以提供关于样品的另外的信息;以及其他。分子网中相互确认的捕获分子的使用还可以用于限定样品,或者可以在测试中用作对照物,或者可以用于测量有关疾病状态的多于一个相关分子变量,或者可以用于测量有关疾病治疗的多于一个相关分子变量。In some examples, the use of capture molecules for mutually identified analytes can be used in a Molecular Net and correlated with the performance of the Molecular Net. The use of mutually confirmed capture molecules in molecular nets can be used in a confirmed manner whereby capture of more than one analyte can provide statistically more significant positive results; can provide more stable test results; can provide Additional information about the sample; and others. The use of mutually validated capture molecules in Molecular Nets can also be used to qualify a sample, or can be used as a control in a test, or can be used to measure more than one relevant molecular variable related to a disease state, or can be used to measure related disease states More than one relevant molecular variable for treatment.

分子网可以被制造用于从样品同时捕获的相互确认分析物的实例可以包括:基因序列和相对应的蛋白质产物(例如,在BRCA1和BRCA1蛋白中的癌症相关SNP);mRNA和相对应的蛋白质产物(例如,人类乳糖酶mRNA和乳糖酶蛋白);基因序列和相对应的mRNA产物(例如,LMNA中的疾病相关SNP以及预剪接的或剪接的核纤层蛋白A/CmRNA);miRNA和相关的mRNA或者蛋白质产物(miR9和REST、或者CoRESTmRNA、或者miR9和REST蛋白);小分子药物和药物靶标(托法替尼和两面神激酶);表位特异性生物制剂和对应的靶标(例如抗-TNF抗体和循环TNF细胞因子);表位特异性抗体、表位特异性T细胞和/或表位特异性B细胞等(例如,抗-DNA自身抗体、抗-DNACD4+T细胞和/或抗-DNAB细胞);或者其他。有益的实例取决于使用并且可以与在测试灵敏度、阳性预测值、阴性预测值、特异性、疾病的诊断、对经历遗传漂变的样品起作用的能力、响应于治疗的测量能力、测量治疗剂有效性的能力、或者其他方面的改进的性能相关。Examples of mutually confirming analytes that Molecular Nets can be fabricated for simultaneous capture from a sample can include: gene sequences and corresponding protein products (e.g., cancer-associated SNPs in BRCA1 and BRCA1 proteins); mRNA and corresponding protein products products (e.g., human lactase mRNA and lactase protein); gene sequences and corresponding mRNA products (e.g., disease-associated SNPs in LMNA and pre-spliced or spliced lamin A/C mRNA); miRNAs and associated mRNA or protein products (miR9 and REST, or CoREST mRNA, or miR9 and REST protein); small molecule drugs and drug targets (tofacitinib and Janus kinase); epitope-specific biologics and corresponding targets (such as anti - TNF antibodies and circulating TNF cytokines); epitope-specific antibodies, epitope-specific T cells and/or epitope-specific B cells, etc. (e.g., anti-DNA autoantibodies, anti-DNA CD4 + T cells and/or anti-DNAB cells); or others. Examples of benefit are use dependent and can relate to test sensitivity, positive predictive value, negative predictive value, specificity, diagnosis of disease, ability to function on samples undergoing genetic drift, ability to measure response to treatment, measurement of therapeutic agents Ability to be effective, or otherwise improve performance.

在一个实例中,分子网可以按捕获和定位结合分析物的方式来制造,其方式为增强可检测信号的强度或者可以增强对结合分析物的检测,如当在利用光学检测的测试中使用时。通过预先定位的分层捕获分子将捕获的分析物以分层的方式放置能够通过信号强化来快速检测分析物。通过分子网实现的信号强化的实例可以涉及荧光、荧光共振能量转移、吸光度、发光、光散射、表面等离子体共振、光外差检测、或者其他。In one example, the Molecular Net can be fabricated in a manner that captures and localizes the bound analyte in a manner that enhances the intensity of the detectable signal or can enhance the detection of the bound analyte, such as when used in an assay utilizing optical detection . Placing the captured analytes in a layered manner by prepositioned layered capture molecules enables rapid detection of analytes through signal enhancement. Examples of signal enhancement achieved by Molecular Nets may involve fluorescence, fluorescence resonance energy transfer, absorbance, luminescence, light scattering, surface plasmon resonance, optical heterodyne detection, or others.

可以设计和制造所述分子网来替代对用于超灵敏检测的昂贵又费时的方法的需求,这些方法如PCR、分支DNA、或信号放大所需的多步检测方法。还可以设计和制造所述分子网来替代对昂贵且复杂的分析装置的需求。The molecular nets can be designed and fabricated to replace the need for expensive and time-consuming methods for ultrasensitive detection, such as PCR, branched DNA, or the multi-step detection methods required for signal amplification. The Molecular Nets can also be designed and fabricated to replace the need for expensive and complex analytical devices.

通常,并入三维分子网基体中的捕获分子的数量小于或等于使用常规方法以二维方式轭合至表面上的捕获分子的数量。二维捕获分子表面轭合物可以依赖于使用单类型连接子或者可以依赖于连续使用2种连接子来将捕获分子轭合至固体表面上。在制造分子网的层的过程中,多种类型的连接子同时用于将捕获分子连接至一个新层的捕获分子上,并且将新层的连接的捕获分子连接至先前层的间隔子或捕获分子上。可以在放置到固体表面上之前在溶液中制造分子网。预先制造的分子网可以被吸附或共价连接至固体表面上。还可将分子网直接逐层制造到固体表面上。可以使用非共价(静电的、范德华力或者其他)或共价方法将所述分子网放置在固体表面上。在一些实例中,聚苯乙烯、聚氨酯、聚乙烯、或经处理的表面如聚左旋赖氨酸涂覆表面、包含-COOH、NHS、胺或其他的修饰表面可购自商业来源(供应商的实例可以包括赛默公司(Thermo)、密理博公司(Millipore)、路明克斯公司(Luminex)和其他公司)并且用作用于分子网放置的固相表面。在其他实例中,固相表面可以通过化学品(如酸)进行预处理,以便激活表面部分并且因此在固相表面与分子网的反应性部分之间产生附接点。在一些实例中,可以利用连接子对固相进行预处理,以便将固相表面共价连接至分子网。Typically, the number of capture molecules incorporated into the 3D Molecular Net matrix is less than or equal to the number of capture molecules conjugated to the surface in two dimensions using conventional methods. Two-dimensional capture molecule surface conjugates may rely on the use of a single type of linker or may rely on the sequential use of 2 linkers to conjugate the capture molecule to the solid surface. In the process of fabricating the layers of a Molecular Net, multiple types of linkers are used simultaneously to attach capture molecules to capture molecules of a new layer, and to attach attached capture molecules of a new layer to spacers or capture molecules of previous layers. molecularly. Molecular Nets can be fabricated in solution prior to placement on a solid surface. Prefabricated molecular nets can be adsorbed or covalently attached to solid surfaces. Molecular Nets can also be fabricated layer-by-layer directly onto solid surfaces. The Molecular Net can be placed on a solid surface using non-covalent (electrostatic, van der Waals or other) or covalent methods. In some examples, polystyrene, polyurethane, polyethylene, or treated surfaces such as poly-L-lysine coated surfaces, modified surfaces containing -COOH, NHS, amines, or others can be purchased from commercial sources (supplier's Examples may include Thermo, Millipore, Luminex, and others) and are used as solid phase surfaces for molecular net placement. In other examples, the solid surface can be pretreated with chemicals such as acids in order to activate surface moieties and thus create attachment points between the solid surface and the reactive moieties of the Molecular Net. In some examples, the solid phase can be pretreated with linkers to covalently attach the solid phase surface to the Molecular Net.

用于在固相表面上使用的分子网的设计和制造可以产生通过每个层中的共价连接体固定的捕获分子的一个共价连接的多层三维基体。设计和制造可以以顺序的方式发生,其中制造一个第一层并且以顺序的方式制造后续层,借此每个层可以按共价的方式互连,以便提升结构完整性、拓扑结构、孔隙率和/或稳定性。可选择单独捕获分子、连接子以及间隔子以促成分子网的一个或多个特性。特性可以包括分析物特异性、热稳定性、层厚度、孔隙直径、吸光度、光谱、发射光谱、固相相容性、或者其他。The design and fabrication of Molecular Nets for use on solid surfaces can produce a covalently linked multilayered three-dimensional matrix of capture molecules immobilized by covalent linkers in each layer. Design and fabrication can occur in a sequential manner, where a first layer is fabricated and subsequent layers are fabricated in a sequential manner, whereby each layer can be covalently interconnected to enhance structural integrity, topology, porosity and/or stability. Individual capture molecules, linkers, and spacers can be selected to contribute to one or more properties of the molecular net. Properties may include analyte specificity, thermal stability, layer thickness, pore diameter, absorbance, spectrum, emission spectrum, solid phase compatibility, or others.

已知长度和宽度的捕获分子和连接分子以及间隔子的使用可以用于在分子网的表面上产生不同的拓扑结构。可以被赋予到分子网上的拓扑特征可以包括但不限于波纹、麻点、网点、孔隙、丘状隆起、分支、长丝、纤维、裂痕、凸起区段、或者其他,并且可以在分子网中以随机、伪随机、或者不规则的方式排列。The use of capture and linker molecules of known length and width and spacers can be used to generate different topologies on the surface of the Molecular Net. Topological features that can be imparted to molecular nets can include, but are not limited to, ripples, pits, dots, pores, mounds, branches, filaments, fibers, cracks, raised segments, or others, and can be in molecular nets Arranged randomly, pseudo-randomly, or irregularly.

分子网的拓扑特征可以通过使用捕获分子和连接子;捕获分子、连接子和间隔子;或者连接子和间隔子产生。在一些情况下,捕获分子可以用于产生分子网的拓扑特征。在这些实例中,可在将捕获分子共价并入分子网层之前,将捕获分子预先连接至彼此。在一些情况下,可基于间隔臂的埃长度选择连接子。在一些实例中,可以使用间隔子将一个第一连接子连接至一个第二连接子上,以便产生一个长的多功能连接子。在一些情况下,间隔子可以用于在分子网中产生拓扑结构。也可在将间隔子并入分子网层之前,将间隔子预先连接至彼此或者连接至捕获分子。Topological features of molecular nets can be generated through the use of capture molecules and linkers; capture molecules, linkers, and spacers; or linkers and spacers. In some cases, capture molecules can be used to generate topological features of molecular nets. In these examples, the capture molecules can be pre-linked to each other prior to covalent incorporation of the capture molecules into the Molecular Net layer. In some cases, linkers can be selected based on the Angstrom length of the spacer. In some examples, a spacer can be used to join a first linker to a second linker to create a long multifunctional linker. In some cases, spacers can be used to generate topological structures in molecular nets. The spacers may also be pre-attached to each other or to capture molecules prior to their incorporation into the Molecular Net layer.

可以设计和制造分子网以便将如亲和力、大小排除、过滤、荧光以及其他的特征赋予分子网的每个层中。可以基于大小、长度、直径、厚度、光学特性、化学特性或者其他来选择特异性捕获分子、连接分子以及间隔分子,以便在制造过程中将特征赋予分子网中。Molecular Nets can be designed and fabricated to impart features such as affinity, size exclusion, filtering, fluorescence, and others into each layer of the Molecular Net. Specific capture molecules, linker molecules, and spacer molecules can be selected based on size, length, diameter, thickness, optical properties, chemical properties, or otherwise to impart characteristics into the molecular net during fabrication.

可以以一种方式来制造分子网,借此一个或多个捕获分子在共价连接多层三维基体中可以提供结构作用,可以提供结构作用和分析物捕获的作用两者。捕获分子的一些实例可以在分子网中用于结构和/或分析物捕获作用。Molecular Nets can be fabricated in a manner whereby one or more capture molecules in a covalently linked multilayer three-dimensional matrix can provide a structural role, both structural and analyte capture can be provided. Some examples of capture molecules can be used in Molecular Nets for structural and/or analyte capture.

通过针对每个层的制造过程中所使用的捕获分子、连接子和间隔子的直径、宽度和/或长度,可以部分地确定分子网的每个层中的捕获分子之间的距离,借此在每个连接-捕获-间隔分子之间的摩尔关系可以是类似的或者可以是不同的,并且所述分子的选择可以取决于待捕获的分析物的大小和/或形状、用于测量捕获的分析物的方法和/或所希望的用途。The distance between the capture molecules in each layer of the Molecular Net can be determined in part by the diameter, width and/or length of the capture molecules, linkers and spacers used in the fabrication process for each layer, whereby The molar relationship between each link-capture-spacer molecule may be similar or may be different, and the choice of the molecule may depend on the size and/or shape of the analyte to be captured, the The method and/or intended use of the analyte.

