[go: up one dir, main page]

CN105319614A - Anti-reflection structure and electronic device - Google Patents

Anti-reflection structure and electronic device Download PDF

Info

Publication number
CN105319614A
CN105319614A CN201410383559.7A CN201410383559A CN105319614A CN 105319614 A CN105319614 A CN 105319614A CN 201410383559 A CN201410383559 A CN 201410383559A CN 105319614 A CN105319614 A CN 105319614A
Authority
CN
China
Prior art keywords
substrate
protrusions
reflection structure
height
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410383559.7A
Other languages
Chinese (zh)
Inventor
柯泰年
陈奕君
陈柏元
李昀轩
周家筠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innolux Corp
Original Assignee
Innolux Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innolux Display Corp filed Critical Innolux Display Corp
Priority to CN201410383559.7A priority Critical patent/CN105319614A/en
Publication of CN105319614A publication Critical patent/CN105319614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

本发明公开一种抗反射结构及电子装置,该抗反射结构包括:一基板,包括一平坦部以及设置于该平坦部上的一凸出部,其中该凸出部与该平坦部为一体成形的;以及一涂层,设置于该基板上,顺应地覆盖该凸出部与该平坦部。

The invention discloses an anti-reflection structure and an electronic device. The anti-reflection structure comprises: a substrate, comprising a flat portion and a protruding portion arranged on the flat portion, wherein the protruding portion and the flat portion are integrally formed; and a coating, arranged on the substrate, conformably covering the protruding portion and the flat portion.

Description

抗反射结构及电子装置Anti-reflection structure and electronic device

技术领域technical field

本发明涉及一种光学结构,且特别是涉及一种抗反射结构,其适用于如显示器及太阳能电池等多种电子装置的应用,用于提供抗反射(anti-reflection)与抗污(anti-smudge)等功能。The present invention relates to an optical structure, and in particular to an anti-reflection structure, which is suitable for applications in various electronic devices such as displays and solar cells, for providing anti-reflection and anti-fouling. smudge) and other functions.

背景技术Background technique

当于明亮的环境光环境下使用如移动电话的电子装置时,在屏幕的环境光的反射情形具有极大的破坏性,进而使得使用者难以阅读屏幕上的内容。除了上述情形外,环境光的反射可以发生在许多其它的电子装置的受光表面,例如是电视、显示器或太阳能电池等其它电子装置的表面处,进而造成了使用者的不方便阅读情形或更为劣化电子装置的电性操作表现。When an electronic device such as a mobile phone is used in a bright ambient light environment, the reflection of the ambient light on the screen is very disruptive, making it difficult for the user to read the content on the screen. In addition to the above-mentioned situations, the reflection of ambient light can occur on the light-receiving surfaces of many other electronic devices, such as the surfaces of other electronic devices such as TVs, monitors or solar cells, thereby causing inconvenient reading for users or worse. Degrade the electrical performance of electronic devices.

因此,在传统技术中,一般采用了抗反射涂层(anti-reflectioncoating)技术以解决上述的环境光的反射问题。抗反射涂层技术通常于一真空腔室之内涂布一层或一层以上的抗反射薄膜涂层于一透光基板的表面上,以用于减少光反射的破坏性干扰情形。然而,由于抗反射涂层通常形成于接触外界环境的一基板表面上,因此抗反射涂层通常具有较差的机械特性,故于长时间的使用后,容易受到环境中的脏污以及使用者的操作的影响,而造成抗反射涂层的毁损与污损等不良情形而影响了整体装置的使用寿命。因此,便需要机械强度较强且抗脏污的一种抗反射结构。Therefore, in conventional technologies, an anti-reflection coating (anti-reflection coating) technology is generally used to solve the above-mentioned reflection problem of ambient light. Anti-reflection coating technology usually coats one or more layers of anti-reflection film coating on the surface of a light-transmitting substrate in a vacuum chamber to reduce the destructive interference of light reflection. However, since the anti-reflection coating is usually formed on the surface of a substrate exposed to the external environment, the anti-reflection coating usually has poor mechanical properties, so it is susceptible to dirt in the environment and users after a long period of use. The impact of the operation of the anti-reflective coating will cause damage and contamination of the anti-reflective coating and other adverse situations, which will affect the service life of the overall device. Therefore, an anti-reflection structure with strong mechanical strength and anti-smudge is required.

发明内容Contents of the invention

为解决上述问题,本发明提供了一种抗反射结构,包括:一基板,包括一平坦部以及设置于该平坦部上的一凸出部,其中该凸出部与该平坦部为一体成形的;以及一涂层,设置于该基板上,顺应地覆盖该凸出部与该平坦部。In order to solve the above problems, the present invention provides an anti-reflection structure, comprising: a substrate, including a flat part and a protruding part arranged on the flat part, wherein the protruding part and the flat part are integrally formed and a coating, disposed on the substrate, conformably covering the protruding portion and the flat portion.

依据又一实施例,本发明提供了一种电子装置,包括:一第一基板;一第二基板,设置于该第一基板上;以及一液晶层、一触碰感测层或一光电转换组件,设置于该第一基板与该第二基板之间,其中该第二基板包括前述的该抗反射结构。According to yet another embodiment, the present invention provides an electronic device, comprising: a first substrate; a second substrate disposed on the first substrate; and a liquid crystal layer, a touch sensing layer or a photoelectric conversion The component is disposed between the first substrate and the second substrate, wherein the second substrate includes the aforementioned anti-reflection structure.

为让本发明的上述目的、特征及优点能更明显易懂,下文特举一优选实施例,并配合所附的附图,作详细说明如下。In order to make the above-mentioned purpose, features and advantages of the present invention more comprehensible, a preferred embodiment is exemplified below and described in detail in conjunction with the accompanying drawings.

