CN105331808A - Method for iron ore powder agglomeration - Google Patents
Method for iron ore powder agglomeration Download PDFInfo
- Publication number
- CN105331808A CN105331808A CN201510837483.5A CN201510837483A CN105331808A CN 105331808 A CN105331808 A CN 105331808A CN 201510837483 A CN201510837483 A CN 201510837483A CN 105331808 A CN105331808 A CN 105331808A
- Authority
- CN
- China
- Prior art keywords
- iron
- iron ore
- ore powder
- particle size
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 178
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 89
- 239000000843 powder Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000005054 agglomeration Methods 0.000 title claims abstract description 9
- 230000002776 aggregation Effects 0.000 title claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 30
- 239000004568 cement Substances 0.000 claims abstract description 20
- 238000002156 mixing Methods 0.000 claims abstract description 20
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 18
- 239000011777 magnesium Substances 0.000 claims abstract description 18
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 18
- 235000019738 Limestone Nutrition 0.000 claims abstract description 14
- 239000006028 limestone Substances 0.000 claims abstract description 14
- 239000002994 raw material Substances 0.000 claims abstract description 10
- 238000012216 screening Methods 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 235000012054 meals Nutrition 0.000 claims description 10
- 239000004615 ingredient Substances 0.000 claims description 8
- 239000002984 plastic foam Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 239000008240 homogeneous mixture Substances 0.000 claims description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 claims description 2
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- IQYKECCCHDLEPX-UHFFFAOYSA-N chloro hypochlorite;magnesium Chemical compound [Mg].ClOCl IQYKECCCHDLEPX-UHFFFAOYSA-N 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 238000005245 sintering Methods 0.000 abstract description 10
- 239000011230 binding agent Substances 0.000 abstract description 7
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000011148 porous material Substances 0.000 abstract description 4
- 238000003825 pressing Methods 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000003912 environmental pollution Methods 0.000 abstract description 3
- 239000000654 additive Substances 0.000 abstract description 2
- 230000000996 additive effect Effects 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 abstract description 2
- 239000004484 Briquette Substances 0.000 abstract 2
- 239000008188 pellet Substances 0.000 description 10
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 3
- 238000005453 pelletization Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/243—Binding; Briquetting ; Granulating with binders inorganic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/02—Roasting processes
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明涉及高炉原料制备方法,特别是一种铁矿粉造块的方法。The invention relates to a method for preparing blast furnace raw materials, in particular to a method for making iron ore powder into agglomerates.
背景技术Background technique
粉矿造块是将不能直接入炉的金属矿粉经配料后,用人工的办法造成符合冶炼要求的矿块。粉矿造块是冶炼前原料准备的一个重要环节,它既扩大了冶炼原料的来源,又改善了原料的质量。Fine ore agglomeration is to make ore blocks that meet the smelting requirements by artificial means after batching metal ore powder that cannot be directly put into the furnace. Powder ore agglomeration is an important part of raw material preparation before smelting. It not only expands the source of smelting raw materials, but also improves the quality of raw materials.
铁矿粉造块的主要方法有烧结与球团两种。烧结是将细粒含铁原料与燃料、熔剂按一定的比例配合,加水润湿、混匀,然后布于烧结机上,通过点火、抽风,并借助烧结料中燃料燃烧产生高温,进而发生一系列的物理化学反应,生成部分低熔点物质,形成一定数量的液相,将铁矿物颗粒润湿粘结起来,冷却后形成具有一定强度的多孔块状产品——烧结矿。球团先将粉矿加适量的水分和粘结剂制成粘度均匀、具有足够强度的生球,经干燥、预热后在氧化气氛中焙烧,使生球结团,制成球团矿。The main methods of iron ore powder agglomeration are sintering and pelletizing. Sintering is to mix fine-grained iron-containing raw materials with fuel and flux in a certain proportion, add water to moisten and mix them evenly, and then spread them on the sintering machine. After igniting, ventilating, and burning the fuel in the sintering material to generate high temperature, a series of The physical and chemical reactions of the iron ore minerals produce some low melting point substances, forming a certain amount of liquid phase, which wets and bonds the iron ore particles, and forms a porous block product with a certain strength after cooling - sinter. Pelletizing: Firstly, powder ore is added with appropriate amount of water and binder to make green balls with uniform viscosity and sufficient strength. After drying and preheating, they are roasted in an oxidizing atmosphere to make the green balls agglomerate and make pellets.