可以以一种方式设计和制造分子网,借此在所述分子网的一个层中每个捕获分子、连接子以及间隔子组分可以具有等效的或非等效的摩尔比。可以不时地改变所述组分之间的摩尔比以便在每个层中产生孔隙或其他拓扑特征。所述孔隙和拓扑特征可以具有一个直径范围并且可以具有一个相关联的深度范围。分子网组分之间的摩尔比的变化可能在分子网的单个层中发生,或者可能在分子网的多于一个层中发生,并且取决于分子网的预期用途。Molecular Nets can be designed and fabricated in a manner whereby each capture molecule, linker and spacer component can have an equivalent or non-equivalent molar ratio in one layer of the Molecular Net. The molar ratio between the components can be varied from time to time to create porosity or other topological features in each layer. The pores and topological features may have a diameter range and may have an associated depth range. Variations in the molar ratios between the Molecular Net components may occur in a single layer of the Molecular Net, or may occur in more than one layer of the Molecular Net, and depend on the intended use of the Molecular Net.

表1.具有分析物捕获能力的分子网结构组分的实例Table 1. Examples of molecular net structural components with analyte capture capabilities

表2中提供了在设计和制造过程中可能考虑到的分析物尺寸的一些实例。分子网表面化学、孔隙直径、拓扑结构、分层、或者其他的设计和制造可以基于分析物形状;分析物结构、分析物亚型、分析物荷载、具有其他分子的分析物复合物形成以及其他形式。此外,分子网可以被设计和制造用于结合和捕获所述分析物,或者可以被设计和制造用于排除所述分析物。分析物和分析物大小的实例可以见于表2中。Some examples of analyte sizes that may be considered during design and fabrication are provided in Table 2. Molecular Net surface chemistry, pore diameter, topology, layering, or other design and fabrication can be based on analyte shape; analyte structure, analyte subtype, analyte loading, analyte complex formation with other molecules, and others form. Furthermore, Molecular Nets can be designed and fabricated to bind and capture the analyte, or can be designed and fabricated to exclude the analyte. Examples of analytes and analyte sizes can be found in Table 2.

表2.分析物以及它们的尺寸的实例Table 2. Examples of analytes and their sizes

包含结构组分和捕获组分的分子网可以按共价连接的三维(3D)多层基体排列并且可以涉及捕获一种或多种分析物,该一种或多种分析物与以下特征中的一个或多个相关:表面化学;分析物形状;分析物结构;分析物亚型;分析物荷载;翻译后修饰;化学修饰;活性;或者其他。Molecular nets comprising structural and capture components can be arranged in covalently linked three-dimensional (3D) multilayer matrices and can be involved in the capture of one or more analytes that are associated with the following features One or more of: surface chemistry; analyte shape; analyte structure; analyte subtype; analyte loading; post-translational modification; chemical modification; activity; or others.

分子网可以包含结构组分,这些结构组分还以与分析物的捕获有关的方式起作用,并且可以通过共价连接子排列在分子网的互连3D多层基体中。分子网还可以包含间隔子以将所述结构分子/捕获分子互连,其方式为最大化结构增强、稳定性和/或特异性分析物捕获能力。包含捕获组分/结构组分、连接子和间隔子的分子网实例在表3中呈现。Molecular Nets can contain structural components that also function in ways related to the capture of analytes and can be arranged in the interconnected 3D multilayer matrix of Molecular Nets through covalent linkers. Molecular Nets may also contain spacers to interconnect the structure molecules/capture molecules in a manner that maximizes structural reinforcement, stability, and/or specific analyte capture capabilities. Examples of Molecular Nets comprising capture components/structural components, linkers and spacers are presented in Table 3.

分子网的制造是独特的,因为捕获分子通过共价连接分子固定在3D基体中。在大量的研究中,已证明分子网具有改进的热稳定性,并且延长保存期超过传统的捕获技术。The fabrication of Molecular Nets is unique because the capture molecules are immobilized in a 3D matrix by covalently linking the molecules. In numerous studies, Molecular Nets have been demonstrated to have improved thermal stability and extended shelf life over traditional capture technologies.

表3.分子网以及它们的用途的实例Table 3. Examples of molecular nets and their uses

在一些实例中,固相可以是直径范围从约2nm至约200mm的颗粒,并且分子网可以被附接至所述颗粒的表面上。颗粒可以包括:聚苯乙烯、聚乙烯、二氧化硅、复合材料、尼龙、PVDF、硝化纤维、纤维素材料、碳,或者可以是磁性的、顺磁性的、荧光的、条码化的或者其他。In some examples, the solid phase can be particles ranging in diameter from about 2 nm to about 200 mm, and molecular nets can be attached to the surface of the particles. Particles may include: polystyrene, polyethylene, silica, composites, nylon, PVDF, nitrocellulose, cellulosic materials, carbon, or may be magnetic, paramagnetic, fluorescent, barcoded, or otherwise.

分子网可以被吸附或共价连接至颗粒的表面上,其方式为使得在所述分子王网的单层中或者所有层中产生伪随机或有序的孔隙。在最基本的形式中,颗粒可以最初涂覆有一个分子网层,该分子网层可以连接至一个第二层上,该第二层可以被联接至一个第三层上。分子网层可以在每个层中包括相同浓度或不同浓度的相同的捕获分子。与之前的多层相比,分子网颗粒在每个层中还可以包括不同的捕获分子,并且可以按并入相同或不同浓度的捕获分子的方式来制造。Molecular nets can be adsorbed or covalently attached to the surface of particles in such a way that pseudorandom or ordered pores are created in a single layer or in all layers of the molecular net. In its most basic form, particles can be initially coated with a molecular net layer, which can be attached to a second layer, which can be attached to a third layer. The Molecular Net layers may include the same capture molecule in each layer at the same concentration or at different concentrations. Molecular Net particles can also include different capture molecules in each layer and can be fabricated in such a way that they incorporate the same or different concentrations of capture molecules compared to the previous multiple layers.

在一些实例中,分子网可以被附接至颗粒表面上,其方式为使得产生具有预先确定的极性的不对称颗粒。这种颗粒可以利用包括具有大直径、宽度和/或长度的结构分子的初始层来设计和制造,并且可以按不对称的方式连接至颗粒上以便产生极性。一个第二层可以被连接至一个第一层上,并且一个第三层可以被连接至一个第二层上,等等。分子网颗粒中的层的数量可以根据使用而变化。In some examples, Molecular Nets can be attached to particle surfaces in such a way that an asymmetric particle with a predetermined polarity is created. Such particles can be designed and fabricated with an initial layer comprising structural molecules of large diameter, width and/or length, and can be attached to the particle in an asymmetric manner to create polarity. A second layer can be connected to a first layer, and a third layer can be connected to a second layer, and so on. The number of layers in a Molecular Net particle can vary depending on the use.

在一些实例中,分子网可以被附接至颗粒的一个区段上,以便产生具有预先确定的极性的不对称颗粒。这种颗粒被构建,借此该初始层被涂覆至颗粒的一个区段上,并且借此一个第二层被连接至该初始层在所述颗粒的相同区段上,并且借此一个第三层被连接至该第二层在所述颗粒的相同区段上,并且借此一个第四层被连接至该第三层在所述颗粒的相同区段上。In some examples, a molecular net can be attached to a segment of a particle to create an asymmetric particle with a predetermined polarity. The particle is constructed whereby the initial layer is applied to a section of the particle, and whereby a second layer is connected to the initial layer on the same section of the particle, and whereby a first Three layers are connected to the second layer on the same section of the particle, and thereby a fourth layer is connected to the third layer on the same section of the particle.

在一些实例中,分子网可以被动吸附至一个非功能化的颗粒表面上。在其他实例中,颗粒表面可以被功能化并且在附接之前可能需要激活。在其他实例中,颗粒表面可以在功能化之前被激活,在功能化的时候分子网可以被附接。然而在其他实例中,分子网可以被直接构建在颗粒表面上。将分子网附接至颗粒上可以改变所述颗粒的物理和/或化学特征。在一些实例中,分子网可以包括置于颗粒表面上的多个伪随机拓扑特征。在一些实例中,分子网颗粒可以包括多个拓扑特征,这些拓扑特征包括捕获分子和连接子,并且还可以包括间隔子。不同的拓扑特征的实例可以包括:附件、尖峰、高地、平面、丘状隆起、裂痕、薄皮、网点、沟槽、孔隙以及其他,并且可以由直接连接在分子网的一个或多个层中和/或直接连接至分子网的一个或多个层上的捕获组分组成。In some examples, Molecular Nets can be passively adsorbed onto a non-functionalized particle surface. In other examples, particle surfaces may be functionalized and may require activation prior to attachment. In other examples, particle surfaces can be activated prior to functionalization, at which time molecular nets can be attached. In other examples, however, molecular nets can be built directly on particle surfaces. Attaching Molecular Nets to particles can alter the physical and/or chemical characteristics of the particles. In some examples, a molecular net can include a plurality of pseudorandom topological features disposed on the particle surface. In some examples, Molecular Net particles can include topological features including capture molecules and linkers, and can also include spacers. Examples of different topological features may include: appendages, peaks, plateaus, planes, mounds, fissures, skins, dots, grooves, pores, and others, and may be formed by direct connections in one or more layers of the Molecular Net and and/or directly attached to the capture component composition on one or more layers of the Molecular Net.

拓扑特征的其他实例可以包括袋、柱、突起、分支、凸部、脊、裂缝、格子状结构、薄片、小球、球体、或者其他。拓扑特征可以在溶液中预先成形,并且被连接至分子网上,或者可以在构建每个层的时候形成。Other examples of topological features may include pockets, posts, protrusions, branches, protrusions, ridges, cracks, lattice-like structures, flakes, globules, spheres, or others. Topological features can be pre-shaped in solution and attached to the molecular net, or can be formed as each layer is built.

颗粒上的分子网可以在分子网的一个或多个层中包括非均匀的捕获分子。非均匀设计的益处可以与单一颗粒上具有多种表面化学物质的多种分析物的捕获有关。在制造过程中并入分子网的非均匀捕获分子可以遍及每个层随机分布;可以遍及每个层成层;或者其他,这取决于用途。Molecular Nets on particles may include non-uniform capture molecules in one or more layers of the Molecular Net. The benefit of a heterogeneous design can be related to the capture of multiple analytes with multiple surface chemistries on a single particle. The heterogeneous capture molecules incorporated into the molecular net during fabrication can be randomly distributed throughout each layer; can be layered throughout each layer; or otherwise, depending on the application.

分子网可以被附接至颗粒上,以便增加所述颗粒的表面面积。分子网还可以用于增加颗粒直径。除了分析物捕获能力之外,颗粒上的分子网的拓扑特征还可以与增加的颗粒大小有关。Molecular Nets can be attached to particles in order to increase the surface area of the particles. Molecular Nets can also be used to increase particle diameter. In addition to analyte capture capability, topological characteristics of molecular nets on particles can also be related to increased particle size.

在一些实例中,一个第一分子网层可以被附接至颗粒表面上,以便改变颗粒的物理和/或化学特性。在许多商业颗粒中,“微珠效应”或“表面效应”可以妨碍结果并且仍未能很好地了解。产生2D轭合物和2D轭合表面的传统轭合技术经常受制于表面效应。分子网可以用于最小化或抵消微珠效应,以便在测定中最小化到微珠表面上的非特异性结合、微珠自身荧光、微珠干扰、或者其他。在一些实例中,分子网颗粒可以赋予增加的分析物结合能力,并且还可以赋予对不希望的分析物非特异性结合的阻断,以便增加测定中的信噪比、收率以及纯化分析物的纯度、或者其他。In some examples, a first Molecular Net layer can be attached to the particle surface in order to alter the physical and/or chemical properties of the particle. In many commercial particles, the "bead effect" or "surface effect" can hamper results and is still not well understood. Traditional conjugation techniques to generate 2D conjugates and 2D conjugated surfaces are often limited by surface effects. Molecular Nets can be used to minimize or counteract bead effects in order to minimize non-specific binding to bead surfaces, bead autofluorescence, bead interference, or others in the assay. In some examples, Molecular Net particles can confer increased analyte binding capacity and can also confer blocking of undesired analyte nonspecific binding in order to increase signal-to-noise ratio, yield, and efficiency of purified analytes in assays. purity, or otherwise.

在一些实例中,在又一个方面,本发明特征是颗粒上的包含多于一个层的分子网,其中每个层包含针对分析物的捕获分子,其中每个层包含针对不同分析物的不同捕获分子,其中不同层可以针对不同分析物以便能够捕获一种分析物或多种分析物。In some instances, in yet another aspect, the invention features molecular nets on particles comprising more than one layer, wherein each layer comprises capture molecules for an analyte, wherein each layer comprises a different capture molecule for a different analyte. Molecules where different layers can be directed against different analytes to enable capture of one analyte or multiple analytes.

在又一个方面,置于固相表面上的分子网可以用于增加从样品中回收的一种或多种分析物的纯度。与商业2D功能化表面相比,分子网涂覆的表面可以减少不希望的分析物的非特异性结合。In yet another aspect, molecular nets placed on a solid surface can be used to increase the purity of one or more analytes recovered from a sample. Compared with commercial 2D functionalized surfaces, Molecular Net-coated surfaces can reduce the non-specific binding of undesired analytes.