附图说明Description of drawings

图1-图4为一系列剖面示意图,显示了依据本发明的一实施例的一种抗反射结构的制造方法;1-4 are a series of schematic cross-sectional views showing a method for manufacturing an anti-reflection structure according to an embodiment of the present invention;

图5为一剖面示意图,显示了依据本发明的另一实施例的一种抗反射结构;5 is a schematic cross-sectional view showing an anti-reflection structure according to another embodiment of the present invention;

图6为一剖面示意图,显示了依据本发明的又一实施例的一种抗反射结构;FIG. 6 is a schematic cross-sectional view showing an anti-reflection structure according to another embodiment of the present invention;

图7为一剖面示意图,显示了依据本发明的一实施例的一种电子装置,其应用了如图4内所示的抗反射结构;FIG. 7 is a schematic cross-sectional view showing an electronic device according to an embodiment of the present invention, which uses the anti-reflection structure shown in FIG. 4;

图8为一剖面示意图,显示了依据本发明的另一实施例的一种电子装置,其应用了如图4内所示的抗反射结构;FIG. 8 is a schematic cross-sectional view showing an electronic device according to another embodiment of the present invention, which uses the anti-reflection structure shown in FIG. 4;

图9为一剖面示意图,显示了依据本发明的又一实施例的一种电子装置,其应用了如图4内所示的抗反射结构;以及FIG. 9 is a schematic cross-sectional view showing an electronic device according to another embodiment of the present invention, which uses the anti-reflection structure shown in FIG. 4; and

图10为一剖面示意图,显示了依据本发明的另一实施例的一种电子装置,其应用了如图4内所示的抗反射结构。FIG. 10 is a schematic cross-sectional view showing an electronic device according to another embodiment of the present invention, which uses the anti-reflection structure shown in FIG. 4 .

符号说明Symbol Description

100~基板100~substrate

100’~基板100'~substrate

100a~平坦部100a~flat part

100b~凸出部100b~Protruding part

101a~第一凸出部101a~the first protrusion

101b~第二凸出部101b~second protrusion

101c~第三凸出部101c~the third protrusion

102~球体102~sphere

104~蚀刻制作工艺104~Etching process

106~涂层106~coating

200、300、400、500~电子装置200, 300, 400, 500~electronic device

210~第一基板210~the first substrate

220~液晶层220~LCD layer

230~彩色滤光层230~Color filter layer

240~第二基板240~second substrate

310~第一基板310~the first substrate

320~液晶层320~LCD layer

330~触控组件330~touch components

340~彩色滤光层340~color filter layer

350~第三基板350~third substrate

360~第二基板360~second substrate

380~空间380~space

402~第二基板402~second substrate

404~透明导电层404~transparent conductive layer

406~p型非晶硅层406~p-type amorphous silicon layer

408~本征非晶硅层408~Intrinsic amorphous silicon layer

410~n型非晶硅层410~n-type amorphous silicon layer

412~电极层412~electrode layer

414~第一基板414~the first substrate

450~光电转换组件450~Photoelectric conversion components

502~第一基板502~the first substrate

504~触碰感测层504~Touch sensing layer

506~第二基板506~second substrate

D1~直径/宽度D1~diameter/width

D2~直径/宽度D2~diameter/width

D3~直径/宽度D3~diameter/width

H1~高度H1~height

H2~高度H2~Height

H3~高度H3~height

具体实施方式detailed description

请参照图1-图4的一系列剖面示意图,以显示了依据本发明的一实施例的一种抗反射结构的制造方法。Please refer to a series of cross-sectional diagrams of FIGS. 1-4 , which illustrate a method of manufacturing an anti-reflection structure according to an embodiment of the present invention.

请参照图1,首先提供一基板100,其可包括如玻璃、聚甲基丙烯酸甲酯(polymethylmethacrylate,PMMA)、聚对苯二甲酸乙二酯(Polyethyleneterephthalate,PET)、聚酰亚胺(Polyimide,PI)等透光材料。接着采用LB涂布(Langmuir-Blodgettcoating,LBcoating)、LS涂布(Langmuir-Schaefercoating,LScoating)、浸沾式涂布(DipCoating)、自组装单层膜(self-assemblymonolayers,SAMs)等的方法,本发明方法不在此限,于基板100的表面上设置具有相同直径D1的数个球体102。如图1所示,此些球体102的直径D1可介于如200纳米-400纳米,且可包括如聚苯乙烯(polystyrene,PS)、聚乙烯(polyethylene,PE)、聚氯乙烯(polyvinylchloride,PVC)、二氧化硅(SiO2)等材质,而形成于基板100上的此些球体102之间紧密地相邻,故于此些球体102之间并不具有任何间距。Referring to FIG. 1, a substrate 100 is first provided, which may include, for example, glass, polymethylmethacrylate (polymethylmethacrylate, PMMA), polyethylene terephthalate (Polyethyleneterephthalate, PET), polyimide (Polyimide, PI) and other light-transmitting materials. Then adopt methods such as LB coating (Langmuir-Blodgettcoating, LBcoating), LS coating (Langmuir-Schaefercoating, LScoating), dip coating (DipCoating), self-assembly monolayers (self-assembly monolayers, SAMs), etc. The inventive method is not limited here, and several spheres 102 with the same diameter D1 are disposed on the surface of the substrate 100 . As shown in FIG. 1 , the diameter D1 of these spheres 102 can be between 200 nanometers and 400 nanometers, and can include polystyrene (polystyrene, PS), polyethylene (polyethylene, PE), polyvinyl chloride (polyvinylchloride, etc.). PVC), silicon dioxide (SiO 2 ) and other materials, and the spheres 102 formed on the substrate 100 are closely adjacent to each other, so there is no distance between the spheres 102 .

接着,请参照图2,针对图1所示结构施行一蚀刻制作工艺104。蚀刻制作工艺104例如为等离子体蚀刻的一干蚀刻制作工艺,且蚀刻制作工艺104内所使用的蚀刻化学品(未显示)可视所采用的球体102的材质而调整。在一实施例中,当球体102的材质为聚苯乙烯时,蚀刻制作工艺104可为采用如氟甲烷(CHF3)或四氟化碳(CF4)的一蚀刻化学品。在蚀刻制作工艺104的施行过程中,蚀刻化学品除了可穿透此些球体102之间的缝隙而各向异性地蚀刻了位于球体102下方的基板100的数个部分外,也同时各向异性地蚀刻去除了球体102的部分。Next, referring to FIG. 2 , an etching process 104 is performed on the structure shown in FIG. 1 . The etching process 104 is, for example, a dry etching process of plasma etching, and the etching chemicals (not shown) used in the etching process 104 can be adjusted according to the material of the spherical body 102 used. In one embodiment, when the material of the sphere 102 is polystyrene, the etching process 104 may use an etching chemical such as fluoromethane (CHF 3 ) or carbon tetrafluoride (CF 4 ). During the implementation of the etching process 104, the etching chemicals can not only penetrate through the gaps between the spheres 102 and anisotropically etch several parts of the substrate 100 below the spheres 102, but also anisotropically A portion of the ball 102 is removed by etching.