球团生产工艺对通常只能处理粒度较细品位较高的铁精矿,造球过程中需要加入粘结剂膨润土,这样会降低球团品位增加高炉渣量,而且高炉使用球团矿需要1250℃以上高温氧化焙烧,消耗大量能源和排放大量二氧化碳,同时球团矿结构相对致密,还原性相对多孔烧结矿低些;烧结工艺虽然能够处理各种粒级的铁矿粉,但是烧结成品率较低(仅在70%左右),能量利用率低(烧结机都存在50%左右漏风率),而且烧结焦粉或煤粉产生大量硫化物和氮化物,污染大气环境。目前烧结球团中添加含氧化镁物质不是起黏结作用,只是起调节烧结球团冶金性能作用,其添加增加了烧结球团黏结剂使用量,降低了烧结球团矿的铁品位,增加了能量消耗。The pellet production process usually can only process finer-grained and high-grade iron ore concentrates, and the binder bentonite needs to be added in the pelletizing process, which will reduce the pellet grade and increase the amount of blast furnace slag, and the use of pellets in the blast furnace requires 1250 High-temperature oxidation roasting above ℃ consumes a lot of energy and emits a lot of carbon dioxide. At the same time, the pellet structure is relatively dense, and its reducibility is lower than that of porous sinter. Although the sintering process can handle iron ore powders of various sizes, the sintering yield is relatively Low (only about 70%), low energy utilization rate (the sintering machine has about 50% air leakage rate), and sintering coke powder or coal powder produces a large amount of sulfide and nitride, polluting the atmospheric environment. At present, the addition of magnesia-containing substances in sintered pellets does not play a role in bonding, but only plays a role in adjusting the metallurgical properties of sintered pellets. Its addition increases the amount of binder used in sintered pellets, reduces the iron grade of sintered pellets, and increases energy. consume.
专利申请公布号CN104232884A,公开了一种铁矿粉造块的方法,该方法能够综合利用资源,扩大炼铁用的原料种类,去除有害杂质,回收有益元素,保护环境,改善矿石的冶金性能。但是该方法仍然采用简单传统烧结台车工艺处理冶金含铁废料生产烧结矿,生产效率较低、能源利用低、产生污染空气的大量硫化物和氮化物,同时冶金含铁废料因为生产工艺和生产实况不同造成其成分波动较大,从而容易引起烧结矿化学成分波动。The patent application publication number CN104232884A discloses a method for making iron ore powder agglomerates. This method can comprehensively utilize resources, expand the types of raw materials for ironmaking, remove harmful impurities, recover beneficial elements, protect the environment, and improve the metallurgical properties of the ore. However, this method still uses a simple traditional sintering trolley process to process metallurgical iron-containing waste to produce sintered ore, which has low production efficiency, low energy utilization, and produces a large amount of sulfide and nitride that pollute the air. The different actual conditions cause its composition to fluctuate greatly, which easily causes the chemical composition of sinter to fluctuate.
发明内容Contents of the invention
本发明提供了一种铁矿粉造块的方法,旨在提高铁矿铁品位,节约能量消耗,减少环境污染。The invention provides a method for agglomerating iron ore powder, aiming at improving the iron grade of iron ore, saving energy consumption and reducing environmental pollution.