在一些实例中,置于颗粒上的分子网可以明显增加颗粒的分析物捕获能力。分子网的另外分层可以进一步增加每个颗粒结合分析物的数量,并且可以用于提高样品的分析物的回收或收率,并且可以用于耗尽样品的一种或多种分析物。使用分子网的益处In some instances, molecular nets placed on particles can significantly increase the analyte capture capacity of the particles. Additional stratification of the molecular net can further increase the number of bound analytes per particle, and can be used to increase the recovery or yield of analytes from a sample, and can be used to deplete a sample of one or more analytes. Benefits of Using Molecular Net

分子和细胞测试策略采用单重或多重免疫测定、PCR测定、下一代测序技术或者其他,以便识别样品中一种或多种分析物的存在或者测量该一种或多种分析物的量。Molecular and cellular testing strategies employ singleplex or multiplex immunoassays, PCR assays, next generation sequencing techniques, or others to identify the presence or measure the amount of one or more analytes in a sample.

在多重测定中,多个反应可以空间上分离,或者可以被结合至一个单一测试反应中,并且可以采用包括独特识别器的固相以提供信息。独特识别器的一些实例可以包括不同的条形码、不同的荧光发射、不同的化学物质、不同的有序核苷酸标签、或者其他的使用。In a multiplex assay, multiple reactions can be spatially separated, or can be combined into a single test reaction, and a solid phase including unique identifiers can be employed to provide information. Some examples of unique identifiers may include different barcodes, different fluorescent emissions, different chemicals, different ordered nucleotide tags, or other uses.

固相可以在单重和多重测定中使用,可以依赖于目标分析物的特异性结合,以便产生可测量的信号或信号中可测量的变化,并且固相可以在直接测定中使用或者可以在间接测定中使用。可测量信号可以从阳性测试中产生,并且可以包括电、热、磁、光、振动、同位素、或其他可测量特征。Solid phases can be used in singleplex and multiplex assays, can rely on specific binding of the analyte of interest in order to produce a measurable signal or a measurable change in signal, and can be used in direct assays or can be used in indirect used in the measurement. A measurable signal can result from a positive test, and can include electrical, thermal, magnetic, optical, vibrational, isotopic, or other measurable characteristics.

使用当前策略来实现灵敏的且可再现的测量中的许多困难导致高的非特异性结合、较低的灵敏度、低信噪比,并且因此需要上游的样品处理步骤来从样品中去除尽可能多的非特异性组分,外加上使用为了从噪声中确定实信号所需要的高灵敏度读取技术和复杂算法,这使得它们难以转变成几乎实时的、容易使用的分子诊断和分析物测量工具。Many difficulties in achieving sensitive and reproducible measurements using current strategies result in high non-specific binding, low sensitivity, low signal-to-noise ratio, and thus require upstream sample processing steps to remove as much as possible from the sample The nonspecific components, combined with the use of highly sensitive readout techniques and complex algorithms required to determine real signal from noise, make their translation into near real-time, easy-to-use tools for molecular diagnostics and analyte measurement difficult.

分子网可以用于代替当前商业方法,并且可以实现从样品的特异性且灵敏的分析物捕获、检测和测量。用分子网代替当前方法用于分析物捕获所获得的结果的实例在图1-图6中呈现。通过用分子网代替当前2D方法用于分析物捕获和测量,可以实现测定灵敏度、分析物检测的最低水平以及其他特征的改进。背景噪声的减少可以通过用分子网代替当前2D方法来实现,并且可以用于改进分析物纯化、分析物纯度以及测定灵敏度。Molecular Nets can be used to replace current commercial methods and can achieve specific and sensitive analyte capture, detection and measurement from samples. Examples of results obtained using Molecular Nets instead of current methods for analyte capture are presented in Figures 1-6. Improvements in assay sensitivity, minimal levels of analyte detection, and other features can be achieved by replacing current 2D methods with Molecular Nets for analyte capture and measurement. Reduction of background noise can be achieved by replacing current 2D methods with Molecular Nets and can be used to improve analyte purification, analyte purity, and assay sensitivity.

分子网的益处在表4中呈现,并且可以包括:对原始样品中一种、若干种或多种分子和细胞分析物的快速捕获;当在涉及间接和直接检测方法的测试中使用时产生灵敏且特异性的信号的能力;产生具有增强的荧光强度的信号的能力;使结合分析物浓缩的能力;以减少分析物之间和/或检测分子之间的空间位阻的方式空间上分离结合分析物的能力;增强的稳定性;减少的背景以及其他。The benefits of Molecular Nets are presented in Table 4 and may include: rapid capture of one, several or more molecular and cellular analytes in the original sample; generation of sensitivity when used in tests involving indirect and direct detection methods; Ability to generate a signal with enhanced fluorescence intensity; ability to concentrate bound analytes; spatially separate binding in a manner that reduces steric hindrance between analytes and/or between detection molecules Analyte capacity; enhanced stability; reduced background and others.

表4.分子网的经证实的益处Table 4. Proven Benefits of Molecular Nets

分子网以及它们的用途Molecular Nets and Their Uses

分子网可以用于其中分析物结合效率、分析物结合动力学、分析物结合能力、分析物检测、分析物测量、分析物富集、分析物纯化以及分析物递送可能是重要的多种应用。分子网可以在液相中使用或者可以被附接至固相上。Molecular Nets can be used in a variety of applications where analyte binding efficiency, analyte binding kinetics, analyte binding capacity, analyte detection, analyte measurement, analyte enrichment, analyte purification, and analyte delivery may be important. Molecular Nets can be used in a liquid phase or can be attached to a solid phase.

分子网可以通过吸附或共价过程附接至一个接受表面上。固相的实例包括但不限于:纳米管、金属、颗粒、微量滴定板、载玻片、盒、探针、横流测试器皿、支架、导管、阀、血管、针、固相装置、或者其他。对于分子网附接可以相容的不同固相的化学物质的实例包括但不限于:塑料、其他聚合物、薄膜、胶态金属、二氧化硅、碳纳米管、蛋白质、碳水化合物、脂质、核酸、细胞、组织、或者其他。Molecular Nets can be attached to a receptive surface by adsorption or covalent processes. Examples of solid phases include, but are not limited to: nanotubes, metals, particles, microtiter plates, glass slides, cartridges, probes, lateral flow test vessels, stents, catheters, valves, blood vessels, needles, solid phase devices, or others. Examples of chemistries of different solid phases that may be compatible for Molecular Net attachment include, but are not limited to: plastics, other polymers, thin films, colloidal metals, silica, carbon nanotubes, proteins, carbohydrates, lipids, Nucleic acid, cells, tissues, or others.

分子网可以被附接至固相装置表面上以便从样品中捕获、纯化、或耗尽一种或多种分析物。图1中呈现了使用分子网来从样品中捕获和/或纯化分析物的一个实例。可以用于从样品中捕获和纯化分析物的分子网的一些其他实例是:用于免疫球蛋白类捕获的蛋白A、蛋白G、或蛋白L网涂覆的微球;用于生物素捕获的链霉亲和素网涂覆的微球;用于抗-TNF生物捕获的TNF网涂覆的微球;用于抗-IL6生物捕获的IL6网涂覆的微球;用于RNA病毒捕获的IgM网涂覆的微球;用于补体捕获的IgFc网涂覆的微球;用于抗原特异性免疫球蛋白的抗原网涂覆的微球;抗原特异性免疫细胞捕获;以及其他。分子网可以在色谱法中使用,用于从样品中捕获和纯化一种或多种分析物。Molecular Nets can be attached to the surface of a solid-phase device to capture, purify, or deplete one or more analytes from a sample. An example of the use of Molecular Nets to capture and/or purify an analyte from a sample is presented in FIG. 1 . Some other examples of Molecular Nets that can be used to capture and purify analytes from samples are: Protein A, Protein G, or Protein L mesh-coated microspheres for immunoglobulin-like capture; Streptavidin mesh-coated microspheres; TNF mesh-coated microspheres for anti-TNF biotrap; IL6 mesh-coated microspheres for anti-IL6 biotrap; RNA virus capture IgM mesh-coated microspheres; IgFc mesh-coated microspheres for complement capture; antigen-net-coated microspheres for antigen-specific immunoglobulins; antigen-specific immune cell capture; and others. Molecular Nets can be used in chromatography to capture and purify one or more analytes from a sample.

分子网可以用于从样品中捕获分析物,以用于通过独立的方法(在此称为样品制备)进行下游的分析物测量。独立的方法的实例可以包括:质谱分析、免疫测定、PCR、下一代测序、qRT-PCR、数字PCR、显微镜检查法、荧光、流式细胞术、微珠细胞术、或者其他。Molecular Nets can be used to capture analytes from a sample for downstream analyte measurement by a separate method, referred to herein as sample preparation. Examples of independent methods may include: mass spectrometry, immunoassay, PCR, next generation sequencing, qRT-PCR, digital PCR, microscopy, fluorescence, flow cytometry, bead cytometry, or others.

在另一个方面,本发明当用于测定时改进了信噪比。In another aspect, the invention improves the signal-to-noise ratio when used in an assay.

分子网可以被附接至固相装置表面上,以便测量一种或多种分析物的存在、缺失、修饰、或浓度。图3和图4中呈现了使用分子网用于分析物检测和/或测量的实例。在一些其他实例中,分子网可以用于以直接或间接的方式同时检测和测量2种或更多种特异性分析物。通过分子网的间接捕获可以涉及通过分子网的特异性捕获分子捕获主要分析物,这使得能够进行与捕获的主要分析物相关联的一种或多种相关次级分析物的检测。分子网可以用作从样品中捕获主要分析物的发现工具,并且使得能够识别、检测、或测量通过关联捕获的次级分析物。分子网可以按此方式用于药物发现、途径作图,并且在蛋白质组学、转录组学、糖组学、脂质组学、代谢物组学、功能基因组学、食物组学、营养学、药理学、毒物学以及其他中使用。Molecular Nets can be attached to the surface of a solid-phase device in order to measure the presence, absence, modification, or concentration of one or more analytes. Examples of the use of Molecular Nets for analyte detection and/or measurement are presented in FIGS. 3 and 4 . In some other examples, Molecular Nets can be used to simultaneously detect and measure two or more specific analytes in a direct or indirect manner. Indirect capture by Molecular Net may involve capture of a primary analyte by specific capture molecules of Molecular Net, which enables detection of one or more related secondary analytes associated with the captured primary analyte. Molecular Nets can be used as a discovery tool to capture primary analytes from samples and enable identification, detection, or measurement of secondary analytes captured by association. Molecular Nets can be used in this way for drug discovery, pathway mapping, and in proteomics, transcriptomics, glycomics, lipidomics, metabolomics, functional genomics, foodomics, nutrition, pharmacology, toxicology, and others.

在一些实例中,分子网可以用于检测细胞中的抗药性。细胞可以是肿瘤细胞、免疫细胞、微生物细胞、或者其他细胞。用于这些应用的分子网可以包括针对一种细胞类型的一个或多个独特特征的捕获分子。分子网可另外以赋予与完整无损的细胞的捕获有关的表面拓扑结构的方式来制造。In some examples, Molecular Nets can be used to detect drug resistance in cells. Cells can be tumor cells, immune cells, microbial cells, or other cells. Molecular Nets for these applications may include capture molecules targeting one or more unique characteristics of a cell type. Molecular Nets can additionally be fabricated in a manner that imparts surface topology relevant to the capture of intact cells.

在其他实例中,分子网可以被制造且用于:免疫细胞反应性测量;免疫应答监测;免疫应答分类;免疫球蛋白滴定;生物素化分子捕获;多重免疫测定;单重免疫测定;下一代测序反应;PCR;微生物捕获;微生物发现;mRNA和编码蛋白测量;SNP(单核苷酸多态性)映射;SNP检测;疾病标志物样品制备;miRNA捕获和/或测量;翻译后修饰发现和/或捕获和/或测量;激酶活性测量;或者其他。In other examples, Molecular Nets can be fabricated and used for: immune cell reactivity measurement; immune response monitoring; immune response classification; immunoglobulin titration; biotinylated molecular capture; multiplex immunoassays; Sequencing reactions; PCR; microbial capture; microbial discovery; mRNA and encoded protein measurement; SNP (single nucleotide polymorphism) mapping; SNP detection; disease marker sample preparation; miRNA capture and/or measurement; post-translational modification discovery and /or capture and/or measurement; kinase activity measurement; or other.