请参照图3,在图2所示蚀刻制作工艺104之后,施行另一蚀刻制作工艺(未显示),例如为一湿蚀刻制作工艺,以去除于蚀刻制作工艺104施行后残留基板100上的球体102的部分(未显示)并洁净基板100。在一实施例中,当球体102的材质为聚苯乙烯时,可采用如硫酸与双氧水等蚀刻化学品以去除残留基板100上的球体102的部分(未显示)并洁净基板100。Please refer to FIG. 3 , after the etching process 104 shown in FIG. 2 , another etching process (not shown), such as a wet etching process, is performed to remove the balls remaining on the substrate 100 after the etching process 104 is performed. 102 (not shown) and clean the substrate 100. In one embodiment, when the material of the sphere 102 is polystyrene, etching chemicals such as sulfuric acid and hydrogen peroxide can be used to remove the portion (not shown) of the sphere 102 remaining on the substrate 100 and clean the substrate 100 .

如图3所示,基板100于经历上述蚀刻制作工艺之后形成一基板100’,在其表面上便形成有一凸出部100b以及位于此些凸出部100b下方的一平坦部100a,其中凸出部100b包含多个第一凸出部101a,凸出部100b以及位于凸出部100b下方的平坦部100a由相同的透光材料所形成且为一体成型的。而此些第一凸出部101a可具有大体相似于球体102的部分表面的半球状或类半球状的剖面轮廓,且具有相似于球体102的直径D1介于195~400纳米的一宽度(也显示为D1)以及介于50~250纳米的一高度H1。值得注意的是,此些第一凸出部101a为紧密且相邻地排列,且此些第一凸出部101a之间并未形成有任何间距。As shown in FIG. 3 , the substrate 100 is formed into a substrate 100 ′ after undergoing the above-mentioned etching process, and a protruding portion 100 b and a flat portion 100 a located below the protruding portion 100 b are formed on the surface thereof, wherein the protruding The portion 100b includes a plurality of first protruding portions 101a, and the protruding portions 100b and the flat portion 100a below the protruding portions 100b are formed of the same light-transmitting material and integrally formed. These first protrusions 101a may have a hemispherical or semi-hemispherical cross-sectional profile that is generally similar to the partial surface of the sphere 102, and have a width (also similar to the diameter D1 of the sphere 102) between 195-400 nanometers. Shown as D1) and a height H1 between 50-250 nm. It should be noted that the first protruding portions 101a are closely and adjacently arranged, and no space is formed between the first protruding portions 101a.

请参照图4,接着于如图3所示结构上形成一涂层106,其中此涂层106为一抗污层(anti-smudgelayer)。在一实施例中,涂层106可包括如全氟聚醚(Per-FluorinatedPolyEthers,PFPE)、氟烷、卤化烷等材质,且可采用如浸沾式涂布(DipCoating)、喷射涂布(SprayCoating)、蒸气法(Evaporation)的成膜方法而顺应地形成于图3所示的基板100’的凸出部100b与平坦部100a的露出表面之上。另外,涂层106可具有介于1纳米~100纳米的一厚度。Referring to FIG. 4 , a coating 106 is then formed on the structure shown in FIG. 3 , wherein the coating 106 is an anti-smudge layer. In one embodiment, the coating 106 may include materials such as perfluoropolyether (Per-FluorinatedPolyEthers, PFPE), fluorocarbon, haloalkane, etc., and may adopt such as dip coating (DipCoating), spray coating (SprayCoating), etc. ) and vaporization (Evaporation) film-forming methods are conformably formed on the exposed surfaces of the raised portion 100 b and the flat portion 100 a of the substrate 100 ′ shown in FIG. 3 . In addition, the coating 106 may have a thickness ranging from 1 nm to 100 nm.

因此,如图1-图4所示,依据本案的一实施例的抗反射结构的制作便大体完成了。图4显示了依据本发明的一实施例的抗反射结构,其中形成于包括透光材质的基板100’上的相邻多个第一凸出部101a组成并形成了相似于一蛾眼结构(moth-eyestructure)的抗反射结构,因而可使其具有于可见光波段中的抑制反射光的光学表现,且其于可见光波长范围(400nm-800nm)内可具有不大于0.65%的反射率(reflectivity)的表现。Therefore, as shown in FIGS. 1-4 , the fabrication of the anti-reflection structure according to an embodiment of the present application is basically completed. FIG. 4 shows an anti-reflection structure according to an embodiment of the present invention, in which a plurality of adjacent first protrusions 101a formed on a substrate 100' comprising a light-transmitting material compose and form a moth-eye structure ( moth-eyestructure) anti-reflection structure, so that it can have the optical performance of suppressing reflected light in the visible light band, and it can have a reflectivity (reflectivity) of not more than 0.65% in the visible light wavelength range (400nm-800nm) Performance.

另外,在图4所示的抗反射结构中,通过涂层106的设置,其表面对于水与正己烷(n-hexane)等液体可分别表现出大于110°及大于55°的接触角(contactangle)表现,因而具有符合抗污与自洁等特性。In addition, in the anti-reflection structure shown in FIG. 4, through the setting of the coating 106, its surface can exhibit contact angles greater than 110° and greater than 55° for liquids such as water and n-hexane. ) performance, so it has the characteristics of anti-fouling and self-cleaning.