本发明提供的一种铁矿粉造块的方法包括以下步骤:A kind of iron ore powder agglomeration method provided by the invention comprises the following steps:
a.铁矿粉块配料:按重量百分比,铁矿粉85-90%、石灰石粉5-10%、镁水泥3-5%、造孔剂0.5%,把其中的铁矿粉按粒度分为两部分,一部分粒度为0-1mm,一部分粒度为1-5mm;a. Iron ore powder block ingredients: by weight percentage, iron ore powder 85-90%, limestone powder 5-10%, magnesium cement 3-5%, pore-forming agent 0.5%, the iron ore powder wherein is divided into according to particle size Two parts, one part has a particle size of 0-1mm, and the other has a particle size of 1-5mm;
b.一次混合:在混合机内放入粒度为0-1mm的铁矿粉、5-10%的石灰石粉、3-5%的镁水泥和0.5%的造孔剂,混合时间3-5min,并在混合过程中加入物料总质量2-4%的水蒸汽,得到一次混合料;b. Primary mixing: put iron ore powder with a particle size of 0-1mm, 5-10% limestone powder, 3-5% magnesium cement and 0.5% pore-forming agent in the mixer, and the mixing time is 3-5min. And add water vapor of 2-4% of the total mass of the material during the mixing process to obtain a primary mixture;
c.二次混合:将一次混合料与粒度为1-5mm的剩余铁矿粉放入混合机内混匀,混合时间2-3min,并在混合过程中加入物料总质量3-4%的水蒸汽,得到均匀混合料;c. Secondary mixing: Put the primary mixture and the remaining iron ore powder with a particle size of 1-5mm into the mixer and mix them evenly for 2-3 minutes, and add 3-4% water of the total mass of the materials during the mixing process Steam to obtain a homogeneous mixture;
d.压制:将均匀混合料放入长方体形状模具中压制成铁块生料;d. Compression: put the homogeneous mixture into a cuboid-shaped mold and press it into an iron block raw meal;
e.高压焙烧:铁块生料在压力为2.0-8.0Mpa,温度为200-400℃的条件下焙烧,焙烧时间为15-30min,脱除铁块中氯元素;e. High-pressure roasting: the raw material of the iron block is roasted under the condition of a pressure of 2.0-8.0Mpa and a temperature of 200-400°C, and the roasting time is 15-30min to remove chlorine in the iron block;
f.破碎筛分:将焙烧好铁块破碎筛分,粒度小于5mm的返回配料,5-20mm的为成品多孔铁块,成品多孔铁块的二元碱度R=1.10-1.50,TFe重量百分比含量为54-63%。f. Crushing and screening: crush and sieve the roasted iron nuggets, return ingredients with a particle size of less than 5mm, 5-20mm is the finished porous iron nugget, the binary alkalinity of the finished porous iron nugget R=1.10-1.50, TFe weight percent The content is 54-63%.
所述的步骤a中的镁水泥为氯氧镁水泥,粒度≤200目;所述的步骤a中的造孔剂为球型塑料泡沫,平均直径为0.1-2mm。The magnesium cement in the step a is magnesium oxychloride cement with a particle size of ≤200 mesh; the pore-forming agent in the step a is a spherical plastic foam with an average diameter of 0.1-2 mm.
本发明与现有同类技术相比,其显著地有益效果体现在:Compared with the prior art of the same kind, the present invention has remarkable beneficial effects embodied in:
以镁水泥为粘结剂和MgO添加剂,在混合料中添加造孔剂,采用冷压成型技术,压制成多孔铁块,提高了铁矿粉造块效率,改善了铁块的冶金性能,简化生产工艺流程,减少烧结球团(生石灰、膨润土)中黏结剂的使用,提高了铁矿铁品位,减少了能量消耗,扩展了铁矿资源,提高了铁块的体密度和高炉生产效率,减少了环境污染。Using magnesium cement as binder and MgO additive, adding pore-forming agent to the mixture, adopting cold pressing molding technology, pressing into porous iron blocks, which improves the efficiency of iron ore powder agglomeration, improves the metallurgical properties of iron blocks, and simplifies The production process reduces the use of binders in sintered pellets (quicklime, bentonite), improves the iron grade of iron ore, reduces energy consumption, expands iron ore resources, increases the bulk density of iron lumps and blast furnace production efficiency, and reduces environmental pollution.