分子网可以具有在制造过程中赋予的多个可测量特征,并且可以按直接或间接的方式用作传感器。可以使用商业方法来检测分子网传感器的一个或多个特征中的可测量变化,这些商业方法采用光学感测、电化学感测、电磁感测、电阻抗、或者其他。在一个实例中,分子网传感器可以用于捕获和结合分析物。分析物结合可以引起分子网传感器的特征中的可测量的变化。可以在一段时间内监测涉及有关分子网传感器的结合事件或修饰事件,并且可以通过装置检测、中继、和收集分子网传感器特征中的变化。将分子网用作传感器的其他实例可以包括分析物结合事件、酶促反应、分析物修饰事件、细胞分化、细胞-细胞相互作用、或者其他。Molecular Nets can have a number of measurable characteristics imparted during fabrication and can be used as sensors in a direct or indirect manner. Commercial methods may be used to detect measurable changes in one or more characteristics of molecular net sensors employing optical sensing, electrochemical sensing, electromagnetic sensing, electrical impedance, or others. In one example, molecular net sensors can be used to capture and bind analytes. Analyte binding can cause measurable changes in the characteristics of the Molecular Net sensor. Binding events or modification events involving the relevant Molecular Net sensor can be monitored over a period of time, and changes in characteristics of the Molecular Net sensor can be detected, relayed, and collected by the device. Other examples of using Molecular Nets as sensors may include analyte binding events, enzymatic reactions, analyte modification events, cell differentiation, cell-cell interactions, or others.

可测量的特征的实例包括但是不限于:物理形状、高度、密度、荧光强度、波长位移(FRET或FRAP)、振动频率、吸光度、柔性、折射性、电导、阻抗、电阻、熔融温度、变性温度、冻结温度以及其他。Examples of measurable characteristics include, but are not limited to: physical shape, height, density, fluorescence intensity, wavelength shift (FRET or FRAP), vibrational frequency, absorbance, flexibility, refractivity, conductance, impedance, electrical resistance, melting temperature, denaturation temperature , freezing temperatures, and others.

对于与分子网传感器一起使用可以是相容的测量装置可以包括:光子多道分析器、分光计、磁共振成像仪、磁场检测器、光学纤维、玻璃移液管、电路、荧光计、光谱分析器、流式细胞仪、CCD摄像机、显微镜、声室、扩音器、光度计以及其他。这些测量装置可以用于测量以下的变化:厚度、拓扑结构、荷载、绝缘、电容、电压、颜色、音质、振动、磁性、酶活性、或者用作传感器的分子网的其他特征。Measurement devices that may be compatible for use with Molecular Net sensors may include: photon multichannel analyzers, spectrometers, magnetic resonance imagers, magnetic field detectors, fiber optics, glass pipettes, electrical circuits, fluorometers, spectroscopic analysis instruments, flow cytometers, CCD cameras, microscopes, sound chambers, loudspeakers, photometers, and others. These measurement devices can be used to measure changes in thickness, topology, loading, insulation, capacitance, voltage, color, sound quality, vibration, magnetism, enzymatic activity, or other characteristics of molecular nets used as sensors.

此外,分子网可以在柔性电路中使用,借此捕获分子和/或结构分子可以被连接至导电分子上。分子网电路可以在单面柔性电路、双接触(背裸柔性电路)、雕刻柔性电路、双面柔性电路、多层柔性电路、脊形柔性电路、脊形柔性板、聚合物厚膜柔性电路、或者其他中使用。大多数柔性电路是用于将多个电子部件(如集成电路、电阻器、电容器等)互连的无源布线结构,然而一些柔性电路仅用于在其他电子组件之间直接地或借助于连接器制造互连。用于在电路中使用或者用于用作电路部件的分子网可以由合成组分组成,或者可以由生物化学捕获分子和/或细胞组成,或者可以按一种有待在柔性电路中使用的方式来制造。分子网电路还可以用作传感器。Furthermore, Molecular Nets can be used in flexible circuits, whereby capture molecules and/or structural molecules can be attached to conductive molecules. Molecular Net circuits can be used on single-sided flex circuits, double-contact (bare-back flex circuits), engraved flex circuits, double-sided flex circuits, multi-layer flex circuits, ridge flex circuits, ridge flex circuits, polymer thick film flex circuits, or other use. Most flex circuits are passive wiring structures used to interconnect multiple electronic components such as integrated circuits, resistors, capacitors, etc., however some flex circuits are only used to connect between other electronic components directly or by means of device manufacturing interconnects. Molecular nets for use in or as circuit components may be composed of synthetic components, or may be composed of biochemical capture molecules and/or cells, or may be formed in a manner to be used in flexible circuits manufacture. Molecular Net circuits can also be used as sensors.

在一些实例中,分子网电路可以具有特定电化学特性,并且可以用于监测电化学电池/电解质电池中的不同参数,如pH、电流、电压、阻抗、或者其他。分子网可能发生的结合事件和修饰事件可以是可测量的,并且可以通过电导、电流、或电压的变化来反映。更确切地,可以通过分子网的电化学特性和/或周围环境的改变来监测含有分析物的样品的引入,该分析物对分子网电路中的部件具有特异性结合亲和力或者对其有反应性。In some examples, Molecular Net circuits can have specific electrochemical properties and can be used to monitor different parameters in electrochemical cells/electrolyte cells, such as pH, current, voltage, impedance, or others. Binding events and modification events that may occur in molecular nets can be measurable and can be reflected by changes in conductance, current, or voltage. Rather, the introduction of a sample containing an analyte that has a specific binding affinity for, or is reactive to, a component in a Molecular Net circuit can be monitored by changes in the electrochemical properties of the Molecular Net and/or the surrounding environment. .

发生在电路中所用分子网上的结合事件的实例可以包括:抗体-抗原相互作用、核酸-核酸相互作用、酶-底物相互作用、药物-靶标相互作用、酶-辅因子相互作用、配体-细胞相互作用、或者任何其他特异性表面化学驱动的非共价相互作用。分子网的分析物捕获可以通过电化学电池/电解质电池中的pH、电流或电压的变化来确定。分子网特征的变化的测量还可以来源于发生于分子网中的一种或多种组分或发生于捕获分析物的一个或多个修饰事件、或大量修饰事件。修饰事件的实例可以包括:酶裂解;翻译后修饰(如磷酸化、磺化、糖基化、甲基化、或者其他);翻译后修饰的去除(如去磷酸化);或者其他类似修饰。修饰事件可以通过电化学电池/电解质电池中的pH、电流或电压的变化来确定,该变化归因于分子网特征中或周围缓冲系统中的变化。Examples of binding events that occur on molecular nets used in circuits may include: antibody-antigen interactions, nucleic acid-nucleic acid interactions, enzyme-substrate interactions, drug-target interactions, enzyme-cofactor interactions, ligand- Cellular interactions, or any other non-covalent interactions driven by specific surface chemistry. Analyte capture by Molecular Nets can be determined by changes in pH, current or voltage in an electrochemical cell/electrolyte cell. Measurements of changes in Molecular Net characteristics can also be derived from one or more modification events, or a plurality of modification events, that occur at one or more components in the Molecular Net or at the capture analyte. Examples of modification events may include: enzymatic cleavage; post-translational modification (such as phosphorylation, sulfonation, glycosylation, methylation, or others); removal of post-translational modification (such as dephosphorylation); or other similar modifications. Modification events can be determined by changes in pH, current or voltage in an electrochemical cell/electrolyte cell due to changes in the Molecular Net characteristics or in the surrounding buffer system.

确定电路中所用分子网的电化学特性的改变的方法可以包括使用扫描离子电流显微镜、纳米流体二极管、显示电压门控离子电流的纳米孔或纳米通道、离子纳米门控、基于纳米孔的感测平台,以及用于通过介质测量电荷流动的流量或变化的其他方法。更确切地,当跨纳米孔施加偏压时,许多固态纳米孔传感器的固有灵敏度是电解质、或离子电流的选择透性。分子网可以被涂覆到纳米孔的表面上,并且可以监测电流、电压以及阻抗中的变化。Methods for determining changes in the electrochemical properties of molecular nets used in circuits may include the use of scanning ion current microscopy, nanofluidic diodes, nanopores or nanochannels exhibiting voltage-gated ionic currents, ion nanogating, nanopore-based sensing platforms, and other methods for measuring the flow or change in charge flow through a medium. Rather, an inherent sensitivity of many solid-state nanopore sensors is the selective permeability to electrolyte, or ionic current, when a bias voltage is applied across the nanopore. Molecular Nets can be coated onto the surface of the nanopores and changes in current, voltage, and impedance can be monitored.

分子网还可以被涂覆到碳纳米管的表面上,并且借此该分子网可以按一种方式构建以产生用于分析物感测的大小排除和亲和力需要。Molecular Nets can also be coated onto the surface of carbon nanotubes, and thereby the Molecular Nets can be constructed in a way to create the size exclusion and affinity requirements for analyte sensing.

生物层干涉测量法(BLI)是用于测量生物分子相互作用的无标记技术。这是一种光学分析技术,该技术分析从以下两个表面反射的白光的干涉图案:生物传感器尖端上的一个固定化分子网层、和一个内反射层。结合至该生物传感器尖端上的分子的数量的任何变化引起干涉图案的位移,该位移可以被实时测量。固定在分子网涂覆生物传感器尖端上的配体与溶液中的分析物之间的结合导致该生物传感器尖端处的光学厚度增加,这产生了一个波长位移Δλ,该波长位移是生物层的厚度变化的直接量度。相互作用可以被实时测量,从而提供了精确地且准确地监测结合特异性、缔合及解离速率、或浓度的能力。仅结合至分子网生物传感器或从分子网生物传感器解离的分子可以使干涉图案移位并产生响应曲线。未结合分子可以改变周围介质的折射率,或者可以改变流速,但是将不影响干涉图案。这是BLI的一个独特特征,并且扩展了其在针对分析物-捕获分子结合、定量、亲和力以及动力学的应用中使用的粗样品中执行的能力。Biolayer interferometry (BLI) is a label-free technique for measuring biomolecular interactions. This is an optical analysis technique that analyzes the interference pattern of white light reflected from two surfaces: an immobilized molecular net layer on the biosensor tip, and an internal reflection layer. Any change in the amount of molecules bound to the biosensor tip causes a shift in the interference pattern, which can be measured in real time. The binding between the ligand immobilized on the Molecular Net-coated biosensor tip and the analyte in solution results in an increase in the optical thickness at the biosensor tip, which produces a wavelength shift Δλ, which is the thickness of the biolayer A direct measure of change. Interactions can be measured in real time, providing the ability to precisely and accurately monitor binding specificity, association and dissociation rates, or concentration. Only molecules bound to or dissociated from the Molecular Net biosensor can shift the interference pattern and generate a response curve. Unbound molecules may change the refractive index of the surrounding medium, or may change the flow rate, but will not affect the interference pattern. This is a unique feature of BLI and extends its ability to perform in crude samples used in applications for analyte-capture molecule binding, quantification, affinity and kinetics.

分子网颗粒还可以用于递送活性剂。活性剂可以被预先加载到位于分子网的一个或多个层中的捕获分子上。活性剂可以包括:药物、治疗剂、毒素、病毒、过敏原、疫苗组分、抗原、免疫调节剂、表面活性剂、微生物、寡核苷酸、营养素、或者其他。分子网颗粒可以用于药物或治疗剂递送、疫苗递送、生物发酵或者其他。分子网可以包括表面暴露层上的一种或多种靶向剂,以便促进在将所述分子网颗粒靶向特异性细胞类型、组织类型、器官类型或者其他中的特异性。靶向剂可以是分子网的捕获分子。靶向剂可以包括:抗体、受体、配体、抗-配体、或者其他。分子网中的靶向剂可以被共价连接至表面暴露层中的捕获分子、连接子以及间隔子上。靶向剂还可以有助于分子网的拓扑特征。Molecular Net particles can also be used to deliver active agents. Active agents may be preloaded onto capture molecules located in one or more layers of the molecular net. Active agents may include: drugs, therapeutics, toxins, viruses, allergens, vaccine components, antigens, immunomodulators, surfactants, microorganisms, oligonucleotides, nutrients, or others. Molecular Net particles can be used for drug or therapeutic agent delivery, vaccine delivery, biofermentation, or others. The Molecular Net can include one or more targeting agents on the surface exposed layer to facilitate specificity in targeting the Molecular Net particle to a specific cell type, tissue type, organ type, or otherwise. The targeting agent may be a capture molecule of a molecular net. Targeting agents may include: antibodies, receptors, ligands, anti-ligands, or others. Targeting agents in the Molecular Net can be covalently linked to capture molecules, linkers and spacers in the surface exposed layer. Targeting agents can also contribute to the topological characteristics of molecular nets.

实例example

实例1.用于分析物纯化的常规2D和3D分子网微颗粒的比较。Example 1. Comparison of conventional 2D and 3D Molecular Net microparticles for analyte purification.