再者,由于图4显示的抗反射结构中,基板100’的凸出部100b与平坦部100a由相同材质所一体成型的,因此凸出部100b与平坦部100a之间的结合情形与机械特性极为良好,且优于由透光基板与形成于透光基板上的不同材质的抗反射涂层所组成的传统抗反射结构的机械特性,因而具有抗磨损及耐磨耗等特性。Furthermore, since in the anti-reflection structure shown in FIG. 4 , the convex portion 100b and the flat portion 100a of the substrate 100 ′ are integrally formed of the same material, the combination and mechanical properties of the convex portion 100b and the flat portion 100a It is extremely good, and superior to the mechanical properties of the traditional anti-reflection structure composed of the light-transmitting substrate and the anti-reflection coating of different materials formed on the light-transmitting substrate, so it has the characteristics of wear resistance and wear resistance.

请参照图5的一剖面示意图,显示了依据本发明的另一实施例的一抗反射结构。而图5所示的抗反射结构由修改如图4所示抗反射结构所得到,且基于简化目的,在下文中仅解说图4-图5所示抗反射结构之间的差异处。Please refer to a schematic cross-sectional view of FIG. 5 , which shows an anti-reflection structure according to another embodiment of the present invention. The anti-reflection structure shown in FIG. 5 is obtained by modifying the anti-reflection structure shown in FIG. 4 , and for the purpose of simplification, only the differences between the anti-reflection structures shown in FIGS. 4-5 are explained below.

如图5所示,抗反射结构内的基板100’的平坦部100a上设置抗反射结构内的凸出部100b,其中凸出部100b包含多个第一凸出部101a以及多个第二凸出部101b,其中此些第二凸出部101b具有大于此些第一凸出部101a一高度H2与一宽度D2。而此些第二凸出部101b的制作于如图1-图4的制造方法中,采用混合有两种不同尺寸的数个球体102所达成,且此些球体102内包括数个介于195-400纳米的直径D1的第一种球体(未显示),以及数个介于280-400纳米的直径D2的第二种球体(未显示),并通过重复图2-图4的制造方法而得到图5所示的抗反射结构。此些第一凸出部101a可具有大体相似于第一种球体(未显示)的部分表面的半球状或类半球状的剖面轮廓,且具有相似于第一种球体(未显示)的介于195~400纳米的一宽度(也显示为D1)以及介于50~250纳米的一高度H1,而此些第二凸出部101b可具有大体相似于第二种球体(未显示)的部分表面的半球状或类半球状的剖面轮廓,且具有相似于第二种球体(未显示)的介于280~400纳米的一宽度(也显示为D2)以及介于50~250纳米的一高度H2。值得注意的是,此些第一凸出部101a与第二突出部101b为紧密且相邻地排列,且此些第一凸出部101a与第二突出部101b之间并未形成有任何间距。As shown in FIG. 5 , the flat part 100a of the substrate 100' in the anti-reflection structure is provided with a protrusion 100b in the anti-reflection structure, wherein the protrusion 100b includes a plurality of first protrusions 101a and a plurality of second protrusions. The protrusions 101b, wherein the second protrusions 101b have a height H2 and a width D2 greater than the first protrusions 101a. And these second protruding parts 101b are made in the manufacturing method as shown in Fig. 1-Fig. - a first sphere (not shown) of diameter D1 of 400 nm, and a number of second spheres (not shown) of diameter D2 between 280-400 nm, produced by repeating the manufacturing method of FIGS. 2-4 The anti-reflection structure shown in Fig. 5 is obtained. These first protrusions 101a may have a hemispherical or semi-hemispherical cross-sectional profile that is generally similar to a part of the surface of the first sphere (not shown), and have a sectional profile similar to the first sphere (not shown). A width (also shown as D1) of 195-400 nm and a height H1 between 50-250 nm, and these second protrusions 101b may have a part of the surface substantially similar to the second sphere (not shown) Hemispherical or semi-hemispherical cross-sectional profile, and has a width (also shown as D2) between 280-400 nm and a height H2 between 50-250 nm similar to the second sphere (not shown) . It is worth noting that the first protrusions 101a and the second protrusions 101b are closely and adjacently arranged, and there is no gap between the first protrusions 101a and the second protrusions 101b .

在一实施例中,如图5所示该抗反射结构内所使用此些第一种球体数量占总量的0.1%~99%,以及此些第二种球体数量占总量的0.1%~99%,以使得所形成的抗反射结构内的此些第一凸出部101a占总面积比例的0.1%~99.9%,以及此些第二凸出部101b占总面积比例的0.1%~99.9%。In one embodiment, as shown in FIG. 5 , the number of the first type of spheres used in the anti-reflection structure accounts for 0.1% to 99% of the total amount, and the amount of the second type of spheres accounts for 0.1% to 99% of the total amount. 99%, so that the first protrusions 101a in the formed antireflection structure account for 0.1% to 99.9% of the total area, and the second protrusions 101b account for 0.1% to 99.9% of the total area %.

请参照图6的一剖面示意图,显示了依据本发明的另一实施例的一抗反射结构。而图6所示的抗反射结构由修改如图4所示抗反射结构所得到,且基于简化目的,在下文中仅解说图4、图6所示抗反射结构之间的差异处。Please refer to a schematic cross-sectional view of FIG. 6 , which shows an anti-reflection structure according to another embodiment of the present invention. The anti-reflection structure shown in FIG. 6 is obtained by modifying the anti-reflection structure shown in FIG. 4 , and for the purpose of simplification, only the differences between the anti-reflection structures shown in FIG. 4 and FIG. 6 are explained below.