具体实施方式detailed description
下面通过实施例更详细描述本发明。The present invention is described in more detail below by way of examples.
实施例1Example 1
按二元碱度R=1.10、TFe含量为63%的要求配料,以重量百分比计:铁矿粉89.5%、石灰石粉5%、镁水泥5%、平均直径为0.1-2mm的球型塑料泡沫造孔剂0.5%,把其中的铁矿粉按粒度分为两部分,一部分粒度为0-1mm,一部分粒度为1-5mm;在混合机内放入粒度为xx-yy的铁矿粉、5%的石灰石粉、5%的镁水泥和0.5%的造孔剂混合,混合时间3min,并在混合过程中加入总质量2%的水蒸汽,得到一次混合料;将一次混合料与粒度为1-5mm的剩余铁矿粉放入混合机内混匀,混匀时间2min,并在混合过程中加入总质量4%的水蒸汽,得到均匀混合料;将均匀混合料放入长方体形状模具中压制成铁块生料;铁块生料在压力为3.0Mpa,温度为200℃的条件下,焙烧15min,将焙烧好铁块进行破碎筛分,得到粒度为5~20mm的成品多孔铁块。According to the requirements of binary alkalinity R=1.10 and TFe content of 63%, the ingredients are calculated by weight percentage: 89.5% iron ore powder, 5% limestone powder, 5% magnesium cement, spherical plastic foam with an average diameter of 0.1-2mm 0.5% pore-forming agent, divide the iron ore powder into two parts according to the particle size, one part has a particle size of 0-1mm, and the other has a particle size of 1-5mm; put iron ore powder with a particle size of xx-yy, 5 % limestone powder, 5% magnesium cement and 0.5% pore-forming agent were mixed for 3 minutes, and 2% water vapor of the total mass was added during the mixing process to obtain a primary mixture; the primary mixture was mixed with a particle size of 1 The remaining iron ore powder of -5mm is put into the mixer and mixed for 2 minutes, and 4% water vapor of the total mass is added during the mixing process to obtain a uniform mixture; the uniform mixture is put into a cuboid mold for pressing Forming iron block raw meal; the iron block raw meal is roasted for 15 minutes at a pressure of 3.0Mpa and a temperature of 200°C, and the roasted iron block is crushed and screened to obtain a finished porous iron block with a particle size of 5-20mm.
实施例2Example 2
按二元碱度R=1.50、TFe含量为55%的要求配料,以重量百分比计:铁矿粉84.5%、石灰石粉10%、镁水泥5%、平均直径为0.1-2mm的球型塑料泡沫造孔剂0.5%,把其中的铁矿粉按粒度分为两部分,一部分粒度为0-1mm,一部分粒度为1-5mm;在混合机内放入粒度为0-1mm的铁矿粉、10%的石灰石粉、5%的镁水泥和0.5%的造孔剂混合,混合时间5min,并在混合过程中加入总质量3%的水蒸汽,得到一次混合料;将一次混合料和粒度为1-5mm的剩余铁矿粉放入混合机内混匀,混合时间3min,并在混合过程中加入总质量4%的水蒸汽,得到均匀混合料;将均匀混合料放入长方体形状模具中压制成铁块生料;铁块生料在压力为4.0Mpa,温度为260℃的条件下,焙烧20min,将焙烧好铁块进行破碎筛分,得到粒度为为5~20mm的成品。According to the requirements of binary alkalinity R=1.50 and TFe content of 55%, the ingredients are calculated by weight percentage: 84.5% iron ore powder, 10% limestone powder, 5% magnesium cement, spherical plastic foam with an average diameter of 0.1-2mm 0.5% pore forming agent, the iron ore powder in it is divided into two parts according to the particle size, one part has a particle size of 0-1mm, and the other has a particle size of 1-5mm; put iron ore powder with a particle size of 0-1mm, 10 % limestone powder, 5% magnesium cement and 0.5% pore-forming agent were mixed for 5 minutes, and 3% water vapor of the total mass was added during the mixing process to obtain a primary mixture; the primary mixture and a particle size of 1 The remaining iron ore powder of -5mm is put into the mixer and mixed for 3 minutes, and 4% water vapor of the total mass is added during the mixing process to obtain a uniform mixture; the uniform mixture is put into a cuboid mold and pressed into Iron block raw meal: The iron block raw meal is roasted for 20 minutes under the conditions of pressure of 4.0Mpa and temperature of 260°C, and the roasted iron block is crushed and screened to obtain a finished product with a particle size of 5-20mm.