在制造中使用由单体蛋白G和连接蛋白G以及交联剂BS3、EMCS、EGS、BMPH和其他组成的分子网。在0.8-10um磁性聚苯乙烯微颗粒和45um硝化纤维微颗粒表面上实时地进行分子网制造。在一些实例中,使用捕获分子(蛋白G)作为仅有的结构支撑来源。在一些实例中,将预先连接的蛋白G和单体蛋白G混合以便用作用于制造分子网的一些层的另外的结构支撑。然而在一些其他实例中,包括蛋白G和IgFc区的分子网的一个第一层用作用于制造该分子网的附加层的结构支撑。在一些实例中,蛋白G分子网包括2个层,并且在其他实例中,蛋白G分子网包括3个层。分子网的最后一层包括多个拓扑特征,以便增强分析物(在这种情况下是IgG)的结合和从样品的回收。图1是与商业蛋白G微颗粒相比,使用蛋白G分子网微颗粒获得的数据的实例。简而言之,将IgG-Alexa647加入人类血清中(1ug/管)。将未涂覆的微颗粒、商业蛋白G微颗粒以及蛋白G分子网颗粒与加料样品一起在室温下孵育15-60分钟(100,000个颗粒(未涂覆对照),100,000个颗粒(商业)以及25,000个颗粒(分子网))。使用磁性分离将颗粒从样品中分离并且将颗粒在PBST中洗涤三次。将颗粒在2xLSB中悬浮、煮沸并加载到SDS-PAGE上。与输入对照相比,通过考马斯染色带光密度测定法测量回收的IgG。图1中描绘的是每个纯化类型的输入的回收率。使用优化分子网可以减少测定中的背景噪声并且增加可见信号。Molecular nets consisting of monomeric protein G and connexin G and crosslinkers BS3, EMCS, EGS, BMPH and others were used in the fabrication. Molecular nets were fabricated in real time on the surface of 0.8-10um magnetic polystyrene microparticles and 45um nitrocellulose microparticles. In some instances, a capture molecule (Protein G) was used as the only source of structural support. In some examples, pre-attached protein G and monomeric protein G were mixed to serve as additional structural support for making some layers of the molecular net. In some other examples, however, a first layer of a molecular net comprising protein G and an IgFc region is used as a structural support for making additional layers of the molecular net. In some examples, the Protein G Molecular Net includes 2 layers, and in other examples, the Protein G Molecular Net includes 3 layers. The final layer of the Molecular Net includes several topological features in order to enhance the binding and recovery of the analyte (IgG in this case) from the sample. Figure 1 is an example of data obtained using Protein G Molecular Net microparticles compared to commercial Protein G microparticles. Briefly, IgG-Alexa647 was added to human serum (lug/tube). Uncoated microparticles, commercial Protein G microparticles, and Protein G Molecular Net particles were incubated with spiked samples for 15-60 minutes at room temperature (100,000 particles (uncoated control), 100,000 particles (commercial) and 25,000 particles (molecular nets)). Particles were separated from the sample using magnetic separation and washed three times in PBST. The pellet was suspended in 2xLSB, boiled and loaded on SDS-PAGE. Recovered IgG was measured by Coomassie-stained band densitometry compared to input controls. Depicted in Figure 1 is the recovery of the input for each purification type. Use of Optimized Molecular Nets can reduce background noise and increase visible signal in assays.

实例2.常规2D轭合物用于分析物检测的有效性。Example 2. Effectiveness of conventional 2D conjugates for analyte detection.

将捕获抗体共价连接至一个表面上的传统方法是二维方法(X和Y平面),因为不存在被添加至一个表面上的连接抗体的表面上的附加层。用于将捕获抗体共价连接至一个表面上的传统方法涉及单一类型的连接子,例如EDC、NHS、磺基-NHS或者其他。偶尔地,使用一个第二连接子将捕获抗体固定至一个表面上,但是涉及第一连接子的移除并且不为抗体轭合表面添加另外的高度或分层。在一个实例中,按照制造商的指示,将抗-人类神经丝抑蛋白抗体通过连接子联接至Luminex颗粒(微珠区#54)上。随后将颗粒猝灭、封闭并洗涤,之后使用。将颗粒在预先清洁的血清+神经丝抑蛋白中以(0-1ng/mL)的浓度范围孵育15分钟。将结合颗粒洗涤并且与生物素-抗-神经丝抑蛋白(10ng/mL)一起孵育15分钟。通过抗生物素蛋白-PE(30ng/mL)持续15分钟将神经丝抑蛋白检测可视化。随后在Luminex100上分析洗涤的颗粒,每个样品收集100个颗粒。图2中呈现的是每个稀释度下超过背景荧光强度的中值荧光强度(FI)。The traditional method of covalently attaching capture antibodies to a surface is a two-dimensional approach (X and Y planes) because there is no additional layer added to the surface of the attached antibody on a surface. Traditional methods for covalently attaching capture antibodies to a surface involve a single type of linker, such as EDC, NHS, sulfo-NHS or others. Occasionally, a second linker is used to immobilize the capture antibody to a surface, but involves removal of the first linker and does not add additional height or layering to the antibody-conjugated surface. In one example, an anti-human neuroserin antibody was coupled to Luminex particles (bead zone #54) via a linker according to the manufacturer's instructions. The particles were then quenched, blocked and washed prior to use. Incubate the pellet in pre-cleaned serum + neurofilin at a concentration range (0-1 ng/mL) for 15 min. Bound particles were washed and incubated with biotin-anti-neurofilin (10 ng/mL) for 15 minutes. Neurofilin detection was visualized by avidin-PE (30 ng/mL) for 15 min. The washed particles were subsequently analyzed on a Luminex 100, collecting 100 particles per sample. Presented in Figure 2 is the median fluorescence intensity (FI) above background fluorescence intensity for each dilution.

图3.分子网微颗粒在测量分析物中的效果有效性。Figure 3. Effect effectiveness of Molecular Net microparticles in measuring analytes.

制造由相同的抗-人类神经丝抑蛋白抗体(如图2)和连接子磺基-NHS、EMCS、EGS、BMPH以及其他组成的分子网,以便提供一个三维多层(X、Y以及Z平面)基体。可以随后将这些分子网共价连接至Luminex微颗粒(微珠区#54)上。图3中呈现了利用4层分子网的测定性能。使用三维多层分子网观察到改进的测定MFI。Fabricate molecular nets consisting of the same anti-human neurofilin antibody (as shown in Figure 2) and linkers sulfo-NHS, EMCS, EGS, BMPH, and others to provide a three-dimensional multilayer (X, Y, and Z plane ) matrix. These molecular nets can then be covalently attached to Luminex microparticles (bead block #54). The assay performance utilizing 4-layer Molecular Nets is presented in FIG. 3 . Improved assay MFI was observed using three-dimensional multilayer molecular nets.

图4.具有拓扑结构的分子网在测量分析物中的有效性。Figure 4. Effectiveness of molecular nets with topology in measuring analytes.

制造由相同的抗-人类神经丝抑蛋白抗体(如图2和图3)和连接子磺基-NHS、EMCS、EGS、BMPH以及其他组成的分子网,以便提供一个三维多层(X、Y以及Z平面)基体。可以随后将这些分子网共价连接至Luminex微颗粒(微珠区#54)上。图4中呈现了利用5层分子网的测定性能。使用在外层中具有加强的拓扑结构的三维多层分子网观察到改进的测定MFI。Fabricate molecular nets consisting of the same anti-human neurofilin antibody (as shown in Figure 2 and Figure 3) and linkers sulfo-NHS, EMCS, EGS, BMPH, and others to provide a three-dimensional multilayer (X, Y and Z plane) substrate. These molecular nets can then be covalently attached to Luminex microparticles (bead block #54). The assay performance utilizing 5-layer Molecular Nets is presented in FIG. 4 . Improved assay MFI was observed using three-dimensional multilayer molecular nets with enhanced topology in the outer layer.

图5.在ELISA中的传统轭合微颗粒与分子网微颗粒的比较。Figure 5. Comparison of conventional conjugated microparticles and Molecular Net microparticles in ELISA.

在制造中使用由针对人类-TauF的单克隆抗体和交联剂磺基-NHS、EMCS、EGS、BMPH和其他组成的分子网。在0.5um、6.3um和10um的磁性微颗粒表面上实时地进行分子网制造。在一些实例中,使用捕获分子、抗-Tau单克隆抗体作为仅有的结构支撑来源。在一些实例中,在一个第一层中将间隔子白蛋白与抗-Tau单克隆抗体以1.5:1.0的摩尔比(白蛋白:抗-Tau抗体)混合,以便用作用于制造该第一层的另外的结构支撑。在一些实例中,使用第二捕获分子即人类微管蛋白,其在分子网中提供结构支撑和捕获作用两者。图5是与商业Tau微颗粒(配偶体LV)ELISA(相同的测定条件、相同的抗体对等)相比,使用抗-Tau分子网(LV.P6Cap-TECH)获得的数据的实例。图5是使用分子网来减少测定中的背景噪声并且增加ELISA中的可见信号的实例。Molecular Nets consisting of monoclonal antibodies against human-TauF and cross-linkers Sulfo-NHS, EMCS, EGS, BMPH and others were used in the fabrication. Molecular nets were fabricated in real time on the surface of 0.5um, 6.3um and 10um magnetic microparticles. In some examples, a capture molecule, an anti-Tau monoclonal antibody, was used as the only source of structural support. In some examples, spacer albumin is mixed with anti-Tau monoclonal antibody in a molar ratio of 1.5:1.0 (albumin:anti-Tau antibody) in a first layer to be used as the first layer for making the first layer. additional structural support. In some examples, a second capture molecule, human tubulin, is used, which provides both structural support and capture in the Molecular Net. Figure 5 is an example of data obtained using anti-Tau Molecular Net (LV.P6Cap-TECH) compared to a commercial Tau microparticle (partner LV) ELISA (same assay conditions, same antibody pair, etc.). Figure 5 is an example of using Molecular Nets to reduce background noise in an assay and increase visible signal in an ELISA.

图6.使用Luminex的传统轭合微颗粒与分子网微颗粒的比较。Figure 6. Comparison of traditionally conjugated microparticles and Molecular Net microparticles using Luminex.

在制造中使用由针对人类-促甲状腺激素的单克隆抗体和交联剂EDC、BS(PEG)9、EMCS、EGS、BMPH和其他组成的分子网。在Luminex磁性微颗粒表面上实时地进行分子网制造。在一些实例中,使用捕获分子、抗-TSH单克隆抗体作为仅有的结构支撑来源。在一些实例中,在一个第一层中将间隔子(PEG、热变性溶菌酶以及其他)与抗-TSH单克隆抗体以1.0:2.0的摩尔比(间隔子:抗-TSH抗体)混合,以便用作用于制造该第一层的另外的结构支撑。在一些实例中,一个抗-TSH分子网包括4个层,并且在其他实例中,一个抗-TSH分子网包括6个层,其中最后一层包括多个拓扑结构以便增强在Luminex中的分析物结合和性能。图6A是在Luminex测定中使用分子网来增加总体MFI的实例。图6B是在Luminex测定中获得的示例性数据,用于增加Luminex测定中检测的最低水平。Molecular nets consisting of monoclonal antibodies against human-thyrotropin and cross-linkers EDC, BS(PEG) 9 , EMCS, EGS, BMPH and others were used in the manufacture. Molecular Net fabrication is performed in real time on the surface of Luminex magnetic microparticles. In some examples, capture molecules, anti-TSH monoclonal antibodies, were used as the only source of structural support. In some examples, spacers (PEG, heat-denatured lysozyme, and others) are mixed with anti-TSH monoclonal antibodies in a molar ratio of 1.0:2.0 (spacer:anti-TSH antibody) in a first layer so that Serves as an additional structural support for making this first layer. In some examples, an anti-TSH molecular net includes 4 layers, and in other examples, an anti-TSH molecular net includes 6 layers, where the last layer includes multiple topologies to enhance the analyte in Luminex combination and performance. Figure 6A is an example of the use of Molecular Nets to increase overall MFI in a Luminex assay. Figure 6B is exemplary data obtained in the Luminex assay for increasing the minimum level detected in the Luminex assay.

图7.颗粒上的示例性分子网。Figure 7. Exemplary molecular nets on particles.

图7描绘了一些实例,其中分子网可以被放置在一个颗粒表面上。在一些实例中,分子网以周向的方式放置在一个颗粒表面上(图7A,1001),借此具有X、Y和Z空间取向的分子网可以是相当对称的,并且其中每个层(3个层的实例,1002、1003以及1004)被添加至颗粒的Z平面上。在一些实例中,分子网可以按不对称的方式放置在一个颗粒表面上(图7B,1005),借此具有X、Y和Z空间取向的分子网可以按产生颗粒的极性的方式放置在颗粒的表面上,并且其中每个层(3个层的实例,1006、1007以及1008)以层独立的方式(例如,一些层可以具有较小的高度并且其他层可以具有较高的高度)添加至颗粒的Z平面上。在其他实例中,分子网可以按不对称的方式放置在颗粒表面的一部分上(图7C,1009),借此具有X、Y和Z空间取向的分子网可以按产生颗粒的极性的方式放置在颗粒的表面上,并且其中每个层(3个层的实例,1010、1011以及1012)以层独立的方式(例如,一些层可以具有针对一种分析物的特异性并且其它层可以具有针对其他分析物的特异性)添加至颗粒的Z平面上。Figure 7 depicts some examples where Molecular Nets can be placed on the surface of a particle. In some examples, molecular nets are placed on a particle surface in a circumferential fashion (FIG. 7A, 1001), whereby the molecular nets with X, Y, and Z spatial orientations can be fairly symmetrical, and where each layer ( Instance of 3 layers, 1002, 1003 and 1004) are added on the Z plane of the particle. In some examples, Molecular Nets can be placed on a particle surface in an asymmetric manner (FIG. 7B, 1005), whereby Molecular Nets with X, Y, and Z spatial orientations can be placed in a manner that creates the polarity of the particle. on the surface of the particle, and where each layer (example of 3 layers, 1006, 1007, and 1008) is added in a layer-independent manner (e.g., some layers may have a smaller height and other layers may have a higher height) to the Z plane of the particle. In other examples, molecular nets can be placed in an asymmetric manner on a portion of the particle surface (FIG. 7C, 1009), whereby molecular nets with X, Y, and Z spatial orientations can be placed in a manner that creates the polarity of the particle on the surface of the particle, and where each layer (example of 3 layers, 1010, 1011, and 1012) is layer-independent (for example, some layers may have specificity for one analyte and others may have specificity for Specificity for other analytes) are added to the Z-plane of the particle.