如图6所示,抗反射结构内的基板100’的平坦部100a上设置抗反射结构的凸出部100b,其中凸出部100b包含多个第一凸出部101a、多个第二凸出部101b以及多个第三凸出部101c,其中此些第三凸出部101c具有大于此些第一凸出部101a与此些第二凸出部101b的高度H3与宽度D3,而此些第二凸出部101b具有大于此些第一凸出部101a的高度H2与宽度D2。此些凸出部101a-c的制作于如图1-图4的制造方法中,采用混合有三种不同尺寸的多个球体102所达成,其中此些球体102内包括数个介于195纳米-245纳米的直径D1的第一种球体(未显示)、数个介于280纳米-330纳米的直径D2的第二种球体(未显示),以及数个介于350纳米-400纳米的直径D3的第三种球体(未显示),并通过重复图2-图4的制造方法而得到图6所示的抗反射结构。此些第一凸出部101a可具有大体相似于第一种球体(未显示)的部分表面的半球状或类半球状的剖面轮廓,且具有相似于第一种球体(未显示)的介于195~245纳米的一宽度(也显示为D1)以及介于50~250纳米的一高度H1,而此些第二凸出部101b可具有大体相似于第二种球体(未显示)的部分表面的半球状或类半球状的剖面轮廓,且具有相似于第二种球体(未显示)的介于280~330纳米的一宽度(也显示为D2)以及介于50~250纳米的一高度H2,而此些第三凸出部101c可具有大体相似于第三种球体(未显示)的部分表面的半球状或类半球状的剖面轮廓,且具有相似于第三种球体(未显示)的介于350~400纳米的一宽度(也显示为D3)以及介于50~250纳米的一高度H3。值得注意的是,此些第一凸出部101a、第二突出部101b与第三突出部101c为紧密且相邻地排列,且此些第一凸出部101a、第二突出部101b与第三突出部101c之间并未形成有任何间距。在一实施例中,如图6所示抗反射结构内所使用的此些第一种球体数量占总量的60%~98%、此些第二种球体数量占总量的1%~20%,以及此些第三种球体数量占总量的1%~20%,以形成该抗反射结构的此些第一凸出部101a占总面积比例的60%~98%,此些第二凸出部101b占总面积比例的1%~20%,以及此些第三凸出部101c占总面积比例的1%~20%。As shown in FIG. 6 , on the flat portion 100 a of the substrate 100 ′ in the anti-reflection structure, a protrusion 100 b of the anti-reflection structure is provided, wherein the protrusion 100 b includes a plurality of first protrusions 101 a, a plurality of second protrusions portion 101b and a plurality of third protruding portions 101c, wherein these third protruding portions 101c have a height H3 and a width D3 greater than those of these first protruding portions 101a and these second protruding portions 101b, and these The second protruding portion 101b has a height H2 and a width D2 greater than those of the first protruding portions 101a. These protruding parts 101a-c are produced in the manufacturing method as shown in Fig. 1-Fig. A first type of sphere (not shown) with a diameter D1 of 245 nm, a number of second type spheres (not shown) with a diameter D2 between 280 nm and 330 nm, and a number of spheres with a diameter D3 between 350 nm and 400 nm The third kind of sphere (not shown), and the anti-reflection structure shown in FIG. 6 is obtained by repeating the manufacturing method of FIG. 2-FIG. 4 . These first protrusions 101a may have a hemispherical or semi-hemispherical cross-sectional profile that is generally similar to a part of the surface of the first sphere (not shown), and have a sectional profile similar to the first sphere (not shown). A width (also shown as D1) of 195-245 nm and a height H1 between 50-250 nm, and these second protrusions 101b may have a part of the surface substantially similar to the second sphere (not shown) Hemispherical or semi-hemispherical cross-sectional profile, and has a width (also shown as D2) between 280-330 nm and a height H2 between 50-250 nm similar to the second sphere (not shown) , and these third protrusions 101c may have a hemispherical or semi-hemispherical cross-sectional profile that is generally similar to a part of the surface of a third sphere (not shown), and has a profile similar to that of a third sphere (not shown). A width (also shown as D3) between 350-400 nm and a height H3 between 50-250 nm. It is worth noting that the first protrusions 101a, the second protrusions 101b and the third protrusions 101c are closely and adjacently arranged, and the first protrusions 101a, the second protrusions 101b and the third protrusions There is no space between the three protrusions 101c. In one embodiment, as shown in FIG. 6 , the number of the first type of spheres used in the anti-reflection structure accounts for 60% to 98% of the total amount, and the number of these second type of spheres accounts for 1% to 20% of the total amount. %, and the number of these third spheres accounts for 1% to 20% of the total, so that the first protrusions 101a forming the anti-reflection structure account for 60% to 98% of the total area, and the second The protruding portion 101b accounts for 1%˜20% of the total area, and the third protruding portions 101c account for 1%˜20% of the total area.

相似地,如图5-图6所示的抗反射结构亦具有如图4所示的抗反射结构的低反射率、抗污与自洁特性、以及优于形成于透光基板上且包括不同于透光基板的不同材质的抗反射涂层的传统抗反射结构的机械特性等表现。Similarly, the anti-reflection structure shown in FIGS. 5-6 also has the low reflectivity, anti-fouling and self-cleaning properties of the anti-reflection structure shown in FIG. The mechanical properties of traditional anti-reflection structures based on anti-reflection coatings of different materials on light-transmitting substrates.

请参照图7为一剖面示意图,显示了依据本发明的一实施例的一种电子装置200,其内应用了如图4内所示的抗反射结构。Please refer to FIG. 7 , which is a schematic cross-sectional view showing an electronic device 200 according to an embodiment of the present invention, in which the anti-reflection structure shown in FIG. 4 is applied.

如图7所示,此电子装置200适用于如显示装置的应用,其包括:一第一基板210;一第二基板240;设置于第一基板210与第二基板240之间的一液晶层220;以及设置于第二基板240的邻近于液晶层220的表面上的一彩色滤光层230。在本实施例中,第二基板240可为接触外界环境的一透光基板,且其可具有如图4所示的抗反射结构,用于使得此电子装置200亦具有如图4所示的抗反射结构的低反射率、抗污与自洁特性、以及优于形成于透光基板上且包括不同于透光基板的不同材质的抗反射涂层的传统抗反射结构的机械特性等表现。在此,基于简化目的,并不详细描述第二基板240内的构件,其实施情形如图4所示,而电子装置200内的其它构件的实施情形则可采用传统液晶显示装置的实施情形,故在此不再详述其实施情形。As shown in FIG. 7, the electronic device 200 is suitable for applications such as a display device, which includes: a first substrate 210; a second substrate 240; a liquid crystal layer disposed between the first substrate 210 and the second substrate 240 220 ; and a color filter layer 230 disposed on the surface of the second substrate 240 adjacent to the liquid crystal layer 220 . In this embodiment, the second substrate 240 can be a light-transmitting substrate exposed to the external environment, and it can have an anti-reflection structure as shown in FIG. The low reflectivity, anti-fouling and self-cleaning properties of the anti-reflection structure, as well as the mechanical properties superior to the traditional anti-reflection structure formed on the light-transmitting substrate and including anti-reflection coatings of different materials from the light-transmitting substrate. Here, for the purpose of simplification, the components in the second substrate 240 are not described in detail, and its implementation is shown in FIG. Therefore, its implementation situation will not be described in detail here.