实施例3Example 3
按二元碱度R=1.20、TFe含量为59%的要求配料,以重量百分比计:铁矿粉89.5%、石灰石粉6%、镁水泥4%、平均直径为0.1-2mm的球型塑料泡沫造孔剂0.5%,把其中的铁矿粉按粒度分为两部分,一部分粒度为0-1mm,一部分粒度为1-5mm;在混合机内放入粒度为0-1mm的铁矿粉、6%的石灰石粉、4%的镁水泥和0.5%的造孔剂混合,混合时间4min,并在混合过程中加入总质量3%的水蒸汽,得到一次混合料;将一次混合料和粒度为1-5mm的剩余铁矿粉放入混合机内混匀,混合时间2min,并在混合过程中加入总质量4%的水蒸汽,得到均匀混合料;将均匀混合料放入长方体形状模具中压制成铁块生料;铁块生料在压力为8.0Mpa,温度为400℃的条件下,焙烧30min,将焙烧好铁块进行破碎筛分,得到粒度为5-20mm的成品。According to the requirements of binary alkalinity R=1.20 and TFe content of 59%, the ingredients are calculated by weight percentage: 89.5% iron ore powder, 6% limestone powder, 4% magnesium cement, spherical plastic foam with an average diameter of 0.1-2mm 0.5% pore forming agent, the iron ore powder in it is divided into two parts according to the particle size, one part has a particle size of 0-1mm, and the other has a particle size of 1-5mm; put iron ore powder with a particle size of 0-1mm, 6 % limestone powder, 4% magnesium cement and 0.5% pore-forming agent were mixed for 4 minutes, and 3% water vapor of the total mass was added during the mixing process to obtain a primary mixture; the primary mixture and a particle size of 1 The remaining iron ore powder of -5 mm is put into the mixer and mixed for 2 minutes, and 4% water vapor of the total mass is added during the mixing process to obtain a uniform mixture; the uniform mixture is put into a cuboid mold and pressed into Iron block raw meal: The iron block raw meal is roasted for 30 minutes at a pressure of 8.0Mpa and a temperature of 400°C, and the roasted iron block is crushed and screened to obtain a finished product with a particle size of 5-20mm.
实施例4Example 4
按二元碱度R=1.30、TFe含量为60%的要求配料,以重量百分比计:铁矿粉87.5%、石灰石粉8%、镁水泥3%、平均直径为0.1-2mm的球型塑料泡沫造孔剂0.5%,把其中的铁矿粉按粒度分为两部分,一部分粒度为0-1mm,一部分粒度为1-5mm;在混合机内放入粒度为0-1mm的铁矿粉、8%的石灰石粉、3%的镁水泥和0.5%的造孔剂混合,混合时间3min,并在混合过程中加入总质量2%的水蒸汽,得到一次混合料;将一次混合料和粒度为1-5mm的剩余铁矿粉放入混合机内混匀,混合时间2min,并在混合过程中加入总质量4%的水蒸汽,得到均匀混合料;将均匀混合料放入长方体形状模具中压制成铁块生料;铁块生料在压力为6.0Mpa,温度为300℃的条件下,焙烧25min,将焙烧好铁块进行破碎筛分,得到粒度为5-20mm的成品。According to the requirements of binary alkalinity R=1.30 and TFe content of 60%, the ingredients are calculated by weight percentage: 87.5% iron ore powder, 8% limestone powder, 3% magnesium cement, spherical plastic foam with an average diameter of 0.1-2mm 0.5% pore forming agent, the iron ore powder in it is divided into two parts according to the particle size, one part has a particle size of 0-1mm, and the other has a particle size of 1-5mm; put iron ore powder with a particle size of 0-1mm, 8 % limestone powder, 3% magnesium cement and 0.5% pore-forming agent were mixed for 3 minutes, and 2% water vapor of the total mass was added during the mixing process to obtain a primary mixture; the primary mixture and a particle size of 1 The remaining iron ore powder of -5 mm is put into the mixer and mixed for 2 minutes, and 4% water vapor of the total mass is added during the mixing process to obtain a uniform mixture; the uniform mixture is put into a cuboid mold and pressed into Iron block raw meal: The iron block raw meal is roasted for 25 minutes under the conditions of pressure of 6.0Mpa and temperature of 300°C, and the roasted iron block is crushed and screened to obtain a finished product with a particle size of 5-20mm.