图8.颗粒上的示例性分子网拓扑特征。Figure 8. Exemplary Molecular Net topological features on particles.

图8描绘了一些实例,其中分子网可以被放置在一个颗粒表面上。在一些实例中,分子网以周向的方式放置在一个颗粒表面上(图8A,2001),借此具有X、Y和Z空间取向的分子网在一个层(2002)中可以是相当对称的,并且其中每个层(3个层的实例,2002、2003以及2004)以不同且不对称的方式(例如,产生拓扑结构)添加至颗粒的Z平面上。在一些实例中,分子网可以按不对称的方式放置在一个颗粒表面上(图8B,2005),借此具有X、Y和Z空间取向的分子网可以按在颗粒的整个层1(2006)、2(2007)以及3(2008)中产生结构特征(2008)的方式放置在颗粒的表面上,并且其中每个层以层独立的方式(例如,一些层可以具有较小的高度并且其他层可以具有较高的高度)添加至颗粒的Z平面上。此外,每个层中的结构元件还可以在分子网中起到分析物捕获的作用。在其他实例中,分子网可以按不对称的方式放置在颗粒表面的一部分上(图8C,1009),借此具有X、Y和Z空间取向的分子网可以按产生颗粒的极性的方式放置在颗粒的表面上,并且其中每个层(4个层的实例,2010、2011、2012以及2013)以层独立的方式添加至颗粒的Z平面上,并且借此每个层可以起到结构和分析物捕获的作用。例如,一些层可以基于大小对一种分析物具有特异性(例如,图8C,2010),并且外层(例如,图8C,2013)可以对更大大小的分析物具有特异性。Figure 8 depicts some examples where molecular nets can be placed on the surface of a particle. In some examples, molecular nets are placed on a particle surface in a circumferential manner (FIG. 8A, 2001), whereby molecular nets with X, Y, and Z spatial orientations can be fairly symmetrical within a layer (2002) , and where each layer (example of 3 layers, 2002, 2003, and 2004) is added to the particle's Z-plane in a different and asymmetric manner (eg, creating topology). In some examples, molecular nets can be placed on the surface of a particle in an asymmetric manner (Figure 8B, 2005), whereby molecular nets with spatial orientations in X, Y, and Z can be distributed throughout the particle's layer 1 (2006) , 2 (2007) and 3 (2008) to generate structural features (2008) are placed on the surface of the particle, and where each layer is layer-independent (for example, some layers may have a smaller height and other layers can have a higher height) added to the Z-plane of the particle. In addition, the structural elements in each layer can also function as analyte capture in the molecular net. In other examples, molecular nets can be placed in an asymmetric manner on a portion of the particle surface (FIG. 8C, 1009), whereby molecular nets with X, Y, and Z spatial orientations can be placed in a manner that creates the polarity of the particle on the surface of the particle, and where each layer (example of 4 layers, 2010, 2011, 2012, and 2013) is added in a layer-independent manner to the Z-plane of the particle, and whereby each layer can function as a structure and The role of analyte capture. For example, some layers can be specific for one analyte based on size (eg, FIG. 8C, 2010), and outer layers (eg, FIG. 8C, 2013) can be specific for analytes of larger sizes.

图9.用于分析物递送的示例性分子网。Figure 9. Exemplary molecular nets for analyte delivery.

图9描绘了一些实例,其中分子网可以被放置在一个颗粒表面上,以用于分析物捕获或目标分析物递送。在一些实例中,分子网以周向的方式放置在一个颗粒表面上(图9A,3001),借此具有X、Y和Z空间取向的分子网在一个层(3002)中可以是相当对称的,并且其中每个层(3个层的实例,3002、3003以及3004)以不同且不对称的方式(例如,产生拓扑结构)添加至颗粒的Z平面上。在一些实例中,分析物货物(3003)可以被预先加载到分子网的一个或多个层中的捕获分子上。在外层中,不同的捕获分子可以被连接至一个分子网中,以便产生用于不同目标分析物的拓扑结构和/或亲和力。在一些实例中,预先加载的分析物可以包括药物、治疗剂、siRNA、miRNA、dsRNA、病毒、毒素、免疫原或者其他。预先加载的货物可以是与分子网的一个层中的一种或多种类型的捕获分子非共价缔合的。在一些实例中,分子网的不同捕获分子(3004)可以排列在分子网的外层中,并且可以起到拓扑结构和分析物捕获作用。不同的捕获分子可以具有针对一种或多种不同分析物的特异性,该分析物可以包括抗体、抗-配体、配体、受体、抗原或者其他,并且可以起到一种或多种结构和/或亲和力和/或靶向作用。Figure 9 depicts examples where Molecular Nets can be placed on a particle surface for analyte capture or targeted analyte delivery. In some examples, molecular nets are placed on a particle surface in a circumferential manner (FIG. 9A, 3001), whereby molecular nets with X, Y, and Z spatial orientations can be fairly symmetrical within a layer (3002) , and where each layer (example of 3 layers, 3002, 3003, and 3004) is added to the particle's Z-plane in a different and asymmetric manner (eg, creating topology). In some examples, the analyte cargo (3003) can be preloaded onto capture molecules in one or more layers of the Molecular Net. In the outer layer, different capture molecules can be linked into one molecular net in order to generate topologies and/or affinities for different target analytes. In some examples, preloaded analytes can include drugs, therapeutics, siRNA, miRNA, dsRNA, viruses, toxins, immunogens, or others. The preloaded cargo may be non-covalently associated with one or more types of capture molecules in a layer of the Molecular Net. In some examples, the different capture molecules (3004) of the Molecular Net can be arranged in the outer layer of the Molecular Net and can function as a topology and analyte capture. Different capture molecules can have specificity for one or more different analytes, which can include antibodies, anti-ligands, ligands, receptors, antigens, or others, and can act as one or more Structure and/or affinity and/or targeting.

在一些实例中,分子网可以按一种方式放置在颗粒表面上(图9B,3005),借此分析物货物(3006)可以被预先加载到分子网的所有层中。在一些层中,捕获分子可以用于产生起到颗粒靶向作用的拓扑特征(3008)。在一些实例中,分子网颗粒的外层可以使所述颗粒靶向特异性细胞、组织、器官或者其他。In some examples, the Molecular Net can be placed on the surface of the particle in a manner (FIG. 9B, 3005) whereby the analyte cargo (3006) can be preloaded into all layers of the Molecular Net. In some layers, capture molecules can be used to generate topological features (3008) that function as particle targeting. In some examples, the outer layer of a Molecular Net particle can target the particle to a specific cell, tissue, organ, or otherwise.

图10.用于从样品中纯化分析物的分子网Figure 10. Molecular Nets used to purify analytes from samples

分子网可以在样品纯化过程中使用(图10中提供实例)。在一些实例中,被设计和制造用于耗尽一种或多种分析物的分子网可以用于处理样品,以便进行分析物耗尽。示例性方法可以包括在间歇淤浆中或在色谱柱中将分子网与样品一起孵育约15分钟至约24小时。可以根据优选方法收集样品上清液或流经液。可以收集分子网并且使用不同方法分析捕获的分析物的存在和量。可以收集分子网处理的样品并且使用不同方法进行分析以便确定样品中分析物的残留存在,或者可以分析样品中的其他分析物。Molecular Nets can be used during sample purification (examples are provided in Figure 10). In some examples, Molecular Nets designed and fabricated to deplete one or more analytes can be used to process samples for analyte depletion. Exemplary methods can include incubating the Molecular Net with the sample in a batch slurry or in a chromatography column for about 15 minutes to about 24 hours. Sample supernatant or flow-through can be collected according to preferred methods. Molecular nets can be collected and analyzed for the presence and amount of captured analytes using different methods. Molecular Net processed samples can be collected and analyzed using different methods to determine the residual presence of an analyte in the sample, or the sample can be analyzed for other analytes.

图11.用于从样品中检测和测量分析物的分子网Figure 11. Molecular Nets for detection and measurement of analytes from samples

分子网可以在分析物测量工具或诊断工具中使用(图11中提供实例)。在一些实例中,被设计和制造用于捕获一种或多种分析物的分子网可以用于处理样品,以便进行分析物检测和测量。示例性方法可以包括在间歇淤浆、盒、载玻片、微量滴定板或者其他中将分子网与样品一起孵育约15分钟至约2小时。可以根据优选方法收集样品上清液或流经液。可以收集分子网并且使用不同方法分析捕获的一种或多种分析物的存在和量。还可以收集分子网处理的样品并且使用不同方法进行分析以测量其他分析物。用于测量分子网特征的变化的方法可以包括光学、电泳、电、磁、化学、热、或其他方法。Molecular Nets can be used in analyte measurement tools or diagnostic tools (examples are provided in Figure 11). In some examples, Molecular Nets designed and fabricated to capture one or more analytes can be used to process samples for analyte detection and measurement. Exemplary methods can include incubating the Molecular Net with the sample in a batch slurry, cassette, slide, microtiter plate, or otherwise for about 15 minutes to about 2 hours. Sample supernatant or flow-through can be collected according to preferred methods. Molecular nets can be collected and analyzed for the presence and amount of one or more captured analytes using different methods. Molecular Net processed samples can also be collected and analyzed using different methods to measure other analytes. Methods for measuring changes in molecular net characteristics may include optical, electrophoretic, electrical, magnetic, chemical, thermal, or other methods.

虽然已经参考本发明的特定实施例描述了本发明,本领域的技术人员应当理解的是,在不脱离本发明范围的情况下可以作出不同的改变并且多种等效物可以被代替。此外,可以做出许多修改来适应特定情况、材料、物质组成、过程、过程步骤或步骤,以便在不脱离本发明范围的情况下实现由本发明提供的益处。所有这种修改均旨在处于所附权利要求的范围内。While the invention has been described with reference to specific embodiments thereof, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps in order to realize the benefits provided by the invention without departing from the scope of the invention. All such modifications are intended to come within the scope of the appended claims.

在此引用的全部出版物和专利文献通过引用结合在此,如同每一份这样的出版物或者文献都被具体地和分别地指出已通过引用结合在此。出版物和专利文献的引用并无意表明任何这样的文件均是相关的现有技术,也未构成对其内容或日期的任何承认。All publications and patent documents cited herein are hereby incorporated by reference as if each such publication or document were specifically and individually indicated to be incorporated by reference. Citation of publications and patent documents is not intended to indicate that any such document is pertinent prior art, nor does it constitute any admission as to its content or date.

Claims (52)

1.一种用于捕获分析物的装置,该装置包括:1. A device for capturing an analyte, the device comprising: 一个固相;以及a solid phase; and 一个分子网,该分子网联接至该固相的表面的至少一部分上,该分子网包括至少一种类型的捕获分子,这些捕获分子通过多种类型的连接分子联接至彼此,以便形成一个共价连接的多层三维基体,这些捕获分子被配置用于结合该分析物。a molecular net coupled to at least a portion of the surface of the solid phase, the molecular net comprising at least one type of capture molecule coupled to each other via multiple types of linker molecules so as to form a covalent A multilayered three-dimensional matrix of linked, capture molecules configured to bind the analyte. 2.如权利要求1所述的装置,其中该固相由塑料、聚合物、薄膜、胶态金属、二氧化硅、碳纳米管、蛋白质、碳水化合物、脂质、核酸、细胞以及组织中的一种或多种制成。2. The device of claim 1, wherein the solid phase is made of plastics, polymers, films, colloidal metals, silica, carbon nanotubes, proteins, carbohydrates, lipids, nucleic acids, cells, and tissues Made of one or more. 3.如权利要求1所述的装置,其中该固相包括纳米材料、修饰的金属表面、纳米球、微球、微量滴定板、载玻片、移液管、盒、筒、圆盘、探针、横流装置、微流体装置以及光学纤维中的一种或多种。3. The device of claim 1, wherein the solid phase comprises nanomaterials, modified metal surfaces, nanospheres, microspheres, microtiter plates, glass slides, pipettes, boxes, cartridges, disks, probes One or more of needles, lateral flow devices, microfluidic devices, and optical fibers. 4.如权利要求1所述的装置,其中该分子网被预先制造并且吸附至该固相的该表面上。4. The device of claim 1, wherein the molecular net is prefabricated and adsorbed onto the surface of the solid phase. 5.如权利要求1所述的装置,其中该分子网被共价连接至该固相的该表面上。5. The device of claim 1, wherein the molecular net is covalently attached to the surface of the solid phase. 6.如权利要求1所述的装置,其中该分子网被直接构建在该固相的该表面上。6. The device of claim 1, wherein the molecular net is built directly on the surface of the solid phase. 7.如权利要求1所述的装置,其中这些捕获分子包括抗体、核酸探针、酶类、重组蛋白以及肽中的一种或多种。7. The device of claim 1, wherein the capture molecules comprise one or more of antibodies, nucleic acid probes, enzymes, recombinant proteins and peptides. 8.如权利要求1所述的装置,其中这些捕获分子包括用于结合该分析物的多个表位的多种单克隆抗体。8. The device of claim 1, wherein the capture molecules comprise monoclonal antibodies for binding epitopes of the analyte. 9.如权利要求1所述的装置,其中这些捕获分子是针对多种相互确认的分析物。9. The device of claim 1, wherein the capture molecules are for a plurality of mutually identified analytes. 10.如权利要求1所述的装置,其中这些连接分子包括同双功能的、异双功能的、三功能的以及多功能的类型中的一种或多种。10. The device of claim 1, wherein the linker molecules comprise one or more of homobifunctional, heterobifunctional, trifunctional and multifunctional types. 11.如权利要求1所述的装置,其中当这些捕获分子结合该分析物时,该分子网具有至少一个经历变化的可测量特征。11. The device of claim 1, wherein the molecular net has at least one measurable characteristic that undergoes a change when the capture molecules bind the analyte. 12.如权利要求11所述的装置,其中该可测量特征包括物理形状、高度、密度、荧光强度、波长位移、振动频率、吸光度、柔性、折射性、电导、阻抗、电阻、熔融温度、变性温度以及冻结温度中的一个或多个。12. The device of claim 11, wherein the measurable characteristic comprises physical shape, height, density, fluorescence intensity, wavelength shift, vibrational frequency, absorbance, flexibility, refractivity, conductance, impedance, resistance, melting temperature, denaturation temperature and one or more of freezing temperature. 13.如权利要求1所述的装置,其中这些捕获分子还通过多种类型的间隔分子联接至彼此。13. The device of claim 1, wherein the capture molecules are also coupled to each other through types of spacer molecules. 14.如权利要求13所述的装置,其中这些间隔分子包括PEG、聚合物、核酸、白蛋白、Fc区以及肽中的一种或多种。14. The device of claim 13, wherein the spacer molecules comprise one or more of PEG, polymers, nucleic acids, albumin, Fc regions, and peptides. 15.如权利要求13所述的装置,其中这些间隔分子和一定量的间隔分子被选择用于赋予该分子网一个或多个所希望的物理特性。15. The device of claim 13, wherein the spacer molecules and an amount of spacer molecules are selected to impart one or more desired physical properties to the molecular net. 16.如权利要求15所述的装置,其中这些所希望的物理特性包括孔隙率、电荷分布以及拓扑特征中的一个或多个。16. The device of claim 15, wherein the desired physical properties include one or more of porosity, charge distribution, and topological characteristics. 17.一种制造用于捕获分析物的装置的方法,该方法包括:17. A method of making a device for capturing an analyte, the method comprising: 提供一个固相;并且provide a solid phase; and 将一个分子网放置在该固相的表面的至少一部分上,该分子网包括至少一种类型的捕获分子,这些捕获分子通过多种类型的连接分子联接至彼此,以便形成一个共价连接的多层三维基体,这些捕获分子被配置用于结合该分析物。placing a molecular net on at least a portion of the surface of the solid phase, the molecular net comprising at least one type of capture molecule linked to each other by various types of linker molecules so as to form a covalently linked multiple Layering the three-dimensional matrix, the capture molecules are configured to bind the analyte. 18.如权利要求17所述的方法,其中放上一个分子网包括预先制造该分子网并且将该分子网吸附到该固相的该表面上。18. The method of claim 17, wherein placing a molecular net comprises prefabricating the molecular net and adsorbing the molecular net onto the surface of the solid phase. 19.如权利要求17所述的方法,其中放上一个分子网包括将该分子网共价连接至该固相的该表面上。19. The method of claim 17, wherein placing a molecular net comprises covalently attaching the molecular net to the surface of the solid phase. 20.如权利要求17所述的方法,其中放上一个分子网包括将该分子网直接构建在该固相的该表面上。20. The method of claim 17, wherein placing a molecular net comprises building the molecular net directly on the surface of the solid phase. 21.一种测量样品中的分析物的量的方法,该方法包括:21. A method of measuring the amount of an analyte in a sample, the method comprising: 提供一个或多个装置,每个装置包括一个固相和一个分子网,该分子网覆盖该固相的表面的至少一部分,该分子网包括至少一种类型的捕获分子,这些捕获分子通过多种类型的连接分子联接至彼此,以便形成一个共价连接的多层三维基体,这些捕获分子被配置用于结合该分析物;One or more devices are provided, each device comprising a solid phase and a molecular net covering at least a portion of the surface of the solid phase, the molecular net comprising at least one type of capture molecule passed through a plurality of Linker molecules of the type linked to each other so as to form a covalently linked multilayer three-dimensional matrix, these capture molecules are configured to bind the analyte; 将这些装置暴露于该样品;并且exposing the devices to the sample; and 允许该分析物的至少一部分结合这些装置的这些分子网的这些捕获分子。The capture molecules of the molecular nets of the devices are allowed to bind at least a portion of the analyte. 22.如权利要求21所述的方法,进一步包括测量该样品中的变化。22. The method of claim 21, further comprising measuring changes in the sample. 23.如权利要求22所述的方法,其中测量该变化包括使用光子多道分析器、分光计、磁共振成像仪、磁场检测器、光学纤维、玻璃移液管、电路、荧光计、光谱分析器、恒电位器、热量计、电泳、流式细胞仪、CCD摄像机、显微镜、声室、扩音器以及光度计中的一个或多个。23. The method of claim 22, wherein measuring the change comprises using a photon multichannel analyzer, a spectrometer, a magnetic resonance imager, a magnetic field detector, an optical fiber, a glass pipette, an electrical circuit, a fluorometer, a spectral analysis One or more of detectors, potentiostats, calorimeters, electrophoresis, flow cytometers, CCD cameras, microscopes, sound chambers, loudspeakers, and photometers. 24.如权利要求21所述的方法,其中当这些捕获分子结合该分析物时,该分子网具有至少一个经历变化的可测量特征。24. The method of claim 21, wherein the molecular net has at least one measurable characteristic that undergoes a change when the capture molecules bind the analyte. 25.如权利要求24所述的方法,进一步包括测量这些分子网的该可测量特征中的变化。25. The method of claim 24, further comprising measuring changes in the measurable characteristic of the molecular nets. 26.如权利要求25所述的方法,其中测量该变化包括使用光子多道分析器、分光计、磁共振成像仪、磁场检测器、光学纤维、玻璃移液管、电路、荧光计、光谱分析器、恒电位器、热量计、电泳、流式细胞仪、CCD摄像机、显微镜、声室、扩音器以及光度计中的一个或多个。26. The method of claim 25, wherein measuring the change comprises using a photon multichannel analyzer, a spectrometer, a magnetic resonance imager, a magnetic field detector, an optical fiber, a glass pipette, an electrical circuit, a fluorometer, a spectral analysis One or more of detectors, potentiostats, calorimeters, electrophoresis, flow cytometers, CCD cameras, microscopes, sound chambers, loudspeakers, and photometers. 27.一种用于捕获分析物的装置,该装置包括:27. A device for capturing an analyte comprising: 一个固相;以及a solid phase; and 多个层,该多个层联接至该固相的表面的至少一部分上,这些层包括一个分子网,该分子网包括至少一种类型的捕获分子,这些捕获分子通过多种类型的连接分子联接至彼此,以便形成一个共价连接的多层三维基体,这些捕获分子被配置用于结合该分析物。layers coupled to at least a portion of the surface of the solid phase, the layers comprising a molecular net comprising at least one type of capture molecule coupled by types of linker molecules to each other so as to form a covalently linked multilayer three-dimensional matrix, the capture molecules are configured to bind the analyte. 28.如权利要求27所述的装置,其中该固相由塑料、聚合物、薄膜、胶态金属、二氧化硅、碳纳米管、蛋白质、碳水化合物、脂质、核酸、细胞以及组织中的一种或多种制成。28. The device of claim 27, wherein the solid phase is composed of plastics, polymers, films, colloidal metals, silica, carbon nanotubes, proteins, carbohydrates, lipids, nucleic acids, cells, and tissues Made of one or more. 29.如权利要求27所述的装置,其中该固相包括纳米材料、修饰的金属表面、纳米球、微球、微量滴定板、载玻片、移液管、盒、筒、圆盘、探针、横流装置、微流体装置以及光学纤维中的一种或多种。29. The device of claim 27, wherein the solid phase comprises nanomaterials, modified metal surfaces, nanospheres, microspheres, microtiter plates, glass slides, pipettes, boxes, cartridges, disks, probes One or more of needles, lateral flow devices, microfluidic devices, and optical fibers. 30.如权利要求27所述的装置,其中该分子网被预先制造并且吸附至该固相的该表面上。30. The device of claim 27, wherein the molecular net is prefabricated and adsorbed onto the surface of the solid phase. 31.如权利要求27所述的装置,其中该分子网被共价连接至该固相的该表面上。31. The device of claim 27, wherein the Molecular Net is covalently attached to the surface of the solid phase. 32.如权利要求27所述的装置,其中该分子网被直接构建在该固相的该表面上。32. The device of claim 27, wherein the molecular net is built directly on the surface of the solid phase. 33.如权利要求27所述的装置,其中这些捕获分子包括抗体、核酸探针、酶类、重组蛋白以及肽中的一种或多种。33. The device of claim 27, wherein the capture molecules comprise one or more of antibodies, nucleic acid probes, enzymes, recombinant proteins, and peptides. 34.如权利要求27所述的装置,其中这些捕获分子包括用于结合该分析物的多个表位的多种单克隆抗体。34. The device of claim 27, wherein the capture molecules comprise monoclonal antibodies for binding epitopes of the analyte. 35.如权利要求27所述的装置,其中这些捕获分子是针对多种相互确认的分析物。35. The device of claim 27, wherein the capture molecules are for a plurality of mutually identified analytes. 36.如权利要求27所述的装置,其中这些连接分子包括同双功能的、异双功能的、三功能的以及多功能的类型中的一种或多种。36. The device of claim 27, wherein the linker molecules comprise one or more of homobifunctional, heterobifunctional, trifunctional and multifunctional types. 37.如权利要求27所述的装置,其中当这些捕获分子结合该分析物时,该分子网具有至少一个经历变化的可测量特征。37. The device of claim 27, wherein the molecular net has at least one measurable characteristic that undergoes a change when the capture molecules bind the analyte. 38.如权利要求37所述的装置,其中该可测量特征包括物理形状、高度、密度、荧光强度、波长位移、振动频率、吸光度、柔性、折射性、电导、阻抗、电阻、熔融温度、变性温度以及冻结温度中的一个或多个。38. The device of claim 37, wherein the measurable characteristic comprises physical shape, height, density, fluorescence intensity, wavelength shift, vibrational frequency, absorbance, flexibility, refractivity, conductance, impedance, resistance, melting temperature, denaturation temperature and freezing temperature. 39.如权利要求27所述的装置,其中这些捕获分子还通过多种类型的间隔分子联接至彼此。39. The device of claim 27, wherein the capture molecules are also coupled to each other by types of spacer molecules. 40.如权利要求39所述的装置,其中这些间隔分子包括PEG、聚合物、核酸、白蛋白、Fc区以及肽中的一种或多种。40. The device of claim 39, wherein the spacer molecules comprise one or more of PEG, polymers, nucleic acids, albumin, Fc regions, and peptides. 41.如权利要求39所述的装置,其中这些间隔分子和一定量的间隔分子被选择用于赋予该分子网一个或多个所希望的物理特性。41. The device of claim 39, wherein the spacer molecules and an amount of spacer molecules are selected to impart one or more desired physical properties to the molecular net. 42.如权利要求41所述的装置,其中这些所希望的物理特性包括孔隙率、电荷分布以及拓扑特征中的一个或多个。42. The device of claim 41, wherein the desired physical properties include one or more of porosity, charge distribution, and topological characteristics. 43.一种制造用于捕获分析物的装置的方法,该方法包括:43. A method of making a device for capturing an analyte, the method comprising: 提供一个固相;并且provide a solid phase; and 将多个层放置在该固相的表面的至少一部分上,这些层包括一个分子网,该分子网包括多种类型的捕获分子,这些捕获分子通过多种类型的连接分子被联接至彼此,以便形成一个共价连接的多层三维基体,这些捕获分子被配置用于结合该分析物。placing layers on at least a portion of the surface of the solid phase, the layers comprising a molecular net comprising types of capture molecules linked to each other by types of linker molecules so that Forming a covalently linked multilayered three-dimensional matrix, the capture molecules are configured to bind the analyte. 44.如权利要求43所述的方法,其中放上多个层包括预先制造这些层并且将这些层吸附到该固相的该表面上。44. The method of claim 43, wherein placing layers comprises prefabricating the layers and adsorbing the layers onto the surface of the solid phase. 45.如权利要求43所述的方法,其中放上多个层包括将这些层共价连接至该固相的该表面上。45. The method of claim 43, wherein placing layers comprises covalently attaching the layers to the surface of the solid phase. 46.如权利要求43所述的方法,其中放上多个层包括将这些层直接构建在该固相的该表面上。46. The method of claim 43, wherein placing layers comprises building the layers directly on the surface of the solid phase. 47.一种测量样品中的分析物的量的方法,该方法包括:47. A method of measuring the amount of an analyte in a sample, the method comprising: 提供一个或多个装置,每个装置包括一个固相和多个层,这些层覆盖该固相的表面的至少一部分,这些层包括一个分子网,该分子网包括至少一种类型的捕获分子,这些捕获分子通过多种类型的连接分子联接至彼此,以便形成一个共价连接的多层三维基体,这些捕获分子被配置用于结合该分析物;providing one or more devices, each device comprising a solid phase and layers covering at least a portion of the surface of the solid phase, the layers comprising a molecular net comprising at least one type of capture molecule, The capture molecules are linked to each other by various types of linker molecules to form a covalently linked multilayered three-dimensional matrix, the capture molecules are configured to bind the analyte; 将这些装置暴露于该样品;并且exposing the devices to the sample; and 允许该分析物的至少一部分结合这些装置的这些分子网的这些捕获分子。The capture molecules of the molecular nets of the devices are allowed to bind at least a portion of the analyte. 48.如权利要求47所述的方法,进一步包括测量该样品中的变化。48. The method of claim 47, further comprising measuring changes in the sample. 49.如权利要求48所述的方法,其中测量该变化包括使用光子多道分析器、分光计、磁共振成像仪、磁场检测器、光学纤维、玻璃移液管、电路、荧光计、光谱分析器、恒电位器、热量计、电泳、流式细胞仪、CCD摄像机、显微镜、声室、扩音器以及光度计中的一个或多个。49. The method of claim 48, wherein measuring the change comprises using a photon multichannel analyzer, a spectrometer, a magnetic resonance imager, a magnetic field detector, an optical fiber, a glass pipette, an electrical circuit, a fluorometer, a spectral analysis One or more of detectors, potentiostats, calorimeters, electrophoresis, flow cytometers, CCD cameras, microscopes, sound chambers, loudspeakers, and photometers. 50.如权利要求47所述的方法,其中当这些捕获分子结合该分析物时,该分子网具有至少一个经历变化的可测量特征。50. The method of claim 47, wherein the molecular net has at least one measurable characteristic that undergoes a change when the capture molecules bind the analyte. 51.如权利要求50所述的方法,进一步包括测量这些分子网的该可测量特征中的变化。51. The method of claim 50, further comprising measuring changes in the measurable characteristic of the molecular nets. 52.如权利要求51所述的方法,其中测量该变化包括使用光子多道分析器、分光计、磁共振成像仪、磁场检测器、光学纤维、玻璃移液管、电路、荧光计、光谱分析器、恒电位器、热量计、电泳、流式细胞仪、CCD摄像机、显微镜、声室、扩音器以及光度计中的一个或多个。52. The method of claim 51 , wherein measuring the change comprises using a photon multichannel analyzer, a spectrometer, a magnetic resonance imager, a magnetic field detector, an optical fiber, a glass pipette, an electrical circuit, a fluorometer, a spectral analysis One or more of detectors, potentiostats, calorimeters, electrophoresis, flow cytometers, CCD cameras, microscopes, sound chambers, loudspeakers, and photometers.
CN201480025377.0A 2013-03-14 2014-03-14 Molecular Nets on Solid Phase Expired - Fee Related CN105339791B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910037871.3A CN110068677A (en) 2013-03-14 2014-03-14 Molecular network in solid phase