图8为一剖面示意图,显示了依据本发明的另一实施例的一种电子装置300,其内应用了如图4内所示的抗反射结构。FIG. 8 is a schematic cross-sectional view showing an electronic device 300 according to another embodiment of the present invention, in which the anti-reflection structure shown in FIG. 4 is applied.

如图8所示,此电子结构300适用于如触控型显示装置的应用,其包括:一第一基板310;一第二基板360;设置于第一基板310与第二基板360之间的一第三基板350;设置于第一基板310与第三基板350之间的一液晶层320;设置于第一基板310的邻近于液晶层320的表面上的数个触控组件330;以及设置于第三基板350的邻近于液晶层320的表面上的一彩色滤光层340。而于第二基板360与第三基板350之间的一空间380处则为空气(air)或光学胶所填入,用于分隔第二基板360与第三基板350。在本实施例中,第二基板360可为接触外界环境的一透光基板,且其可具有如图4所示的抗反射结构,用于使得电子装置300还具有如图4所示的抗反射结构的低反射率、抗污与自洁特性、以及优于形成于透光基板上且包括不同于透光基板的不同材质的抗反射涂层的传统抗反射结构的机械特性等表现。在此,基于简化目的,并不详细描述第三基板360内的其它构件,其实施情形可如图4所示,而电子装置300内的其它构件的实施情形则可采用传统触控型液晶显示装置的实施情形,故在此不再详述其实施情形。As shown in FIG. 8 , the electronic structure 300 is suitable for applications such as touch-sensitive display devices, and includes: a first substrate 310; a second substrate 360; A third substrate 350; a liquid crystal layer 320 disposed between the first substrate 310 and the third substrate 350; a plurality of touch components 330 disposed on the surface of the first substrate 310 adjacent to the liquid crystal layer 320; and A color filter layer 340 is formed on the surface of the third substrate 350 adjacent to the liquid crystal layer 320 . A space 380 between the second substrate 360 and the third substrate 350 is filled with air or optical glue for separating the second substrate 360 and the third substrate 350 . In this embodiment, the second substrate 360 can be a light-transmitting substrate exposed to the external environment, and it can have an anti-reflection structure as shown in FIG. The low reflectivity, anti-fouling and self-cleaning properties of the reflective structure, and the mechanical properties superior to the traditional anti-reflective structure formed on the light-transmitting substrate and including anti-reflective coatings of different materials than the light-transmitting substrate. Here, for the purpose of simplification, other components in the third substrate 360 are not described in detail, and their implementation can be as shown in FIG. The implementation situation of the device, so its implementation situation will not be described in detail here.

图9为一剖面示意图,显示了依据本发明的又一实施例的一种电子装置400,其内应用了如图4内所示的抗反射结构。FIG. 9 is a schematic cross-sectional view showing an electronic device 400 according to another embodiment of the present invention, in which the anti-reflection structure shown in FIG. 4 is applied.

如图9所示,此电子装置400适用于如太阳能电池装置的应用,其包括:一第一基板414;一第二基板402;设置于第一基板414上且位于第一基板414与第二基板402之间的一电极层412、一光电转换组件450与一透明导电层404。在一实施例中,光电转换组件450为包括依序堆栈设置于电极层412上一n型非晶硅层410、一本征(intrinsic)非晶硅层408与一p型非晶硅层406等构件。在本实施例中,第二基板402可为接触外界环境的一透光基板,且其具有如图4所示的抗反射结构,用于使得电子装置400也具有如图4所示的抗反射结构的低反射率、抗污与自洁特性、以及优于形成于透光基板上且包括不同于透光基板的不同材质的抗反射涂层的传统抗反射结构的机械特性等表现。在此,基于简化目的,并不详细描述第二基板402内的其它构件,其实施情形可如图4所示,电子装置400内的其它构件的实施情形则可采用传统太阳能电池装置的实施情形,故在此不再详述其实施情形。As shown in Figure 9, this electronic device 400 is applicable to the application such as solar cell device, and it comprises: a first substrate 414; A second substrate 402; An electrode layer 412 , a photoelectric conversion element 450 and a transparent conductive layer 404 are disposed between the substrate 402 . In one embodiment, the photoelectric conversion element 450 includes an n-type amorphous silicon layer 410 , an intrinsic (intrinsic) amorphous silicon layer 408 and a p-type amorphous silicon layer 406 stacked on the electrode layer 412 in sequence. and other components. In this embodiment, the second substrate 402 can be a light-transmitting substrate exposed to the external environment, and it has an anti-reflection structure as shown in FIG. The low reflectivity, antifouling and self-cleaning properties of the structure, as well as the mechanical properties superior to the traditional antireflection structure formed on the transparent substrate and including the antireflective coating of different materials from the transparent substrate. Here, for the purpose of simplification, other components in the second substrate 402 are not described in detail, and their implementation can be as shown in FIG. , so its implementation will not be described in detail here.

图10为一剖面示意图,显示了依据本发明的又一实施例的一种电子装置500,其内应用了如图4内所示的抗反射结构。FIG. 10 is a schematic cross-sectional view showing an electronic device 500 according to yet another embodiment of the present invention, in which the anti-reflection structure shown in FIG. 4 is applied.