表1实施例效果Table 1 embodiment effect
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510837483.5A CN105331808B (en) | 2015-11-26 | 2015-11-26 | A kind of method of iron mineral powder agglomeration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510837483.5A CN105331808B (en) | 2015-11-26 | 2015-11-26 | A kind of method of iron mineral powder agglomeration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105331808A true CN105331808A (en) | 2016-02-17 |
CN105331808B CN105331808B (en) | 2017-08-29 |
Family
ID=55282566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510837483.5A Active CN105331808B (en) | 2015-11-26 | 2015-11-26 | A kind of method of iron mineral powder agglomeration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105331808B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110029223A (en) * | 2019-04-03 | 2019-07-19 | 辽宁科技大学 | A kind of magnesium-based iron coke composite pellet and preparation method thereof |
CN111549215A (en) * | 2020-06-30 | 2020-08-18 | 刘浩睿 | Iron ore processing method |
CN112342374A (en) * | 2020-11-06 | 2021-02-09 | 建龙西林钢铁有限公司 | Method for producing pellet ore by using low-moisture mineral powder |
CN113564353A (en) * | 2021-08-07 | 2021-10-29 | 湘潭炜达机电制造有限公司 | Iron ore powder agglomeration method and extrusion molding die |
CN116287696A (en) * | 2023-03-25 | 2023-06-23 | 湘潭炜达机电制造有限公司 | Adhesive for vacuum extrusion of ore and production process of vacuum extrusion ore for blast furnace ironmaking |
CN116949285A (en) * | 2023-07-25 | 2023-10-27 | 中冶京诚工程技术有限公司 | Cold agglomeration and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101671752A (en) * | 2009-04-23 | 2010-03-17 | 北京科技大学 | Method for producing directly reduced pellets by adding pore-forming agent and organic binder |
CN102268543A (en) * | 2011-08-30 | 2011-12-07 | 北京科技大学 | Shaping adhesive for chromium powder ore cold-pressed pellets and using method of shaping adhesive |
CN102719659A (en) * | 2011-03-30 | 2012-10-10 | 宝山钢铁股份有限公司 | Sinter mixture granulating method |
CN104232884A (en) * | 2013-06-24 | 2014-12-24 | 凌敬平 | Agglomeration method of iron ore powder |
-
2015
- 2015-11-26 CN CN201510837483.5A patent/CN105331808B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101671752A (en) * | 2009-04-23 | 2010-03-17 | 北京科技大学 | Method for producing directly reduced pellets by adding pore-forming agent and organic binder |
CN102719659A (en) * | 2011-03-30 | 2012-10-10 | 宝山钢铁股份有限公司 | Sinter mixture granulating method |
CN102268543A (en) * | 2011-08-30 | 2011-12-07 | 北京科技大学 | Shaping adhesive for chromium powder ore cold-pressed pellets and using method of shaping adhesive |
CN104232884A (en) * | 2013-06-24 | 2014-12-24 | 凌敬平 | Agglomeration method of iron ore powder |
Non-Patent Citations (1)
Title |
---|
童义平: "影响氯氧镁水泥强度因素的初步探讨", 《湛江师范学院学报》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110029223A (en) * | 2019-04-03 | 2019-07-19 | 辽宁科技大学 | A kind of magnesium-based iron coke composite pellet and preparation method thereof |
CN111549215A (en) * | 2020-06-30 | 2020-08-18 | 刘浩睿 | Iron ore processing method |
CN112342374A (en) * | 2020-11-06 | 2021-02-09 | 建龙西林钢铁有限公司 | Method for producing pellet ore by using low-moisture mineral powder |