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361783189P 2013-03-14 2013-03-14
US61/783,189 2013-03-14
US13/938,055 US9910040B2 (en) 2012-07-09 2013-07-09 Molecular nets comprising capture agents and linking agents
US13/938,055 2013-07-09
PCT/US2014/029823 WO2014153262A1 (en) 2013-03-14 2014-03-14 Molecular nets on solid phases

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910037871.3A Division CN110068677A (en) 2013-03-14 2014-03-14 Molecular network in solid phase

Publications (2)

Publication Number Publication Date
CN105339791A true CN105339791A (en) 2016-02-17
CN105339791B CN105339791B (en) 2019-02-15

Family

ID=51581466

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480025377.0A Expired - Fee Related CN105339791B (en) 2013-03-14 2014-03-14 Molecular Nets on Solid Phase
CN201910037871.3A Pending CN110068677A (en) 2013-03-14 2014-03-14 Molecular network in solid phase

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910037871.3A Pending CN110068677A (en) 2013-03-14 2014-03-14 Molecular network in solid phase

Country Status (5)

Country Link
EP (1) EP2972343A4 (en)
CN (2) CN105339791B (en)
AU (1) AU2014236090B2 (en)
CA (1) CA2908613A1 (en)
WO (1) WO2014153262A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105930586A (en) * 2016-04-21 2016-09-07 郑州轻工业学院 Local DNA hairpin strand displacement reaction-based XOR gate and complementing circuit
CN107338185A (en) * 2017-08-02 2017-11-10 苏州博福生物医药科技有限公司 The catching method of biomolecule in a kind of cell or solution

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019023961A1 (en) * 2017-08-02 2019-02-07 Suzhou Bofu Biomedical Limited Method for capturing target cells or molecules in solution
WO2022232886A1 (en) * 2021-05-06 2022-11-10 Inoviq Limited Methods relating to tumour-derived extracellular vesicles
WO2025081242A1 (en) * 2023-10-20 2025-04-24 INOVIQ Ltd Extracellular vesicle compositions and uses thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030409A1 (en) * 1995-03-27 1996-10-03 Ústav Makromolekulární Chemie Akademie Ve^¿ C^¿Eské Republiky Method for immobilisation of proteins and polyelectrolytes on surfaces of solids
US20030124623A1 (en) * 2001-12-05 2003-07-03 Paul Yager Microfluidic device and surface decoration process for solid phase affinity binding assays
CN1882701A (en) * 2003-09-18 2006-12-20 Posco公司 Size-controlled macromolecule
CN101341409A (en) * 2005-10-27 2009-01-07 生物辐射海法有限公司 Binding layer and its preparation method and use
CN101365724A (en) * 2005-10-25 2009-02-11 路易斯安那科技大学研究基金会 Immunogenic compositions and methods of use
WO2011066449A1 (en) * 2009-11-24 2011-06-03 Sevident Devices for detection of analytes
EP2541250A1 (en) * 2011-06-30 2013-01-02 Koninklijke Philips Electronics N.V. Molecular architecture on magnetic particles for affinity assays with low non-specific binding

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3116995A1 (en) * 1981-04-29 1982-11-25 Röhm GmbH, 6100 Darmstadt LATEX FOR IMMOBILIZING BIOLOGICALLY EFFECTIVE SUBSTANCES
US9201067B2 (en) * 2003-03-05 2015-12-01 Posco Size-controlled macromolecule
WO2003025573A1 (en) * 2001-09-17 2003-03-27 Pharmacia Diagnostics Ab Multi-analyte assay device with multi-spot detection zone
US20030149246A1 (en) * 2002-02-01 2003-08-07 Russell John C. Macromolecular conjugates and processes for preparing the same
WO2005123952A2 (en) * 2004-06-09 2005-12-29 Pathogen Removal And Diagnostic Technologies Inc. Particles embedded ina porous substrate for removing target analyte from a sample
WO2007067189A2 (en) * 2004-12-20 2007-06-14 The Regents Of The University Of Colorado System and methods for biological assays
CN100420947C (en) * 2005-05-30 2008-09-24 孙东旭 Method for quantitative determination of specific analyte with single trapping agent and reagent kit therefor
CA2625499A1 (en) * 2005-09-27 2007-04-05 Lance Liotta Method of isolating analytes from a sample
DK2885638T3 (en) * 2012-07-09 2020-07-20 Sienna Cancer Diagnostics Inc MOLECULENET

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996030409A1 (en) * 1995-03-27 1996-10-03 Ústav Makromolekulární Chemie Akademie Ve^¿ C^¿Eské Republiky Method for immobilisation of proteins and polyelectrolytes on surfaces of solids
US20030124623A1 (en) * 2001-12-05 2003-07-03 Paul Yager Microfluidic device and surface decoration process for solid phase affinity binding assays
CN1882701A (en) * 2003-09-18 2006-12-20 Posco公司 Size-controlled macromolecule
CN101365724A (en) * 2005-10-25 2009-02-11 路易斯安那科技大学研究基金会 Immunogenic compositions and methods of use
CN101341409A (en) * 2005-10-27 2009-01-07 生物辐射海法有限公司 Binding layer and its preparation method and use
WO2011066449A1 (en) * 2009-11-24 2011-06-03 Sevident Devices for detection of analytes
EP2541250A1 (en) * 2011-06-30 2013-01-02 Koninklijke Philips Electronics N.V. Molecular architecture on magnetic particles for affinity assays with low non-specific binding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105930586A (en) * 2016-04-21 2016-09-07 郑州轻工业学院 Local DNA hairpin strand displacement reaction-based XOR gate and complementing circuit
CN105930586B (en) * 2016-04-21 2019-02-01 郑州轻工业学院 XOR gate and complementing circut based on locality DNA hair fastener strand replacement reaction
CN107338185A (en) * 2017-08-02 2017-11-10 苏州博福生物医药科技有限公司 The catching method of biomolecule in a kind of cell or solution

Also Published As

Publication number Publication date
WO2014153262A1 (en) 2014-09-25
EP2972343A4 (en) 2016-08-24
CN105339791B (en) 2019-02-15
EP2972343A1 (en) 2016-01-20
CN110068677A (en) 2019-07-30
AU2014236090B2 (en) 2019-09-12
CA2908613A1 (en) 2014-09-25
AU2014236090A1 (en) 2015-10-08

Similar Documents

Publication Publication Date Title
Liu et al. TiO2 nanolayer-enhanced fluorescence for simultaneous multiplex mycotoxin detection by aptamer microarrays on a porous silicon surface
Xing et al. Dual molecularly imprinted polymer-based plasmonic immunosandwich assay for the specific and sensitive detection of protein biomarkers
Wu et al. Challenges and solutions in developing ultrasensitive biosensors
Muhammad et al. Molecularly imprinted plasmonic substrates for specific and ultrasensitive immunoassay of trace glycoproteins in biological samples
EP3259386B1 (en) Systems and methods for performing immunoassays
CN104169720B (en) electronic nose or electronic tongue sensor
Miranda et al. Metal-enhanced fluorescence immunosensor based on plasmonic arrays of gold nanoislands on an etched glass substrate
CN101019027B (en) Biomaterial construct, producing method and application thereof
JP6996502B2 (en) Target molecule detection method
CA2721064A1 (en) Sensitive immunoassays using coated nanoparticles
CN105339791A (en) Molecular nets on solid phases
JP2017503502A (en) Artificial cell membrane comprising a supported lipid bilayer bound to a probe with tunable mobility and method for analyzing interactions between molecules using the same
US20210318298A1 (en) Capture compositions
US20080085508A1 (en) Non-nucleic acid based biobarcode assay for detection of biological materials
JP2023521872A (en) Methods and systems for enhancing the optical signal of extracellular vesicles
Goodrum et al. Advances in three dimensional metal enhanced fluorescence based biosensors using metal nanomaterial and nano‐patterned surfaces
US20240279717A1 (en) Method of detecting target substance
US20070155022A1 (en) Degenerate binding detection and protein identification using Raman spectroscopy nanoparticle labels
Morozova et al. Force differentiation in recognition of cross-reactive antigens by magnetic beads
US20250147011A1 (en) Capture compositions
Hu et al. Recent Advances in Plasmonic Sensing Techniques for Exosome Detection and Composition Analysis
US20110311970A1 (en) Compositions and methods for intracellular analyte analysis
Jiang et al. High-performance suspension bead sensor based on optical tweezers and immuno-rolling circle amplification
JP2010091527A (en) Assay method using surface plasmon
KR102026521B1 (en) Kit and Method for Detecting Target Materials using Asymmetric Beads

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Minn

Patentee after: Innovitch Co.,Ltd.

Address before: Minn

Patentee before: Senna Cancer Diagnosis Co.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20230413

Address after: Minn

Patentee after: Senna Cancer Diagnosis Co.

Address before: California, USA

Patentee before: Sevident, Inc.

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190215

CF01 Termination of patent right due to non-payment of annual fee