如图10所示,此电子装置500适用于如触控模块的应用,其包括:一第一基板502;一第二基板506;设置于第一基板502上且位于第一基板502与第二基板506之间的一触碰感测(touchsensing)层504。在本实施例中,第二基板506可为接触外界环境的一透光基板,且其具有如图4所示的抗反射结构,用于使得电子装置500还具有如图4所示的抗反射结构的低反射率、抗污与自洁特性、以及优于形成于透光基板上且包括不同于透光基板的不同材质的抗反射涂层的传统抗反射结构的机械特性等表现。在此,基于简化目的,并不详细描述第二基板506内的其它构件,其实施情形可如图4所示,电子装置500内的其它构件的实施情形则可采用传统触控装置的实施情形,故在此不再详述其实施情形。As shown in FIG. 10, the electronic device 500 is suitable for applications such as a touch module, which includes: a first substrate 502; a second substrate 506; disposed on the first substrate 502 and located between the first substrate 502 and the second A touch sensing (touch sensing) layer 504 between the substrates 506 . In this embodiment, the second substrate 506 can be a light-transmitting substrate exposed to the external environment, and it has an anti-reflection structure as shown in FIG. The low reflectivity, antifouling and self-cleaning properties of the structure, as well as the mechanical properties superior to the traditional antireflection structure formed on the transparent substrate and including the antireflective coating of different materials from the transparent substrate. Here, for the purpose of simplification, other components in the second substrate 506 are not described in detail, and their implementation can be as shown in FIG. , so its implementation will not be described in detail here.

如图7-图10所示的电子装置200、300、400、500中所应用的抗反射结构并非以图4内所示的抗反射结构为限,于其它实施例中,其也可包括如图5-图6所示抗反射结构。The anti-reflection structures used in the electronic devices 200, 300, 400, and 500 shown in FIGS. 7-10 are not limited to the anti-reflection structures shown in FIG. 4. In other embodiments, they may also include Figure 5-Figure 6 shows the anti-reflection structure.

虽然结合以上优选实施例公开了本发明,然而其并非用以限定本发明,任何熟悉此项技术者,在不脱离本发明的精神和范围内,可作更动与润饰,因此本发明的保护范围应当以附上的权利要求所界定的为准。Although the present invention has been disclosed in conjunction with the above preferred embodiments, it is not intended to limit the present invention. Anyone familiar with the art can make changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection of the present invention The scope should be defined by the appended claims.

Claims (10)

1.一种抗反射结构,包括:1. An anti-reflection structure comprising: 基板,具有平坦部以及设置于该平坦部上的凸出部,其中该凸出部与该平坦部为一体成形的;以及a substrate having a flat portion and a protruding portion disposed on the flat portion, wherein the protruding portion is integrally formed with the flat portion; and 涂层,设置于该基板上,并覆盖该凸出部与该平坦部。The coating is arranged on the substrate and covers the protruding part and the flat part. 2.如权利要求1所述的抗反射结构,其中该凸出部具有半球状或类半球状的剖面轮廓。2. The anti-reflection structure as claimed in claim 1, wherein the protruding portion has a hemispherical or semi-hemispherical cross-sectional profile. 3.如权利要求2所述的抗反射结构,其中该凸出部包含多个第一凸出部,且该些第一凸出部具有相同的宽度与高度,该宽度约介于195~400纳米,而该高度约介于50~250纳米。3. The anti-reflection structure as claimed in claim 2, wherein the protruding portion comprises a plurality of first protruding portions, and the first protruding portions have the same width and height, and the width is about 195˜400 nanometers, and the height is about 50-250 nanometers. 4.如权利要求2所述的抗反射结构,其中该凸出部包含至少两种相异的凸出部。4. The anti-reflection structure as claimed in claim 2, wherein the protrusions comprise at least two different protrusions. 5.如权利要求4所述的抗反射结构,其中该凸出部包含多个第一凸出部以及多个第二凸出部,其中该些第一凸出部具有约介于195~400纳米的宽度及约介于50~250纳米的高度,该些第二凸出部具有约介于280~400纳米的宽度及介于50~250纳米的高度。5. The anti-reflection structure as claimed in claim 4, wherein the protruding portion comprises a plurality of first protruding portions and a plurality of second protruding portions, wherein the first protruding portions have a thickness between about 195˜400 The width of nanometers and the height of about 50-250 nanometers, the second protrusions have a width of about 280-400 nanometers and a height of about 50-250 nanometers. 6.如权利要求4所述的抗反射结构,其中该些凸出部包含多个第一凸出部、多个第二凸出部以及多个第三凸出部,其中该些第一凸出部具有约介于195~245纳米的宽度及介于50~250纳米的高度,该些第二凸出部具有约介于280~330纳米的宽度及介于50~250纳米的高度,以及该些第三凸出部具有约介于350~400纳米的宽度及介于50~250纳米的高度。6. The anti-reflection structure as claimed in claim 4, wherein the protrusions comprise a plurality of first protrusions, a plurality of second protrusions and a plurality of third protrusions, wherein the first protrusions the protrusions have a width of approximately 195-245 nm and a height of 50-250 nm, the second protrusions have a width of approximately 280-330 nm and a height of 50-250 nm, and The third protrusions have a width approximately between 350-400 nm and a height approximately between 50-250 nm. 7.如权利要求6所述的抗反射结构,其中该些第一凸出部占总面积比例的60%~98%,该些第二凸出部占总面积比例的1%~20%,以及该第三部分占总面积比例的1%~20%。7. The anti-reflection structure according to claim 6, wherein the first protrusions account for 60%-98% of the total area, and the second protrusions account for 1%-20% of the total area, And the third part accounts for 1%-20% of the total area. 8.如权利要求1所述的抗反射结构,其中该基板包括玻璃、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二酯或聚酰亚胺的材质。8. The anti-reflection structure as claimed in claim 1, wherein the substrate comprises glass, polymethyl methacrylate, polyethylene terephthalate or polyimide. 9.如权利要求1所述的抗反射结构,其中该涂层包括全氟聚醚、氟烷或卤化烷的材质。9. The anti-reflection structure as claimed in claim 1, wherein the coating comprises perfluoropolyether, haloalkane or haloalkane. 10.一种电子装置,包括:10. An electronic device comprising: 第一基板;first substrate; 第二基板,设置于该第一基板上;以及a second substrate disposed on the first substrate; and 液晶层、触碰感测层或光电转换组件,设置于该第一基板与该第二基板之间,其中该第二基板包括如权利要求1所述的该抗反射结构。The liquid crystal layer, the touch sensing layer or the photoelectric conversion component are disposed between the first substrate and the second substrate, wherein the second substrate comprises the anti-reflection structure as claimed in claim 1 .
CN201410383559.7A 2014-08-05 2014-08-05 Anti-reflection structure and electronic device Pending CN105319614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410383559.7A CN105319614A (en) 2014-08-05 2014-08-05 Anti-reflection structure and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410383559.7A CN105319614A (en) 2014-08-05 2014-08-05 Anti-reflection structure and electronic device

Publications (1)

Publication Number Publication Date
CN105319614A true CN105319614A (en) 2016-02-10

Family

ID=55247415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410383559.7A Pending CN105319614A (en) 2014-08-05 2014-08-05 Anti-reflection structure and electronic device

Country Status (1)

Country Link
CN (1) CN105319614A (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172808A (en) * 2001-12-06 2003-06-20 Hitachi Maxell Ltd Super water-repellent plastic substrate and reflection preventive film
CN1573473A (en) * 2003-06-18 2005-02-02 阿尔卑斯电气株式会社 Illumination device, tablet, and liquid crystal display
US20070059490A1 (en) * 2005-09-15 2007-03-15 Fuji Photo Film Co., Ltd. Protective film
CN101501045A (en) * 2006-08-28 2009-08-05 3M创新有限公司 Antireflective article
CN101572038A (en) * 2008-04-28 2009-11-04 日东电工株式会社 Flat panel display and antiglare film for flat panel display
WO2011021752A1 (en) * 2009-08-19 2011-02-24 광주과학기술원 Fabrication method of anti-reflective nanostructure and fabrication method of optical device with integrated anti-reflective nanostructures
TW201122536A (en) * 2009-12-18 2011-07-01 Univ Nat Taiwan Antireflection structure and method of fabrication thereof
CN103261812A (en) * 2010-12-08 2013-08-21 3M创新有限公司 Glass-like polymeric antireflective films, methods of making and light absorbing devices using same
WO2013171284A1 (en) * 2012-05-15 2013-11-21 Danmarks Tekniske Universitet Nanostructured antireflection layer, and application of same to leds
US20130314648A1 (en) * 2012-05-25 2013-11-28 Benjamin M. Rappoport Display With Broadband Antireflection Film
WO2013187506A1 (en) * 2012-06-15 2013-12-19 三菱レイヨン株式会社 Laminate

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172808A (en) * 2001-12-06 2003-06-20 Hitachi Maxell Ltd Super water-repellent plastic substrate and reflection preventive film
CN1573473A (en) * 2003-06-18 2005-02-02 阿尔卑斯电气株式会社 Illumination device, tablet, and liquid crystal display
US20070059490A1 (en) * 2005-09-15 2007-03-15 Fuji Photo Film Co., Ltd. Protective film
CN101501045A (en) * 2006-08-28 2009-08-05 3M创新有限公司 Antireflective article
CN101572038A (en) * 2008-04-28 2009-11-04 日东电工株式会社 Flat panel display and antiglare film for flat panel display
WO2011021752A1 (en) * 2009-08-19 2011-02-24 광주과학기술원 Fabrication method of anti-reflective nanostructure and fabrication method of optical device with integrated anti-reflective nanostructures
TW201122536A (en) * 2009-12-18 2011-07-01 Univ Nat Taiwan Antireflection structure and method of fabrication thereof
CN103261812A (en) * 2010-12-08 2013-08-21 3M创新有限公司 Glass-like polymeric antireflective films, methods of making and light absorbing devices using same
WO2013171284A1 (en) * 2012-05-15 2013-11-21 Danmarks Tekniske Universitet Nanostructured antireflection layer, and application of same to leds
US20130314648A1 (en) * 2012-05-25 2013-11-28 Benjamin M. Rappoport Display With Broadband Antireflection Film
WO2013187506A1 (en) * 2012-06-15 2013-12-19 三菱レイヨン株式会社 Laminate

Similar Documents

Publication Publication Date Title
Vüllers et al. Bioinspired superhydrophobic highly transmissive films for optical applications
US9190547B2 (en) Photo-electric device with inverse pyramid shaped recesses
CN105829999B (en) Optical sheet, conductive sheet, and display device including the optical sheet
TWI600918B (en) Optical film
JP4966924B2 (en) Transparent conductive film, transparent conductive laminate and touch panel, and method for producing transparent conductive film
KR101187810B1 (en) Transparent conductive sheet including anti-reflection layer and the method for manufacturing the same
WO2011040403A1 (en) Transparent conducting film and touch panel
Choi et al. Direct structuring of a biomimetic anti‐reflective, self‐cleaning surface for light harvesting in organic solar cells
CN103988097B (en) Duplexer and the manufacture method of duplexer
JP2010027294A (en) Transparent conductive film and touch panel
Leem et al. Indium tin oxide subwavelength nanostructures with surface antireflection and superhydrophilicity for high-efficiency Si-based thin film solar cells
Dong et al. Fabrication of hierarchical moth-eye structures with durable superhydrophobic property for ultra-broadband visual and mid-infrared applications
US20230365457A1 (en) High transparency, high haze nanostructured structures
Haghanifar et al. Flexible nanograss with highest combination of transparency and haze for optoelectronic plastic substrates
KR20130109915A (en) Multiple light management textures
EP3195024B1 (en) Flexible and tunable anti-reflection skin
TWI556002B (en) Anti-reflection structure and electronic device
CN105319614A (en) Anti-reflection structure and electronic device
TWI527889B (en) Water repellent and oil repellent film, and electrical and electronic apparatus
Yang et al. Design and manufacturing of mid-infrared ultra-wide-angle antireflective composite micro-nano structure film
US11747700B2 (en) Superomniphobic, flexible and rigid substrates with high transparency and adjustable haze for optoelectronic application
Lee et al. Light trapping enhancement induced by bimetallic non-alloyed nanoparticles on a disordered subwavelength flexible thin film crystalline silicon substrate using metal-assisted chemical etching
JP5859598B2 (en) Transparent conductive film and touch panel
KR20130068549A (en) Anti-reflective glass and method manufacturing the same
Wang et al. A textured SiO2 antireflection layer for efficient organic solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160210

RJ01 Rejection of invention patent application after publication