CN112342374B (en) * | 2020-11-06 | 2022-04-01 | 建龙西林钢铁有限公司 | Method for producing pellet ore by using low-moisture mineral powder |
CN113564353A (en) * | 2021-08-07 | 2021-10-29 | 湘潭炜达机电制造有限公司 | Iron ore powder agglomeration method and extrusion molding die |
CN113564353B (en) * | 2021-08-07 | 2023-03-03 | 湘潭炜达机电制造有限公司 | Iron ore powder agglomeration method and extrusion molding die |
CN116287696A (en) * | 2023-03-25 | 2023-06-23 | 湘潭炜达机电制造有限公司 | Adhesive for vacuum extrusion of ore and production process of vacuum extrusion ore for blast furnace ironmaking |
CN116949285A (en) * | 2023-07-25 | 2023-10-27 | 中冶京诚工程技术有限公司 | Cold agglomeration and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105331808B (en) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105331808B (en) | A kind of method of iron mineral powder agglomeration | |
CN102719676B (en) | Method for rapidly reducing copper slags to produce iron-copper alloys in kiln in reducing atmosphere | |
CN103114201B (en) | Agglomeration method for iron containing dust slime of iron and steel plants | |
CN101705317B (en) | Method for Harmless Treatment of Chromium Slag Using Metallurgical Sintering and Blast Furnace | |
CN100537794C (en) | Iron ore powder composite agglomeration process | |
CN105132673B (en) | A kind of method for reducing carbon containing dust pellet material composite agglomeration solid fuel consumption | |
KR101304686B1 (en) | Part reduced iron for blast furnace and method thereof | |
KR102630996B1 (en) | Iron ore fine aggregate manufacturing process and agglomeration products | |
JP2009144240A (en) | Manufacturing method of forming raw material for sinter production | |
CN103276294B (en) | Method for rapidly reducing nickel slag to produce iron-nickel-copper alloy powder in kiln under reducing atmosphere | |
CN100580106C (en) | Method of cold pressing agglomerates and pelletizing | |
CN101906533A (en) | A kind of low-silicon magnesium-containing pellet and its production method | |
CN103451416A (en) | Method for improving strength of pellet ore | |
CN104278145A (en) | Method for producing sintering ore | |
CN106811597A (en) | Method for producing cold-bonded carbon-containing pellets for blast furnace by using lime kiln waste gas | |
CN103627895A (en) | Production method for sintering chromium powder ore by continuous strand sinter machine | |
CN110104979A (en) | A method of gangue lightweight aggregate is prepared using belt sintering | |
CN105316478B (en) | Sintering production method for improving limonite proportion | |
TW201823476A (en) | Sintered ore manufacturing method | |
CN103937971A (en) | Preparation method of iron-ore hot-pressed carbon-containing pellet and iron-making raw material | |
CN103409619A (en) | Cooled agglomerated pellet and preparation method thereof | |
CN103468943A (en) | Cold-pressing pallet production process of chromium fine ore | |
CN103627897B (en) | Rich iron cooled agglomerated pellet and manufacturing process thereof and purposes | |
JP2015137379A (en) | Non-burning carbonaceous material interior ore for blast furnace and manufacturing method therefor | |
CN115992311B (en) | A method for comprehensive utilization of zinc-containing dust in steel plants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |