[go: up one dir, main page]

CN105318278B - light emitting assembly - Google Patents

light emitting assembly Download PDF

Info

Publication number
CN105318278B
CN105318278B CN201510450634.1A CN201510450634A CN105318278B CN 105318278 B CN105318278 B CN 105318278B CN 201510450634 A CN201510450634 A CN 201510450634A CN 105318278 B CN105318278 B CN 105318278B
Authority
CN
China
Prior art keywords
light
light emitting
emitting device
wavelength conversion
conversion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510450634.1A
Other languages
Chinese (zh)
Other versions
CN105318278A (en
Inventor
李宗宪
周建峰
黄韵洁
陈柏松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Epistar Corp
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/810,180 external-priority patent/US9911907B2/en
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to CN201910879067.XA priority Critical patent/CN110578912B/en
Publication of CN105318278A publication Critical patent/CN105318278A/en
Application granted granted Critical
Publication of CN105318278B publication Critical patent/CN105318278B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/048Refractors for light sources of lens shape the lens being a simple lens adapted to cooperate with a point-like source for emitting mainly in one direction and having an axis coincident with the main light transmission direction, e.g. convergent or divergent lenses, plano-concave or plano-convex lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8514Wavelength conversion means characterised by their shape, e.g. plate or foil
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Abstract

本发明公开一种发光组件,其具有一发光装置与一波长转换层,发光装置具有一第一上表面与一第一侧表面,波长转换层覆盖第一上表面并具有一第二上表面与一第二侧面。第一上表面与第二上表面之间的距离与第一侧面与第二侧面之间的距离的比例介于1.1~1.3之间。

The present invention discloses a light-emitting component, which has a light-emitting device and a wavelength conversion layer, wherein the light-emitting device has a first upper surface and a first side surface, and the wavelength conversion layer covers the first upper surface and has a second upper surface and a second side surface. The ratio of the distance between the first upper surface and the second upper surface to the distance between the first side surface and the second side surface is between 1.1 and 1.3.

Description

发光组件Lighting components

技术领域technical field

本发明涉及一个发光组件,特别是涉及一个具有一发光元件与一光学元件的发光组件。The invention relates to a light-emitting component, in particular to a light-emitting component with a light-emitting element and an optical element.

背景技术Background technique

使用发光二极管(light-emitting diode;LED)的发光装置因为具有节能、环保、使用寿命长以及体积小等优点,正逐渐地取代传统白炽光源。Light-emitting diode (LED) light-emitting devices are gradually replacing traditional incandescent light sources due to their advantages of energy saving, environmental protection, long service life and small size.

数种的发光元件,例如透镜、反射装置以及波长转换器,可以被用来改变发光装置的光学特性。透镜可以用来收集或者重新分配从发光二极管发出的光线。反射器可以将发光二极管发出的光线重新导向需要的方向。不仅如此,波长转换器,例如荧光粉、颜料或者量子点材料,可以将发光二极管发出的光线转换成别的颜色。Several types of light-emitting elements, such as lenses, reflectors, and wavelength converters, can be used to change the optical properties of the light-emitting device. Lenses can be used to collect or redistribute the light emitted by LEDs. The reflector can redirect the light emitted by the LED in the desired direction. Not only that, wavelength converters, such as phosphors, pigments or quantum dot materials, can convert the light emitted by LEDs into other colors.

发明内容Contents of the invention

一发光组件具有一发光装置与一波长转换层,发光装置具有一第一上表面与一第一侧表面,波长转换层覆盖第一上表面并具有一第二上表面与一第二侧面。第一上表面与第二上表面之间的距离与第一侧面与第二侧面之间的距离的比例介于1.1~1.3之间。A light-emitting component has a light-emitting device and a wavelength conversion layer. The light-emitting device has a first upper surface and a first side surface. The wavelength conversion layer covers the first upper surface and has a second upper surface and a second side surface. The ratio of the distance between the first upper surface and the second upper surface to the distance between the first side surface and the second side surface is between 1.1 and 1.3.

一发光组件,具有一发光装置、一第一透镜、一第二透镜与一连接第二透镜的波长转换层。第一透镜位于发光装置之上,具有一第一上表面向一第一方向弯折,第二透镜位于第一透镜之上,具有一内表面向一第二方向弯折,第一方向与第二方向不同。A light emitting component has a light emitting device, a first lens, a second lens and a wavelength conversion layer connected with the second lens. The first lens is located on the light-emitting device and has a first upper surface that bends toward a first direction. The second lens is located on the first lens and has an inner surface that bends toward a second direction. The first direction is aligned with the first direction. The two directions are different.

一发光组件,具有第一发光装置、第二发光装置、覆盖第一发光装置与第二发光装置的扩散层、位于扩散层上的棱镜层与位于棱镜层上的LCD模块。第二发光装置,与第一发光装置之间具有一距离。第一发光装置或第二发光装置在LCD模块上具有一光场,光场的半径或特征长度是第一发光装置与第二发光装置之间的距离的两倍或者更多。A light-emitting component has a first light-emitting device, a second light-emitting device, a diffusion layer covering the first light-emitting device and the second light-emitting device, a prism layer on the diffusion layer, and an LCD module on the prism layer. There is a distance between the second light emitting device and the first light emitting device. The first light emitting device or the second light emitting device has a light field on the LCD module, and the radius or characteristic length of the light field is twice or more than the distance between the first light emitting device and the second light emitting device.

附图说明Description of drawings

图1A~图1H为本发明实施例中发光装置的示意图;1A to 1H are schematic diagrams of a light emitting device in an embodiment of the present invention;

图2A~图2D为本发明实施例中发光装置的光学特性示意图;2A to 2D are schematic diagrams of the optical characteristics of the light emitting device in the embodiment of the present invention;

图3A为本发明实施例中发光组件的示意图;FIG. 3A is a schematic diagram of a light-emitting component in an embodiment of the present invention;

图3B~图3C为本发明实施例中的结构图;3B to 3C are structural diagrams in the embodiment of the present invention;

图3D~图3E为本发明实施例中发光组件的光学特性示意图;3D to 3E are schematic diagrams of the optical characteristics of the light-emitting component in the embodiment of the present invention;

图4A~图4B为本发明实施例中的结构图;4A to 4B are structural diagrams in an embodiment of the present invention;

图4C~图4F为本发明实施例中发光组件的结构与光学特性示意图;4C to 4F are schematic diagrams of the structure and optical characteristics of the light-emitting component in the embodiment of the present invention;

图5A~图5C为本发明实施例中发光装置的示意图;5A to 5C are schematic diagrams of a light emitting device in an embodiment of the present invention;

图6A~图6F为本发明实施例中发光装置的示意图;6A to 6F are schematic diagrams of a light emitting device in an embodiment of the present invention;

图7A~图7J为本发明实施例中发光组件的示意图与相关的光学特性的示意图;7A to 7J are schematic diagrams of light-emitting components and related optical characteristics in an embodiment of the present invention;

图8A~图8D为本发明实施例中发光组件的示意图;8A to 8D are schematic diagrams of light-emitting components in an embodiment of the present invention;

图9A~图9D为本发明实施例中发光组件的示意图;9A to 9D are schematic diagrams of light-emitting components in an embodiment of the present invention;

图10A~图10D为本发明一实施例的发光组件的示意图;10A to 10D are schematic diagrams of a light-emitting component according to an embodiment of the present invention;

图11A~图11H为本发明一实施例的发光组件的示意图及相关的光学特性的示意图;11A to 11H are schematic diagrams of a light-emitting component and related optical characteristics according to an embodiment of the present invention;

图12A~图12E为本发明一实施例的量测设备与相关的结果的示意图;12A to 12E are schematic diagrams of measurement equipment and related results according to an embodiment of the present invention;

图13为本发明一实施例的发光组件的示意图。Fig. 13 is a schematic diagram of a light emitting component according to an embodiment of the present invention.

符号说明Symbol Description

1000A、1000B、1000C、1000D、1000E、1000F、1000G、1000H、2000A、2000B、2000C、2000D、2000E、2000F、3000、4000、5000、6000、8000发光装置1000A, 1000B, 1000C, 1000D, 1000E, 1000F, 1000G, 1000H, 2000A, 2000B, 2000C, 2000D, 2000E, 2000F, 3000, 4000, 5000, 6000, 8000 light emitting devices

1003A、1007A、1007C、1007E、1008A、1008C、1008D、1009B 发光组件1003A, 1007A, 1007C, 1007E, 1008A, 1008C, 1008D, 1009B Lighting components

2 发光二极管2 LEDs

3 粒子3 particles

4、40、42、44、46、48、50、52 波长转换层4, 40, 42, 44, 46, 48, 50, 52 wavelength conversion layer

6 透明层6 transparent layer

8 透明盖8 transparent cover

10 载板10 carrier board

18 扩散层18 diffusion layer

20 棱镜层20 prism layers

22 LCD模块22 LCD modules

24 光谱仪24 spectrometer

100 上表面100 upper surface

120、122 导体部120, 122 conductor part

140、142 侧壁140, 142 side walls

160、162、164、166、170a、170b、172、174、176、180、184 透镜160, 162, 164, 166, 170a, 170b, 172, 174, 176, 180, 184 Lens

1740、1840 孔穴1740, 1840 Holes

1760、1762 翼部1760, 1762 Wings

178a、178b 光圈178a, 178b aperture

180 双凸透镜180 double convex lens

θ1、θ2 角度θ1, θ2 angles

L1、L2 光线L1, L2 light

E1、E2 边缘E1, E2 edge

S1、S2 表面S1, S2 surfaces

U、U’ 均匀度U, U’ Uniformity

具体实施方式Detailed ways

图1A显示本发明一实施例中一发光装置1000A的示意图。发光装置1000A包括一发光二极管2以及一波长转换层4直接形成于发光二极管2之上,并环绕发光二极管2。发光装置1000B具有一透明层6形成于波长转换层4与发光二极管2之间。透明层6覆盖发光二极管2的上表面与侧表面,并侧向地延伸到发光装置1000B的边缘。因此,发光二极管2与波长转换层4被透明层6所隔开。FIG. 1A shows a schematic diagram of a light emitting device 1000A in an embodiment of the present invention. The light emitting device 1000A includes a light emitting diode 2 and a wavelength conversion layer 4 directly formed on the light emitting diode 2 and surrounding the light emitting diode 2 . The light emitting device 1000B has a transparent layer 6 formed between the wavelength conversion layer 4 and the light emitting diode 2 . The transparent layer 6 covers the upper surface and the side surface of the light emitting diode 2 and extends laterally to the edge of the light emitting device 1000B. Therefore, the light emitting diode 2 is separated from the wavelength conversion layer 4 by the transparent layer 6 .

发光装置1000C具有一透明盖8形成于波长转换层4之上。发光装置1000D具有一透明盖8、一个波长转换层4、一个透明层6与一个发光二极管2由上往下依序堆叠。发光装置1000D的波长转换层4具有一下表及一上表面。下表面的轮廓与透明层6的上表面轮廓一致或者近似。上表面的轮廓与透明盖8的上表面轮廓一致或相近。此外,波长转换装层4的上下表面可以有相同或者不同的轮廓。发光装置1000D的波长转换层4具有两个彼此互相平行的表面(上表面及下表面)。发光装置1000E的波长转换层4形成于透明层6之上,并具有一下表面接近透明层6。波长转换层4的下表面具有一与透明层6的上表面相同或者相似的轮廓,而波长转换层4的上表面则具有一平坦的轮廓,或者是平行于发光装置1000E或透明盖8的上表面。发光装置1000E的波长转换层4具有一下表面及一平坦的上表面,其中,下表面大致沿着发光二极管2的轮廓延伸。The light emitting device 1000C has a transparent cover 8 formed on the wavelength converting layer 4 . The light emitting device 1000D has a transparent cover 8 , a wavelength converting layer 4 , a transparent layer 6 and a light emitting diode 2 stacked sequentially from top to bottom. The wavelength converting layer 4 of the light emitting device 1000D has a lower surface and an upper surface. The contour of the lower surface is consistent with or similar to the contour of the upper surface of the transparent layer 6 . The contour of the upper surface is consistent with or similar to the contour of the upper surface of the transparent cover 8 . In addition, the upper and lower surfaces of the wavelength conversion coating 4 may have the same or different profiles. The wavelength conversion layer 4 of the light emitting device 1000D has two surfaces (upper surface and lower surface) parallel to each other. The wavelength conversion layer 4 of the light emitting device 1000E is formed on the transparent layer 6 and has a lower surface close to the transparent layer 6 . The lower surface of the wavelength conversion layer 4 has a contour identical or similar to that of the upper surface of the transparent layer 6, while the upper surface of the wavelength conversion layer 4 has a flat contour, or is parallel to the upper surface of the light emitting device 1000E or the transparent cover 8. surface. The wavelength conversion layer 4 of the light-emitting device 1000E has a lower surface and a flat upper surface, wherein the lower surface roughly extends along the outline of the light-emitting diode 2 .

发光装置1000F具有一透明层6覆盖发光二极管2的上表面与多个侧表面,在一个实施例中,透明层6的各个外表面都各自与相对应的内表面相互平行。换句话说,透明层6具有一致的厚度。The light emitting device 1000F has a transparent layer 6 covering the upper surface and multiple side surfaces of the LED 2 . In one embodiment, each outer surface of the transparent layer 6 is parallel to the corresponding inner surface. In other words, the transparent layer 6 has a uniform thickness.

发光装置1000G具有一个覆盖发光二极管2的上表面与多个侧表面的透明层6。一波长转换层4覆盖透明层6的上表面与多个侧表面。一剖面形状为矩形的透明盖8则是形成在波长转换层4的上表面。波长转换层4具有一位于发光二极管2上方的上方厚度及位于发光二极管2侧面的侧向厚度。侧向厚度大于上方厚度。The light emitting device 1000G has a transparent layer 6 covering the upper surface and a plurality of side surfaces of the light emitting diode 2 . A wavelength conversion layer 4 covers the upper surface and multiple side surfaces of the transparent layer 6 . A transparent cover 8 with a rectangular cross section is formed on the upper surface of the wavelength converting layer 4 . The wavelength conversion layer 4 has an upper thickness above the LED 2 and a lateral thickness on the side of the LED 2 . The lateral thickness is greater than the upper thickness.

发光二极管2具有一个主动层以发出一非同调性光。从发光二极管2发出的光具有第一光强度、第一光场与第一颜色。波长转换层4具有一波长转换材料,而波长转换材料的粒子尺寸介于8~50μm,例如8、17、20、32或46μm。粒子尺寸可以是指粒子的半径或者特征长度。透明层6与透明盖8具有透明材料,发光二极管2发出光线的至少60%可以穿过透明层6或者透明盖8而不会被吸收,也就是说,透明层6或透明盖8相对于发光二极管2发出的光线具有60%的透光率。发光装置1000A~1000H可以发出一个具有第二光强度、第二光场与第二颜色的光线。第二光强度小于第一光强度,因为部分从发光二极管发出的光线在波长转换层4、透明层6或者透明盖8中被吸收或者被困住(trapped)。第二光场可以跟第一光场相同或者不同。通过加入扩散粒子到透明层6或者透明盖8可以散射光线及改变光场。在前述诸实施例中,光线的路径可以通过使用适当的模拟模型进而重现,例如蒙地卡罗光线追迹法(Monte Carlo ray tracing method)。光线在波长转换层4内的传递也可以使用根据米氏散射理论(Mie Scattering theory)的模拟模型来重现。The LED 2 has an active layer to emit an anisotropic light. The light emitted from the LED 2 has a first light intensity, a first light field and a first color. The wavelength conversion layer 4 has a wavelength conversion material, and the particle size of the wavelength conversion material is 8-50 μm, such as 8, 17, 20, 32 or 46 μm. Particle size may refer to the radius or characteristic length of the particle. The transparent layer 6 and the transparent cover 8 have transparent materials, and at least 60% of the light emitted by the light-emitting diode 2 can pass through the transparent layer 6 or the transparent cover 8 without being absorbed, that is, the transparent layer 6 or the transparent cover 8 is relatively light-emitting The light emitted by the diode 2 has a transmittance of 60%. The light emitting devices 1000A˜1000H can emit a light with a second light intensity, a second light field and a second color. The second light intensity is smaller than the first light intensity because part of the light emitted from the LED is absorbed or trapped in the wavelength conversion layer 4 , the transparent layer 6 or the transparent cover 8 . The second light field can be the same as or different from the first light field. Light can be diffused and the light field can be changed by adding diffusing particles to the transparent layer 6 or the transparent cover 8 . In the aforementioned embodiments, the path of light rays can be reproduced by using a suitable simulation model, such as Monte Carlo ray tracing method. The transmission of light within the wavelength conversion layer 4 can also be reproduced using a simulation model according to Mie Scattering theory.

参考图1B与图1D,透明层6具有一弯曲的轮廓。这个弯曲的轮廓在发光二极管2的上表面弯曲地凸起。波长转换层4形成在透明层6的弯曲上表面上,因此具有一个内凹的下表面。透明层6更具有一轮廓近似于发光二极管2轮廓的下表面。参考图1F、图1G与图1H,透明层6与波长转换层4大致上都有一个倒U(reversed-U)的形状。参考图1H,透明盖8也具有倒U的形状。这个倒U的形状具有一个上部与一个侧部,其中侧部比上部薄。Referring to FIG. 1B and FIG. 1D , the transparent layer 6 has a curved profile. This curved contour protrudes curvedly on the upper surface of the light-emitting diode 2 . The wavelength conversion layer 4 is formed on the curved upper surface of the transparent layer 6, thus having a concave lower surface. The transparent layer 6 further has a lower surface with a profile similar to that of the LED 2 . Referring to FIG. 1F , FIG. 1G and FIG. 1H , the transparent layer 6 and the wavelength conversion layer 4 generally have a reverse-U (reversed-U) shape. Referring to FIG. 1H , the transparent cover 8 also has an inverted U shape. This inverted U shape has an upper portion and a side portion, wherein the side portion is thinner than the upper portion.

图2A~图2D显示本发明实施例中发光装置的光学特性。图2A所显示的是发光装置1000A~1000H的光萃取效率(Light Extraction Efficiency)。这些光萃取效率介于100~140lm/W。而发光装置1000F具有最佳的光萃取效率。图2B所显示的是发光装置1000A~1000H于+90°~-90°的光场的色温变化。这些变化介于100~450K。图2C~图2D显示以两种不同单位表示各角度上的颜色变化,其中Δu’v’介于0.001~0.009,而Δy则是介于0.01~0.1之间。2A to 2D show the optical characteristics of the light emitting device in the embodiment of the present invention. FIG. 2A shows the light extraction efficiency (Light Extraction Efficiency) of the light emitting devices 1000A˜1000H. These light extraction efficiencies range from 100 to 140 lm/W. However, the light emitting device 1000F has the best light extraction efficiency. FIG. 2B shows the color temperature changes of the light fields of the light-emitting devices 1000A-1000H at +90°--90°. These variations range from 100 to 450K. Figures 2C-2D show the color changes at different angles in two different units, where Δu'v' is between 0.001-0.009, and Δy is between 0.01-0.1.

图3A显示一具有本发明中一实施例的发光组件1003A的结构。发光组件1003A具有一发光装置1000C经由导体部120与122形成于载板10的上表面100之上。发光组件1003A的侧壁140与142可以是可以散射光线的Lambertian(朗伯)散射表面,如图3B所示。上表面100可以是一个具有90%反射率与10%吸收率的表面,或者是可以散射光线的Lambertian表面,如图3C所示。图3D所显示的是八个发光组件(发光装置1000A~1000H)在+90°~-90°之间颜色随角度改变的程度,其中八个发光组件具有不同的上表面100及侧壁142型态。参考图3D,当这个结构的侧壁是Lambertian散射表面的时候,这个结构所提供的色彩空间均匀度(color space uniformity)比侧壁是平坦的表面时来的差。FIG. 3A shows a structure of a light emitting element 1003A according to an embodiment of the present invention. The light emitting component 1003A has a light emitting device 1000C formed on the upper surface 100 of the carrier 10 via the conductor portions 120 and 122 . The sidewalls 140 and 142 of the light emitting component 1003A may be Lambertian (Lambertian) scattering surfaces capable of scattering light, as shown in FIG. 3B . The upper surface 100 can be a surface with 90% reflectance and 10% absorbance, or a Lambertian surface that can scatter light, as shown in FIG. 3C . Figure 3D shows the degree of color change of eight light-emitting components (light-emitting devices 1000A to 1000H) with angles between +90° and -90°, wherein the eight light-emitting components have different types of upper surfaces 100 and side walls 142 state. Referring to FIG. 3D , when the sidewalls of the structure are Lambertian scattering surfaces, the structure provides poorer color space uniformity than when the sidewalls are flat surfaces.

图3E所显示的是这八个具有不同上表面100与侧壁140的发光组件的光萃取效率。而每一个发光组件都在四种不同的条件下量测。第一种条件是上表面100为Lambertian散射表面,而侧壁140与142是平面。第二种条件是上表面100、侧壁140与142都是Lambertian散射表面。第三种条件是上表面100为一个反射表面,而侧壁140与142是平面,其中上表面100对于来自发光二极管的光线的反射率为90%。第四种条件是上表面100为反射面,而侧壁140与142是Lambertian散射表面。根据图3D~图3E,具有发光装置1000F的发光组件以及具有发光装置1000B的发光组件在同样的条件下具有大于130lm/W的发光效率,以及色温差异低于0.04。FIG. 3E shows the light extraction efficiencies of the eight light-emitting components with different top surfaces 100 and sidewalls 140 . Each light-emitting component is measured under four different conditions. The first condition is that the upper surface 100 is a Lambertian scattering surface and the sidewalls 140 and 142 are planar. The second condition is that the top surface 100, side walls 140 and 142 are all Lambertian scattering surfaces. The third condition is that the upper surface 100 is a reflective surface, and the sidewalls 140 and 142 are planes, wherein the reflectivity of the upper surface 100 for the light from the LED is 90%. The fourth condition is that the top surface 100 is a reflective surface, and the sidewalls 140 and 142 are Lambertian scattering surfaces. According to FIG. 3D to FIG. 3E , the light-emitting assembly with the light-emitting device 1000F and the light-emitting assembly with the light-emitting device 1000B have a luminous efficiency greater than 130lm/W under the same conditions, and the color temperature difference is less than 0.04.

图4A~图4B所显示的是本发明中实施例的两个结构。当图4A与图4B中的波长转换层的厚度增加时,两个结构的发光效率都增加了,空间内的颜色均匀度也增加了,而两个结构的色温均匀度也增加了。不仅如此,波长转换层4的厚度增加,对于图4B中的结构具有更明显的影响。更具体地来说,当波长转换层4的厚度由100μm增加到300μm的时候,图4B的结构的光萃取效率增加了4.89%、ΔCCT从486K降低到128K,以及Δu’v’从0.0088降到0.002。当波长转换层4的厚度由100μm增加到400μm的时候,而图4A的结构的发光效率增加了10.97%、ΔCCT从529K降低到289K,以及Δu’v’从0.0089降到0.0055。然而,图4B中的结构仅需要增加较少的波长转换层4的厚度,就能够得到与图4A的结构大致相同的光学特性。4A-4B show two structures of the embodiment of the present invention. When the thickness of the wavelength conversion layer in FIG. 4A and FIG. 4B increases, the luminous efficiency of the two structures increases, the color uniformity in the space also increases, and the color temperature uniformity of the two structures also increases. Not only that, the increase in the thickness of the wavelength conversion layer 4 has a more obvious effect on the structure in FIG. 4B . More specifically, when the thickness of the wavelength conversion layer 4 is increased from 100 μm to 300 μm, the light extraction efficiency of the structure in Figure 4B increases by 4.89%, ΔCCT decreases from 486K to 128K, and Δu'v' decreases from 0.0088 to 0.002. When the thickness of the wavelength conversion layer 4 increases from 100 μm to 400 μm, the luminous efficiency of the structure shown in FIG. 4A increases by 10.97%, ΔCCT decreases from 529K to 289K, and Δu’v’ decreases from 0.0089 to 0.0055. However, the structure in FIG. 4B only requires a small increase in the thickness of the wavelength conversion layer 4 to obtain approximately the same optical characteristics as the structure in FIG. 4A .

图4C~图4F显示是本发明中实施例的结构与光学特性。在图4D~图4F中,横坐标代表了光学特性,例如光萃取效率、色温变化ΔCCT与色度空间均匀性Δu’v’。而横坐标代表,如图4C中,发光二极管2与波长转换层4之间的宽度W。当高度H从50μm增加到350μm,宽度W从50μm增加到350μm,光萃取效率从135lm/W增加了约7.53%,如图4D所示。如图4F所示,色度空间均匀性Δu’v’从0.02降到低于0.01,大约是降低了34.8%。如图4E所示,色温变化ΔCCT从1100K左右降到低于500K。当高度H大于250μm的时候,光萃取效率可以显著的提升。当高度H是50μm以及宽度W为150μm的时候,色度空间均匀性Δu’v’大约为0.01。4C-4F show the structure and optical characteristics of the embodiments of the present invention. In FIGS. 4D to 4F , the abscissa represents optical characteristics, such as light extraction efficiency, color temperature change ΔCCT, and chromaticity spatial uniformity Δu'v'. The abscissa represents, as shown in FIG. 4C , the width W between the light emitting diode 2 and the wavelength conversion layer 4 . When the height H increases from 50 μm to 350 μm and the width W increases from 50 μm to 350 μm, the light extraction efficiency increases by about 7.53% from 135 lm/W, as shown in Figure 4D. As shown in Figure 4F, the chromaticity spatial uniformity Δu'v' drops from 0.02 to below 0.01, which is about 34.8% lower. As shown in Figure 4E, the color temperature change ΔCCT drops from around 1100K to below 500K. When the height H is greater than 250 μm, the light extraction efficiency can be significantly improved. When the height H is 50 µm and the width W is 150 µm, the chromaticity spatial uniformity Δu'v' is about 0.01.

图5A~图5C显示本发明实施例中的结构图。参考图5A中的结构,当高度H大约是750μm以及发光装置的尺寸大约是2×2mm2的时候,光萃取效率大于135lm/W、色度空间均匀性Δu’v大约是0.04,以及色温变化ΔCCT大约是200K。图5A中的发光装置在高度H是350μm以及发光装置的尺寸大约是1×1mm2的情况下,或者高度H是450μm以及发光装置的尺寸大约是1.2×1.2mm2的情况下,可以具有更好的光学特性,例如光萃取效率、色度空间均匀性Δu’v’以及色温变化ΔCCT。5A-5C show the structural diagrams of the embodiments of the present invention. Referring to the structure in Figure 5A, when the height H is about 750 μm and the size of the light-emitting device is about 2 ×2mm2, the light extraction efficiency is greater than 135lm/W, the chromaticity spatial uniformity Δu'v is about 0.04, and the color temperature change ΔCCT is about 200K. The light emitting device in Fig. 5A can have more Good optical properties such as light extraction efficiency, chromaticity spatial uniformity Δu'v' and color temperature variation ΔCCT.

参考图5B的结构,当高度H是750μm以及发光装置的尺寸大约是1.8×1.8mm2的情况下,色度空间均匀性Δu’v大约是0.02,色温变化ΔCCT大约是100K。光萃取效率在高度H是750μm以及发光装置的尺寸大约是2×2mm2的情况时,大于135lm/W。而图5B中的发光装置,在高度H是350μm以及发光装置的尺寸大约是1.2×1.2mm2的情况下,或者高度H是450μm以及发光装置的尺寸大约是1.2×1.2mm2的情况下时,会有更好的光学特性,例如光萃取效率、色度空间均匀性Δu’v’以及色温变化ΔCCT。Referring to the structure of FIG. 5B , when the height H is 750 μm and the size of the light emitting device is about 1.8×1.8 mm 2 , the chromaticity spatial uniformity Δu'v is about 0.02, and the color temperature change ΔCCT is about 100K. The light extraction efficiency is greater than 135 lm/W when the height H is 750 μm and the size of the light emitting device is about 2×2 mm 2 . However, for the light-emitting device in Figure 5B, when the height H is 350 μm and the size of the light-emitting device is about 1.2×1.2 mm 2 , or when the height H is 450 μm and the size of the light-emitting device is about 1.2×1.2 mm 2 , there will be better optical properties, such as light extraction efficiency, chromaticity spatial uniformity Δu'v', and color temperature change ΔCCT.

相较于图5B的结构,图5C中的发光装置在高度H是350μm以及发光装置的尺寸大约是1.2×1.2mm2的情况下、高度H是450μm以及发光装置的尺寸大约是1.2×1.2mm2的情况下、或者是高度H是750μm以及发光装置的尺寸大约是1.4×1.4mm2的情况下,都可以有较好的光萃取效率、色度空间均匀性Δu’v’以及色温变化ΔCCT等光学特性。图5A~图5C中的发光装置在特定尺寸与高度条件下,所发出的光线具有较好的光学特性。举例来说,当高宽比HWR(HWR=H/W)介于1.1~1.3的时候,所发出的光线的具有良好的色度空间均匀性Δu’v’,而当高宽比HWR大于0.7的时候,色度空间均匀性Δu’v’则落在4个麦克亚当椭圆(MacAdamellipse)内。Compared with the structure of FIG. 5B , the light emitting device in FIG. 5C is 450 μm and the size of the light emitting device is about 1.2× 1.2 mm when the height H is 350 μm and the size of the light emitting device is about 1.2×1.2 mm 2 , or when the height H is 750 μm and the size of the light-emitting device is about 1.4×1.4 mm 2 , it can have better light extraction efficiency, chromaticity spatial uniformity Δu'v' and color temperature change ΔCCT and other optical properties. The light emitted by the light emitting device in FIGS. 5A to 5C has better optical characteristics under certain size and height conditions. For example, when the aspect ratio HWR (HWR=H/W) is between 1.1 and 1.3, the emitted light has good chromaticity space uniformity Δu'v', and when the aspect ratio HWR is greater than 0.7 When , the chromaticity space uniformity Δu'v' falls within 4 MacAdam ellipses (MacAdamellipse).

图5A~图5C中的发光装置更可以被设置在如图3A中的载板10之上,而这些发光装置发出的光线会被上表面100所影响。举例来说,当上表面100的反射率从100%降低到90%的时候,发光效率分别降低了18.42%、18.13%及20.28%。在另一个实施例中,当上表面100是一个Lambertian散射表面,而反射率从100%降低到90%的时候,光萃取效率分别降低了11.56%、12.14%及11.93%。在另一个实施例中,当发光装置所发出的光线的色温从6500K改变到30000K的时候,光萃取效率相对于色温6500K的时候分别降低了7.63%、7.58%及6.22%。图1、图3A~图3B、图4A~图4C或图5A~图5C中的结构所发出的光线的特性会被波长转换层4的尺寸、整体结构的尺寸、上表面100的反射率或者发光装置发出光线的颜色所影响。The light emitting devices in FIGS. 5A to 5C can be further arranged on the carrier 10 as shown in FIG. 3A , and the light emitted by these light emitting devices will be affected by the upper surface 100 . For example, when the reflectivity of the upper surface 100 decreases from 100% to 90%, the luminous efficiency decreases by 18.42%, 18.13% and 20.28%, respectively. In another embodiment, when the upper surface 100 is a Lambertian scattering surface, and the reflectivity decreases from 100% to 90%, the light extraction efficiency decreases by 11.56%, 12.14% and 11.93%, respectively. In another embodiment, when the color temperature of the light emitted by the light emitting device is changed from 6500K to 30000K, the light extraction efficiency decreases by 7.63%, 7.58% and 6.22% respectively compared with the color temperature of 6500K. 1, 3A-3B, 4A-4C or 5A-5C, the characteristics of the light emitted by the structure will be determined by the size of the wavelength conversion layer 4, the size of the overall structure, the reflectivity of the upper surface 100 or The color of the light emitted by the light emitting device is affected.

图6A~图6F显示本发明实施例中发光装置的示意图。粒子3被加入发光装置2000A、2000B与2000E的波长转换层4之内、被加入发光装置2000C与2000F的透明层6之内、也被加入发光装置2000D的透明盖8之内。粒子3被用来增进光线的散射或者反射。粒子3不是透明的,并且至少吸收一部分从发光二极管所发出的光线。通过粒子3的加入,发光装置2000A~2000F的空间色度均匀性可以获得改善,但是光萃取效率也分别降低了35%、5%、31%、54%、4%与43%。6A to 6F are schematic diagrams of the light emitting device in the embodiment of the present invention. The particles 3 are incorporated into the wavelength conversion layer 4 of the light emitting devices 2000A, 2000B and 2000E, into the transparent layer 6 of the light emitting devices 2000C and 2000F, and also incorporated into the transparent cover 8 of the light emitting device 2000D. Particles 3 are used to enhance the scattering or reflection of light. The particles 3 are not transparent and absorb at least part of the light emitted by the LEDs. With the addition of particles 3, the spatial chromaticity uniformity of the light emitting devices 2000A-2000F can be improved, but the light extraction efficiency is also reduced by 35%, 5%, 31%, 54%, 4% and 43%, respectively.

如图3A~图3E所示,光萃取效率并不会受到侧壁表面反射率显著影响,不论侧壁的表面是Lambertian散射表面或者是反射率为100%的表面。如图1A~图1H、图4A~图4C、图5A~图5C与图6A~图6F所示,光萃取效率比较容易受载板10的表面的反射率或者发光装置的尺寸所影响。例如,载板10的表面的反射率越高,光萃取效率可以提升约18%~20%。或者在发光装置与载板10之间设置反射层也可以增加约11~12%的光萃取效率。再者,具有类似色度空间均匀度的发光装置之间,也可以通过增加发光装置的尺寸来提升光萃取效率。例如当发光装置的尺寸是发光二极管的25倍或者更多的时候,光萃取效率可以从127lm/W增加到138/W,也就是大约增加了8%的光萃取效率。As shown in FIGS. 3A-3E , the light extraction efficiency is not significantly affected by the reflectivity of the sidewall surface, no matter whether the surface of the sidewall is a Lambertian scattering surface or a surface with 100% reflectivity. As shown in FIGS. 1A-1H , 4A-4C, 5A-5C, and 6A-6F , the light extraction efficiency is easily affected by the reflectivity of the surface of the carrier plate 10 or the size of the light emitting device. For example, the higher the reflectivity of the surface of the carrier plate 10 , the light extraction efficiency can be increased by about 18%-20%. Alternatively, disposing a reflective layer between the light emitting device and the carrier 10 can also increase the light extraction efficiency by about 11-12%. Furthermore, among light emitting devices with similar chromaticity spatial uniformity, the light extraction efficiency can also be improved by increasing the size of the light emitting device. For example, when the size of the light-emitting device is 25 times or more that of the light-emitting diode, the light extraction efficiency can be increased from 127lm/W to 138/W, that is, the light extraction efficiency is increased by about 8%.

除此之外,HWR或者结构内的粒子3也能影响发光装置所发出的光线均匀度。例如,当HWR介于1.1~1.3之间的时候各角度上的色度空间均匀性Δu’v’便低于0.04。又例如,当结构内的粒子3的浓度大约是5%的时候,在-80°~+80°之间的色度空间均匀性Δu’v’便低于0.01。In addition, the HWR or the particles 3 in the structure can also affect the uniformity of the light emitted by the light emitting device. For example, when the HWR is between 1.1 and 1.3, the chromaticity space uniformity Δu'v' at each angle is lower than 0.04. For another example, when the concentration of particles 3 in the structure is about 5%, the chromaticity space uniformity Δu'v' between -80°~+80° is lower than 0.01.

图7A~图7F显示本发明实施例中发光组件的示意图与一些相关的光学特性。图7A、图7C与图7E中带有箭头的折线代表的是光在发光组件内的路径,而图7B、图7D与图7F中显示的是这些发光组件的发光图案的光场影像。7A to 7F show schematic diagrams of light-emitting components and some related optical characteristics in an embodiment of the present invention. The broken lines with arrows in FIG. 7A , FIG. 7C and FIG. 7E represent the path of light in the light-emitting components, and FIG. 7B , FIG. 7D and FIG. 7F show the light field images of the light-emitting patterns of these light-emitting components.

图7A中的发光组件具有一个发光装置3000形成于一个载板10之上的发光装置3000、一覆盖发光装置3000的第一透镜160、一位于第一透镜160之上的第二透镜162、以及一位于第二透镜162之上的波长转换层4。从发光装置3000所发出来的光线首先被第一透镜160改变方向后再进入第二透镜162。从第一透镜160过来的光线接着被第二透镜162改变方向并往大体上垂直于载板10的方向前进。如图7B所示,发光图案的内部区域具有较高的亮度,而内部区域大致上对应到第一透镜160的尺寸与形状。内部区域与整个光场的面积比例,大致对应到第一透镜160与第二透镜162的正向投影面积比。The light-emitting assembly in FIG. 7A has a light-emitting device 3000 formed on a substrate 10, a first lens 160 covering the light-emitting device 3000, a second lens 162 on the first lens 160, and A wavelength conversion layer 4 located on the second lens 162 . The light emitted from the light emitting device 3000 is first redirected by the first lens 160 and then enters the second lens 162 . The light coming from the first lens 160 is then redirected by the second lens 162 and travels in a direction substantially perpendicular to the carrier 10 . As shown in FIG. 7B , the inner area of the light emitting pattern has higher brightness, and the inner area roughly corresponds to the size and shape of the first lens 160 . The area ratio of the inner area to the entire light field roughly corresponds to the front projection area ratio of the first lens 160 and the second lens 162 .

详言之,如图7A所示,透镜162有一与波长转换层4相接的上表面、一下表面、多个侧壁与一用以容纳着第一透镜160与发光装置3000的凹穴。凹穴有一个凸面往发光装置3000的方向凸起,并有一个大致跟透镜160相等的宽度。而多个侧壁由上表面往下表面的方向,往内互相靠近。换句话说,从剖视图/上视图来看,上表面比下表面大/宽。侧壁可以是平面、曲面,或者是平面与曲面的组合。在一实施例中,上表面或者下表面可以是圆形、椭圆形、矩形、三角形,或其它几何形状。不仅如此,上表面与下表面可以有相同或者不同的形状。当发光装置3000所发出的光线的角度不同的时候,这些光线可以被侧壁或者凸面反射或者散射。如图所示,相较于透镜162上表面的周围区域,凸面可以往透镜162的上表面的中心区域汇集较多的光线(或以使光线以准直方式前进),如图7B所示。Specifically, as shown in FIG. 7A , the lens 162 has an upper surface connected to the wavelength conversion layer 4 , a lower surface, a plurality of sidewalls and a cavity for accommodating the first lens 160 and the light emitting device 3000 . The recess has a convex surface protruding toward the direction of the light emitting device 3000 and has a width approximately equal to that of the lens 160 . The plurality of side walls approach each other inwardly from the upper surface to the lower surface. In other words, the upper surface is larger/wider than the lower surface when viewed in section/top view. The side walls can be flat, curved, or a combination of flat and curved. In one embodiment, the upper surface or the lower surface may be circular, elliptical, rectangular, triangular, or other geometric shapes. Furthermore, the upper and lower surfaces may have the same or different shapes. When the angles of the light rays emitted by the light emitting device 3000 are different, the light rays may be reflected or scattered by the side walls or convex surfaces. As shown in the figure, the convex surface can gather more light toward the central region of the upper surface of the lens 162 (or make the light advance in a collimated manner) than the surrounding region of the upper surface of the lens 162 , as shown in FIG. 7B .

如图7C所示,大部分从发光装置3000发出的光线被第一透镜160散射后,被重新导向到第三透镜164的边缘或周缘,并且被第三透镜164反射。所以,如图7D所示,发光图案的边缘或周缘会比内部区域更亮。As shown in FIG. 7C , most of the light emitted from the light emitting device 3000 is scattered by the first lens 160 , then redirected to the edge or periphery of the third lens 164 and reflected by the third lens 164 . Therefore, as shown in FIG. 7D, the edge or periphery of the light emitting pattern will be brighter than the inner area.

详言之,如图7C所示,透镜164具有一个与波长转换层4相连的上表面、一下表面、多个侧壁与一个孔穴以容纳透镜160与发光装置3000。孔穴的剖面是三角形,其具有倾斜边缘。孔穴的下方宽度比透镜160的最大宽度更大。在数个实施例中,相较于透镜164的上表面的中间区域,倾斜的边缘(或表面)可以分散更多的光线到透镜164的上表面的周围区域,如图7D所示。In detail, as shown in FIG. 7C , the lens 164 has an upper surface connected to the wavelength conversion layer 4 , a lower surface, a plurality of sidewalls and a hole for accommodating the lens 160 and the light emitting device 3000 . The cross-section of the cavity is triangular with sloped edges. The lower width of the aperture is greater than the maximum width of the lens 160 . In several embodiments, the sloped edges (or surfaces) can scatter more light to the surrounding area of the upper surface of the lens 164 than to the middle area of the upper surface of the lens 164, as shown in FIG. 7D.

如图7E所示,第四透镜166具有跟第二透镜162相似的结构。详言之,如图7E所示,透镜166具有一个平坦的上表面连接到波长转换层4、一下表面、多个侧面与一孔穴以容纳透镜160与发光装置3000。孔穴具有一个凸面,这个凸面的曲率比162的孔穴的凸面更小。从发光装置3000发出的光线会先被透镜160弯折后再于透镜166内向外地移动到透镜166。相较于图7A所示的结构,光线被透镜160(尤其是凸面)所散射,而不是如图7A所示,光线以准直的方式以垂直于载板10的方向移动。另外,发光装置3000发出的光线也会被透镜166的侧壁所反射。图7F所显示的发光图案相较于图7B的光学图案,在光强度分布上具有更好的均匀度。As shown in FIG. 7E , the fourth lens 166 has a structure similar to that of the second lens 162 . In detail, as shown in FIG. 7E , the lens 166 has a flat upper surface connected to the wavelength conversion layer 4 , a lower surface, a plurality of side surfaces and a hole for accommodating the lens 160 and the light emitting device 3000 . The cavity has a convex surface with a lesser curvature than the convex surface of the cavity of 162 . The light emitted from the light emitting device 3000 is firstly bent by the lens 160 and then moves outwardly in the lens 166 to the lens 166 . Compared to the structure shown in FIG. 7A , the light is scattered by the lens 160 (especially the convex surface), instead of moving in a collimated manner perpendicular to the carrier 10 as shown in FIG. 7A . In addition, the light emitted by the light emitting device 3000 is also reflected by the sidewall of the lens 166 . Compared with the optical pattern shown in FIG. 7B , the light emitting pattern shown in FIG. 7F has better uniformity in light intensity distribution.

图7G所显示的是发光组件中,从于波长转换层4发出的正向光线L1光线与背向光线L2。光线L1与光线L2在不同的发光组件中可以具有不同的光学特性,下表所显示的就是图7A、图7C、图7E中的发光组件的光线L1与光线L2的特性差异。例如,在图7A的发光组件中,正向光线L1与背向光线L2之间的色温差异小于1000K,并且正向光线L1与背向光线L2之间的光萃取效率差异大于10lm/W。FIG. 7G shows the forward light L1 and the back light L2 emitted from the wavelength conversion layer 4 in the light-emitting component. The light L1 and the light L2 may have different optical characteristics in different light-emitting components, and the following table shows the characteristic differences between the light L1 and the light L2 of the light-emitting components in FIG. 7A , FIG. 7C , and FIG. 7E . For example, in the light-emitting component of FIG. 7A , the color temperature difference between the forward light L1 and the back light L2 is less than 1000K, and the light extraction efficiency difference between the forward light L1 and the back light L2 is greater than 10lm/W.

Figure BDA0000769257840000091
Figure BDA0000769257840000091

Figure BDA0000769257840000101
Figure BDA0000769257840000101

图7A中的波长转换层4的荧光粉浓度30%并且厚度为0.5mm,而图7E中的波长转换层4的荧光粉浓度50%并且厚度为0.25mm。图7C中的波长转换层4的厚度为0.45mm,而外侧区域的荧光粉浓度为30%,内侧区域的荧光粉浓度为10%,如图7H所示。在一实施例中,从发光装置发出的光线与波长转换层之间的夹角几乎不会影响从发光组件所发出的光线的光学特性。参考图7I~图7J,三个入射光线与波长转换层的夹角分别是45°、60°与90°,如图7I所示。而在波长转换层相对于这三个光线一的另一侧,所量测到对应这三个光线的光强度几乎相同,如图7J所示。The wavelength conversion layer 4 in FIG. 7A has a phosphor concentration of 30% and a thickness of 0.5mm, while the wavelength conversion layer 4 in FIG. 7E has a phosphor concentration of 50% and a thickness of 0.25mm. The thickness of the wavelength converting layer 4 in FIG. 7C is 0.45 mm, and the phosphor concentration in the outer region is 30%, and that in the inner region is 10%, as shown in FIG. 7H . In one embodiment, the included angle between the light emitted from the light emitting device and the wavelength conversion layer hardly affects the optical characteristics of the light emitted from the light emitting component. Referring to FIG. 7I to FIG. 7J , the angles between the three incident light rays and the wavelength conversion layer are 45°, 60° and 90° respectively, as shown in FIG. 7I . On the other side of the wavelength conversion layer relative to one of the three light rays, the measured light intensities corresponding to the three light rays are almost the same, as shown in FIG. 7J .

图8A所显示的是发光组件1008A的示意图。发光组件1008A具有一由一第一波长转换层40、一第二波长转换层42以及形成于波长转换层40与42之间的透明层60所堆叠的叠层。图8A中的发光组件1008A所发出的光线,其光学特性会被这叠层的某些特性所影响,例如第一波长转换层40与第二波长转换层42的厚度以及第一波长转换层40与第二波长转换层42的重量百分浓度(wt%)都是可能会影响发光组件1008A的光萃取效率的参数。光线较容易被具有较高重量百分浓度的波长转换层吸收,因此光萃取效率在较多的光线被波长转换层吸收的情况下也降低了。当波长转换层的厚度越厚时,表示光线在波长转换层内要经过更长的距离,因此,光线也更容易被吸收而降低光萃取效率。在另一实施例中,参考图8B,这个叠层是设计让光线会在穿过第二波长转换层42之前,让光线先在第一波长转换层40与第二波长转换层42之间来回反射。在一实施例中,参考下表,第一波长转换层40的浓度为70%,第二波长转换层40的浓度为5%,第一波长转换层40与第二波长转换层42的厚度都是0.3mm。正向光线L1与背向光线L2的色温(CCT)标准差在图7A的发光组件1007A中为2720.383,但在图8A的发光组件1008A中为1258.146。图7A中的发光组件1007A的总光萃取效率(大约是138.256lm/W)跟图8A中的发光组件1008A的总光萃取效率(大约是137.087lm/W)相近。通过使用具有两层波长转换层的结构,图8A中的组件1008A在正向与背向的方向上可以维持相近的光萃取效率并提供优选的色温(CCT)标准差。在一实施例中,第一波长转换层40的荧光粉浓度对正向光L1色温(CCT)的影响,比起第二波长转换层42的荧光粉浓度对背向光L2色温(CCT)的影响大。FIG. 8A shows a schematic diagram of a light emitting component 1008A. The light emitting element 1008A has a stacked layer consisting of a first wavelength conversion layer 40 , a second wavelength conversion layer 42 and a transparent layer 60 formed between the wavelength conversion layers 40 and 42 . The optical characteristics of the light emitted by the light-emitting component 1008A in FIG. 8A will be affected by certain characteristics of the stack, such as the thicknesses of the first wavelength conversion layer 40 and the second wavelength conversion layer 42 and the thickness of the first wavelength conversion layer 40. The weight percent concentration (wt%) of the second wavelength conversion layer 42 is a parameter that may affect the light extraction efficiency of the light emitting component 1008A. Light is more easily absorbed by the wavelength conversion layer with a higher weight percent concentration, so the light extraction efficiency also decreases when more light is absorbed by the wavelength conversion layer. When the thickness of the wavelength conversion layer is thicker, it means that the light has to travel a longer distance in the wavelength conversion layer. Therefore, the light is more likely to be absorbed to reduce the light extraction efficiency. In another embodiment, referring to FIG. 8B, the stack is designed so that the light will go back and forth between the first wavelength conversion layer 40 and the second wavelength conversion layer 42 before passing through the second wavelength conversion layer 42. reflection. In one embodiment, referring to the following table, the concentration of the first wavelength conversion layer 40 is 70%, the concentration of the second wavelength conversion layer 40 is 5%, and the thicknesses of the first wavelength conversion layer 40 and the second wavelength conversion layer 42 are both It is 0.3mm. The standard deviation of the color temperature (CCT) of the forward light L1 and the back light L2 is 2720.383 in the light emitting assembly 1007A of FIG. 7A , but is 1258.146 in the light emitting assembly 1008A of FIG. 8A . The total light extraction efficiency (about 138.256lm/W) of the light emitting element 1007A in FIG. 7A is similar to the total light extraction efficiency (about 137.087lm/W) of the light emitting element 1008A in FIG. 8A. By using a structure with two wavelength conversion layers, the module 1008A in FIG. 8A can maintain similar light extraction efficiency and provide a preferred color temperature (CCT) standard deviation in the forward and rear directions. In one embodiment, the phosphor concentration of the first wavelength conversion layer 40 has an effect on the color temperature (CCT) of the forward light L1, compared to the effect of the phosphor concentration of the second wavelength conversion layer 42 on the color temperature (CCT) of the back light L2. Great impact.

Figure BDA0000769257840000111
Figure BDA0000769257840000111

图8C~图8D所显示的是根据本发明的实施例的发光组件。图8C中的发光组件1008C具有分别设置在两个载板10之上的两个发光装置3000,可以朝左边以及右边发出光线。位于透镜170a与170b之间的波长转换层44的左右两侧可以用来吸收并转换来自两个发光装置3000的光线。这两个光源都发出相同的色光,例如红外光、红光、绿光、蓝光与紫外光。一实施例中,发光组件1008C的色温在波长转换层44内的波长转换粒子浓度增加时,可以被降低到6500K。然而,当波长转换层44内的波长转换材料浓度增加到30%或者更多的时候,色温将会在6500K左右维持不变。同样的,波长转换层44内的波长转换粒子浓度增加时,发光效率也随之增加。光萃取效率可以提升到大约290lm/W。但在波长转换层44内的波长转换材料浓度增加到30%或者更多的时候光萃取效率将被维持在290lm/W左右。8C-8D show a light emitting assembly according to an embodiment of the present invention. The light-emitting assembly 1008C in FIG. 8C has two light-emitting devices 3000 respectively disposed on two substrates 10 and can emit light toward the left and right. The left and right sides of the wavelength conversion layer 44 located between the lenses 170a and 170b can be used to absorb and convert light from the two light emitting devices 3000 . Both light sources emit the same color light, such as infrared light, red light, green light, blue light and ultraviolet light. In one embodiment, the color temperature of the light emitting element 1008C can be reduced to 6500K when the concentration of the wavelength conversion particles in the wavelength conversion layer 44 increases. However, when the concentration of the wavelength conversion material in the wavelength conversion layer 44 increases to 30% or more, the color temperature will remain unchanged at about 6500K. Similarly, when the concentration of wavelength conversion particles in the wavelength conversion layer 44 increases, the luminous efficiency also increases. The light extraction efficiency can be increased to about 290lm/W. However, the light extraction efficiency will be maintained at about 290 lm/W when the concentration of the wavelength converting material in the wavelength converting layer 44 is increased to 30% or more.

图8D中的组件1008D具有一发光装置3000位于载板10之上、两个波长转换层46与48,以及一个透镜172覆盖着发光装置3000与这些波长转换层46与48。参考图8D,光线L1与光线L3被重新导向后入射到波长转换层46与48的正面的一侧,以及光线L2与光线L4被重新导向后入射到波长转换层46与48的背面的一侧。在一实施例中,波长转换层46与48的厚度都是0.55mm。The device 1008D in FIG. 8D has a light emitting device 3000 on the substrate 10 , two wavelength conversion layers 46 and 48 , and a lens 172 covering the light emitting device 3000 and the wavelength conversion layers 46 and 48 . Referring to FIG. 8D , the rays L1 and L3 are redirected and incident on the front side of the wavelength conversion layers 46 and 48, and the rays L2 and L4 are redirected and incident on the back side of the wavelength conversion layers 46 and 48. . In one embodiment, the wavelength conversion layers 46 and 48 are both 0.55 mm thick.

发光组件的光学特性如下表所列,透镜172以中心轴或者中心平面(图未示)相对称,因此可以提供对称的光路径。换句话说,光线L1与L3彼此互为镜像,光线L2与光线L4也彼此互为镜像。光线L1与光线L2或者光线L3与光线L4之间的色温标准差小于600K,也比图7A中的光学组件的标准差低。光萃取效率大于150lm/W,则是比图7A中的光学组件的光萃取效率高。The optical properties of the light-emitting components are listed in the table below, and the lenses 172 are symmetrical about a central axis or a central plane (not shown), so that a symmetrical light path can be provided. In other words, the light rays L1 and L3 are mirror images of each other, and the light rays L2 and L4 are also mirror images of each other. The standard deviation of color temperature between light L1 and light L2 or between light L3 and light L4 is less than 600K, which is also lower than the standard deviation of the optical assembly in FIG. 7A . The light extraction efficiency is greater than 150lm/W, which is higher than the light extraction efficiency of the optical component in FIG. 7A .

Figure BDA0000769257840000121
Figure BDA0000769257840000121

图9A~图9D显示根据本发明实施例的多个发光组件的示意图。参考图9A,透镜174A与波长转换层50光耦合。光线可以从透镜的一侧进入,再从另一侧离开。当光线的入射角度可以适当的控制,并在透镜174内部的上表面与下表面之间产生全反射的时候,光线便可以在透镜174内来回反射,而光线可以从不同的位置撞击波长转换层50并被吸收。越多光线被吸收,波长转换层50也就能产生更多被转换的光线。9A-9D show schematic diagrams of a plurality of light-emitting components according to an embodiment of the present invention. Referring to FIG. 9A , lens 174A is optically coupled to wavelength conversion layer 50 . Light can enter from one side of the lens and exit from the other. When the incident angle of the light can be properly controlled and total reflection occurs between the upper surface and the lower surface inside the lens 174, the light can be reflected back and forth in the lens 174, and the light can hit the wavelength conversion layer from different positions 50 and was absorbed. The more light is absorbed, the more converted light can be generated by the wavelength conversion layer 50 .

图9B中的发光组件1009B有一个发光装置4000设置于载板10之上、一具有孔穴1740的透镜174,以及一设置于透镜174上的波长转换层50。发光装置4000被设置在孔穴1740内,并被透镜174完全覆盖。TU 9C显示的是透镜174正向侧的发光图,图9D显示的是透镜174背向侧的发光图。发光组件1009B的光学特性如下所列,其中光线L1与L2的色温的标准差低于200K,整体的光萃取效率为140lm/W左右。The light emitting component 1009B in FIG. 9B has a light emitting device 4000 disposed on the carrier 10 , a lens 174 having a hole 1740 , and a wavelength conversion layer 50 disposed on the lens 174 . The light emitting device 4000 is disposed in the cavity 1740 and is completely covered by the lens 174 . TU 9C shows the light emission diagram of the front side of the lens 174, and FIG. 9D shows the light emission diagram of the back side of the lens 174. The optical characteristics of the light-emitting component 1009B are listed below, wherein the standard deviation of the color temperatures of the light rays L1 and L2 is lower than 200K, and the overall light extraction efficiency is about 140lm/W.

Figure BDA0000769257840000122
Figure BDA0000769257840000122

Figure BDA0000769257840000131
Figure BDA0000769257840000131

图10A~图10D显示根据本发明一实施例的发光组件的示意图。参考图10A~图10B,光线在透镜176内来回反射。透镜176具有一第一翼部1760与一第二翼部1762。第一翼部1760与载板10之间夹有一倾斜角度θ1。第二翼部1762与载板10之间夹有一倾斜角度θ2。在一实施例中,倾斜角度θ1与倾斜角度θ2同样都是30°。如图10A所示,光线L1在第二翼部1762内反射两次或者多次后再穿过波长转换层52,光线L2在第二翼部1762内反射两次或者多次后再往远离波长转换层52的方向移动,并且不会穿过波长转换层52。波长转换层52不仅位于第一翼部1760与第二翼部1762之间的表面S1与S2之上,也位于第一翼部1760的边缘E2以及第二翼部1762的边缘E1之上。如图10B所示,第一翼部1760与第二翼部1762以V形/U形的形状在发光装置5000之上分叉,光线L1与L3在图中以类似的路径移动着。通过使用图10A~图10B中的透镜,光线L1~L3的波长更容易被波长转换层52转换。图10B中的发光组件具有一个发光装置5000位于载板10之上、一具有第一翼部1760与第二翼部1762的透镜176,以及一个波长转换层52。图10C显示相对于透镜176而言的正向侧的图,并且图10D中所显示相对于透镜176而言的背向侧的图。组件的光学特性如下所列,光线L1与L2的色温标准差低于700K,而总光萃取效率则大于150lm/W。10A-10D are schematic diagrams of a light-emitting component according to an embodiment of the present invention. Referring to FIGS. 10A-10B , light rays are reflected back and forth within the lens 176 . The lens 176 has a first wing 1760 and a second wing 1762 . There is an inclination angle θ1 between the first wing portion 1760 and the carrier board 10 . There is an inclination angle θ2 between the second wing portion 1762 and the carrier board 10 . In one embodiment, the inclination angle θ1 and the inclination angle θ2 are both 30°. As shown in FIG. 10A , light L1 is reflected twice or multiple times in the second wing portion 1762 before passing through the wavelength conversion layer 52, and light L2 is reflected twice or multiple times in the second wing portion 1762 and then goes away from the wavelength. The direction of the conversion layer 52 is shifted and does not pass through the wavelength conversion layer 52 . The wavelength conversion layer 52 is not only located on the surfaces S1 and S2 between the first wing 1760 and the second wing 1762 , but also on the edge E2 of the first wing 1760 and the edge E1 of the second wing 1762 . As shown in FIG. 10B , the first wing 1760 and the second wing 1762 are branched on the light emitting device 5000 in a V-shape/U-shape, and the light rays L1 and L3 move along similar paths in the figure. By using the lenses in FIGS. 10A-10B , the wavelengths of the light rays L1-L3 are more easily converted by the wavelength conversion layer 52 . The light emitting component in FIG. 10B has a light emitting device 5000 on the carrier 10 , a lens 176 with a first wing 1760 and a second wing 1762 , and a wavelength conversion layer 52 . FIG. 10C shows a view of the forward side relative to lens 176 , and a view of the back side relative to lens 176 is shown in FIG. 10D . The optical characteristics of the components are listed below. The standard deviation of the color temperature of light L1 and L2 is lower than 700K, and the total light extraction efficiency is greater than 150lm/W.

Figure BDA0000769257840000132
Figure BDA0000769257840000132

参考图11A,组件具有多个发光装置6000(图中显示五个发光装置6000,但是发光装置的数量可多可少)、一个与发光装置6000之间存在一距离的扩散层18、一个位于扩散层18之上的棱镜层20,以及一位于棱镜层20之上的液晶荧幕(LCD)模块22,发光装置6000、扩散层18与棱镜层20可以组成一个液晶显示器的背光模块,液晶荧幕(LCD)模块22具有一个透镜。扩散层18可以重新分配来自发光装置6000的光线,以增加发光装置6000的光均匀度,而棱镜层20具有多个棱镜以集中光线。因此,LCD模块22上的光场均匀度也增加了。在一实施例中,液晶荧幕(LCD)模块22内的透镜跟发光装置6000之间的距离大于两个相邻发光装置的距离。Referring to FIG. 11A , the assembly has a plurality of light emitting devices 6000 (five light emitting devices 6000 are shown in the figure, but the number of light emitting devices can be more or less), a diffusion layer 18 with a distance from the light emitting devices 6000, a diffusion layer 18 located at a distance from the light emitting devices 6000, The prism layer 20 on the layer 18, and a liquid crystal display (LCD) module 22 on the prism layer 20, the light emitting device 6000, the diffusion layer 18 and the prism layer 20 can form a backlight module of a liquid crystal display, the liquid crystal display The (LCD) module 22 has a lens. The diffusion layer 18 can redistribute the light from the light emitting device 6000 to increase the light uniformity of the light emitting device 6000, while the prism layer 20 has a plurality of prisms to concentrate the light. Therefore, the uniformity of the light field on the LCD module 22 is also increased. In one embodiment, the distance between the lens in the liquid crystal display (LCD) module 22 and the light emitting device 6000 is greater than the distance between two adjacent light emitting devices.

图11B显示的是组件的示意图。标号H代表发光装置6000与LCD模块22之间的距离,标号R代表的是发光区域在LCD模块22上的半径,而标号d代表相邻发光装置间的侧向的距离。H越小也代表LCD模块22上的光场越小,也就是半径R越小。在一实施例中,发光装置6000在液晶荧幕(LCD)模块22(或者是模块内的透镜)上的光场半径大小等于两个发光装置6000之间距离的两倍。图11C~图11D显示的是发光装置6000的排列的上视图示意图。发光装置6000在图11C中被排列成彼此相连的三角形,而发光装置6000在图11D中被排列成彼此相连的四方形。发光装置被排列成不同的形状,可以提供不同的光学分布。图11C中的排列的单位面积所提供的照度分布图如图11E所示,图11D中的排列的单位面积所提供的照度分布图如图11F所示。在一实施例中,单一个发光装置6000的光场的半径R可以被设定成与相邻发光装置6000之间的最短距离相同。如图11E与图11F所示,不同的颜色各自代表不同的照明程度,而颜色与照明程度的详细对照可以参照图中的图例。Figure 11B shows a schematic diagram of the assembly. The symbol H represents the distance between the light-emitting device 6000 and the LCD module 22 , the symbol R represents the radius of the light-emitting area on the LCD module 22 , and the symbol d represents the lateral distance between adjacent light-emitting devices. A smaller H also means a smaller light field on the LCD module 22 , that is, a smaller radius R. In one embodiment, the light field radius of the light emitting devices 6000 on the liquid crystal display (LCD) module 22 (or the lens in the module) is equal to twice the distance between two light emitting devices 6000 . FIG. 11C to FIG. 11D show schematic top views of the arrangement of light emitting devices 6000 . The light emitting devices 6000 are arranged in a triangle connected to each other in FIG. 11C , while the light emitting devices 6000 are arranged in a square connected to each other in FIG. 11D . Light emitting devices are arranged in different shapes, which can provide different optical distributions. The illuminance distribution diagram provided per unit area of the arrangement in FIG. 11C is shown in FIG. 11E , and the illuminance distribution diagram provided per unit area of the arrangement in FIG. 11D is shown in FIG. 11F . In an embodiment, the radius R of the light field of a single light emitting device 6000 may be set to be the same as the shortest distance between adjacent light emitting devices 6000 . As shown in FIG. 11E and FIG. 11F , different colors represent different levels of illumination, and for a detailed comparison between colors and levels of illumination, please refer to the legends in the figures.

在本实施例中,图11G是一个发光装置6000在X方向上的位移所造成光学均匀度的变化的示意图,图11H一个发光装置6000在Y方向上的位移所造成光学均匀度的变化的示意图。图11G或者图11H中的横座标代表的是发光组件内的一个发光装置6000的位置相对于原本位置的偏移距离,图11G或者图11H中的纵座标代表的是发光组件归一化的照度均匀度。如图11G与图11H所示,正向(X>0或者Y>0)与负向(X<0或者Y<0)的位移在四方形的排列方式中,都对照度的均匀度造成类似的降低幅度。然而在三角形排列方式,正向(X>0或者Y>0)与负向(X<0或者Y<0)的位移对照度的均匀度的影响则不同。对三角形的排列方式而言,负向的位移所造成的照度均匀度的减少,比正向的位移所造成的减少更多。不论是在三角形排列或者四方形排列,发光装置所在的位子于X方向或者Y方向上(往正向或者往负向)有0.1mm的位移时,光学均匀度都会降到低于最大值的0.9倍。In this embodiment, FIG. 11G is a schematic diagram of a change in optical uniformity caused by a displacement of a light emitting device 6000 in the X direction, and FIG. 11H is a schematic diagram of a change in optical uniformity caused by a displacement of a light emitting device 6000 in the Y direction. . The abscissa in FIG. 11G or FIG. 11H represents the offset distance of a light-emitting device 6000 in the light-emitting assembly relative to the original position, and the ordinate in FIG. 11G or FIG. 11H represents the normalized distance of the light-emitting assembly. Illumination uniformity. As shown in Figure 11G and Figure 11H, the positive (X>0 or Y>0) and negative (X<0 or Y<0) displacements in the square arrangement have similar effects on the uniformity of illumination. of reduction. However, in the triangular arrangement, positive (X>0 or Y>0) and negative (X<0 or Y<0) displacements have different effects on the uniformity of the illuminance. For the triangular arrangement, the reduction of illuminance uniformity caused by the negative displacement is more than that caused by the positive displacement. Regardless of whether it is in a triangular arrangement or a square arrangement, when the position of the light-emitting device is displaced by 0.1mm in the X direction or Y direction (towards the positive or negative direction), the optical uniformity will drop below the maximum value of 0.9 times.

图12A~图12B所显示的是根据本发明一实施例的量测设备。第12A图中的设备可以量测发光装置7000所发出光线的远场光学特性,从发光装置7000发出的光线可经过第一光圈178a与第二光圈178b后被光谱仪24接收。第一光圈178a与第二光圈178b移除部分光线,并保留在特定角度的光线让光谱仪24吸收。图12B的设备可以量测发光装置7000所发出光线的中场光学特性,而从发光装置7000发出的光线可经过凸透镜180后,被光谱仪24接收。12A-12B show a measuring device according to an embodiment of the present invention. The device in FIG. 12A can measure the far-field optical characteristics of the light emitted by the light emitting device 7000. The light emitted from the light emitting device 7000 can be received by the spectrometer 24 after passing through the first aperture 178a and the second aperture 178b. The first aperture 178 a and the second aperture 178 b remove part of the light and keep the light at a specific angle for absorption by the spectrometer 24 . The device in FIG. 12B can measure the field optical properties of the light emitted by the light emitting device 7000 , and the light emitted from the light emitting device 7000 can be received by the spectrometer 24 after passing through the convex lens 180 .

图12C~图12E显示的是部分利用图12A中的装置所得到的量测结果,其中图12C~图12E的0度大致对应到发光装置7000的中心,而角度代表着量测点与发光装置7000中心的夹角。图12C则分别显示了归一化后蓝光的光强度、黄光的光强度,以及整体的光强度。全部的光线可以有蓝光、黄光或者其他色光。如图中所示,不同光线在不同的角度上有不同的强度。图12D则分别显示了黄光的光强度与蓝光的光强度的比值YBR,这个比值随着角度的绝对值增加而增加。尤其是黄光在较大的角度上更容易被观察到,而这也造成发光图案在图案的周围有一个偏黄的区域。参考图12E,相关色温CCT由0度大于6500K(发光装置中心附近)降低到90度时大约4500K(发光装置周围附近)。Figures 12C to 12E show part of the measurement results obtained by using the device in Figure 12A, wherein 0 degrees in Figures 12C to 12E roughly corresponds to the center of the light emitting device 7000, and the angle represents the measurement point and the light emitting device 7000 center angle. FIG. 12C shows the normalized light intensity of the blue light, the light intensity of the yellow light, and the overall light intensity respectively. All light can have blue light, yellow light or other colored light. As shown in the figure, different light rays have different intensities at different angles. FIG. 12D shows the ratio YBR of the light intensity of the yellow light to the light intensity of the blue light, and this ratio increases as the absolute value of the angle increases. In particular, yellow light is easier to observe at larger angles, and this also causes the luminous pattern to have a yellowish area around the pattern. Referring to FIG. 12E , the correlated color temperature CCT decreases from more than 6500K (near the center of the light-emitting device) at 0 degrees to about 4500K (near the periphery of the light-emitting device) at 90 degrees.

如图13所示,透镜184可以装置到发光装置8000以均匀化所发出的光线的照度与颜色。透镜184可以将蓝光转往到更大角度的方向,以及将黄光转向较小角度的方向。透镜184具有一个主体与一个位于主体下表面的孔穴1840,孔穴1840界定了一个空间以容纳发光装置8000。孔穴1840的剖视图有一个上内表面以及一个下内表面。上内表面具有一个钟形/拱形的形状/轮廓。下内表面具有一个延伸到透镜184下表面的拖尾。上内表面与下内表面可以有相同或者不同的曲率。此外,上内表面自身或者下内表面自身可以有一个或者多个曲率。透镜184的外表面有数个相连接的区域(如图13所示,这些区域在剖视图上可以视为线段),相邻区域的连接部分可以有着可察觉到的角度变化以将特定的色光导引至特定的方向。举例来说,具有较短波长的色光,例如蓝光,撞到较高区域的时候可以被向下弯折;而具有较长波长的色光,例如黄光,撞到较低区域的时候可以被向上弯折。As shown in FIG. 13 , a lens 184 can be attached to the light emitting device 8000 to even out the illuminance and color of the emitted light. Lens 184 can divert blue light into a higher angle direction and yellow light into a smaller angle direction. The lens 184 has a main body and a hole 1840 on the lower surface of the main body. The hole 1840 defines a space for accommodating the light emitting device 8000 . The cross-sectional view of cavity 1840 has an upper inner surface and a lower inner surface. The upper inner surface has a bell/arched shape/profile. The lower inner surface has a trail extending to the lower surface of lens 184 . The upper and lower inner surfaces may have the same or different curvatures. Additionally, either the upper inner surface itself or the lower inner surface itself may have one or more curvatures. The outer surface of the lens 184 has several connected regions (as shown in FIG. 13 , these regions can be regarded as line segments in the cross-sectional view), and the connecting parts of adjacent regions can have detectable angle changes to guide specific color light to a specific direction. For example, colored light with a shorter wavelength, such as blue light, can be bent downward when it hits a higher region; while colored light with a longer wavelength, such as yellow light, can be bent upward when it hits a lower region. bent.

本发明同时主张美国暂时申请案第62/029977号与美国正式申请案第14/810180号的优先权,其中美国暂时申请案第62/029977号所包含的中文论文及相关档案皆援引为本申请案的一部分。The present invention also claims the priority of U.S. Provisional Application No. 62/029977 and U.S. Formal Application No. 14/810180, wherein the Chinese papers and related files contained in U.S. Provisional Application No. 62/029977 are cited as the present application part of the case.

需了解的是,本发明中上述的实施例在适当的情况下,是可互相组合或替换,而非仅限于所描述的特定实施例。本发明所列举的各实施例仅用以说明本发明,并非用以限制本发明的范围。任何人对本发明所作的任何显而易见的修饰或变更接不脱离本发明的精神与范围。It should be understood that the above-mentioned embodiments in the present invention can be combined or replaced with each other under appropriate circumstances, and are not limited to the specific embodiments described. The various embodiments listed in the present invention are only used to illustrate the present invention, and are not intended to limit the scope of the present invention. Any obvious modification or change made by anyone to the present invention will not depart from the spirit and scope of the present invention.

Claims (10)

1.一种发光组件,包含:1. A light-emitting component, comprising: 发光装置,包含第一上表面与第一侧表面;以及A light emitting device comprising a first upper surface and a first side surface; and 最外侧的波长转换层,覆盖该第一上表面,并具有第二上表面与第二侧表面,The outermost wavelength conversion layer covers the first upper surface and has a second upper surface and a second side surface, 其中,该第一上表面与该第二上表面之间的距离与该第一侧表面与该第二侧表面之间的距离的比例介于1.1~1.3之间。Wherein, the ratio of the distance between the first upper surface and the second upper surface to the distance between the first side surface and the second side surface is between 1.1 and 1.3. 2.如权利要求1所述的发光组件,还包含透明层,形成于该发光装置与该波长转换层之间。2. The light emitting device as claimed in claim 1, further comprising a transparent layer formed between the light emitting device and the wavelength conversion layer. 3.如权利要求1所述的发光组件,还包含载板,该载板具有第三上表面,连接到相对于该第一上表面的下表面,其中该第三上表面为Lambertian散射表面。3. The lighting assembly of claim 1, further comprising a carrier plate having a third upper surface connected to a lower surface opposite to the first upper surface, wherein the third upper surface is a Lambertian scattering surface. 4.如权利要求1所述的发光组件,还包含透镜设置于该发光装置之上,其中该透镜包含第一翼部与第二翼部。4. The light-emitting component as claimed in claim 1, further comprising a lens disposed on the light-emitting device, wherein the lens comprises a first wing and a second wing. 5.如权利要求1所述的发光组件,还包含透明盖,设置于该波长转换层之上。5. The light emitting component as claimed in claim 1, further comprising a transparent cover disposed on the wavelength conversion layer. 6.如权利要求5所述的发光组件,其中该透明盖还包含不透明粒子。6. The light-emitting component as claimed in claim 5, wherein the transparent cover further comprises opaque particles. 7.如权利要求1所述的发光组件,其中该波长转换层还包含不透明粒子。7. The light-emitting component as claimed in claim 1, wherein the wavelength converting layer further comprises opaque particles. 8.如权利要求2所述的发光组件,其中该透明层还包含不透明粒子。8. The light-emitting component as claimed in claim 2, wherein the transparent layer further comprises opaque particles. 9.如权利要求1所述的发光组件,其中该第一上表面平行于该第二上表面。9. The light emitting component as claimed in claim 1, wherein the first upper surface is parallel to the second upper surface. 10.如权利要求1所述的发光组件,其中该第一侧表面平行于第二侧表面。10. The light emitting component as claimed in claim 1, wherein the first side surface is parallel to the second side surface.
CN201510450634.1A 2014-07-28 2015-07-28 light emitting assembly Active CN105318278B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910879067.XA CN110578912B (en) 2014-07-28 2015-07-28 Light emitting assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462029977P 2014-07-28 2014-07-28
US62/029,977 2014-07-28
US14/810,180 US9911907B2 (en) 2014-07-28 2015-07-27 Light-emitting apparatus
US14/810,180 2015-07-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910879067.XA Division CN110578912B (en) 2014-07-28 2015-07-28 Light emitting assembly

Publications (2)

Publication Number Publication Date
CN105318278A CN105318278A (en) 2016-02-10
CN105318278B true CN105318278B (en) 2019-10-15

Family

ID=55246259

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510450634.1A Active CN105318278B (en) 2014-07-28 2015-07-28 light emitting assembly
CN201910879067.XA Active CN110578912B (en) 2014-07-28 2015-07-28 Light emitting assembly

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910879067.XA Active CN110578912B (en) 2014-07-28 2015-07-28 Light emitting assembly

Country Status (1)

Country Link
CN (2) CN105318278B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110231734A (en) * 2018-03-06 2019-09-13 中强光电股份有限公司 Light source module and its surface light source component
CN110286519B (en) * 2019-05-29 2022-03-11 深圳赛时达科技有限公司 Quantum dot backlight module
CN110187560A (en) * 2019-05-29 2019-08-30 深圳市赛时达光电科技有限公司 quantum dot film
CN113866179B (en) * 2021-12-02 2022-03-15 苏州长光华芯光电技术股份有限公司 Defect detection system and method for semiconductor laser chip
CN115542610A (en) * 2022-10-26 2022-12-30 南通惟怡新材料科技有限公司 Side light-emitting quantum dot lens, backlight module and quantum dot lens manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588816A (en) * 2011-01-07 2012-07-18 晶元光电股份有限公司 Light emitting device, light mixing device and method for manufacturing light emitting device
CN102751429A (en) * 2012-05-22 2012-10-24 香港应用科技研究院有限公司 light emitting device
CN103456863A (en) * 2012-05-29 2013-12-18 璨圆光电股份有限公司 Light emitting device
CN203521459U (en) * 2013-09-24 2014-04-02 璨圆光电股份有限公司 Light emitting module and light emitting device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101086577A (en) * 2006-06-07 2007-12-12 中国科学院半导体研究所 LCD backlight source structure of LED illumination
CN101651177B (en) * 2008-08-11 2012-06-13 旭丽电子(广州)有限公司 Photoelectric semiconductor device capable of generating uniform polychromatic light
JP2010170734A (en) * 2009-01-20 2010-08-05 Panasonic Electric Works Co Ltd Led lighting system
CN102142501A (en) * 2010-01-28 2011-08-03 海洋王照明科技股份有限公司 LED encapsulation structure
CN102588752A (en) * 2011-01-07 2012-07-18 晶元光电股份有限公司 Light emitting device
CN102654273B (en) * 2011-03-04 2014-05-28 海洋王照明科技股份有限公司 Condenser lens of LED (light emitting diode)
CN102748709B (en) * 2011-04-21 2014-05-14 海洋王照明科技股份有限公司 Full-reflection lens and LED (Light-Emitting Diode) lamp using same
US8757845B2 (en) * 2011-07-29 2014-06-24 TSMC Solid State Lighting, Ltd. Wide angle based indoor lighting lamp
CN102306698A (en) * 2011-09-30 2012-01-04 深圳市灏天光电有限公司 Novel LED packaging structure
FR2981506B1 (en) * 2011-10-18 2014-06-27 Commissariat Energie Atomique ELECTROLUMINESCENT DIODE COMPONENT
US8680544B2 (en) * 2011-11-30 2014-03-25 Tsmc Solid State Lighting Ltd. Cost-effective LED lighting instrument with good light output uniformity
CN103187487A (en) * 2011-12-28 2013-07-03 展晶科技(深圳)有限公司 Semiconductor encapsulation process and semiconductor encapsulation structure
TW201411892A (en) * 2012-09-14 2014-03-16 Lextar Electronics Corp Light-emitting diode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102588816A (en) * 2011-01-07 2012-07-18 晶元光电股份有限公司 Light emitting device, light mixing device and method for manufacturing light emitting device
CN102751429A (en) * 2012-05-22 2012-10-24 香港应用科技研究院有限公司 light emitting device
CN103456863A (en) * 2012-05-29 2013-12-18 璨圆光电股份有限公司 Light emitting device
CN203521459U (en) * 2013-09-24 2014-04-02 璨圆光电股份有限公司 Light emitting module and light emitting device

Also Published As

Publication number Publication date
CN105318278A (en) 2016-02-10
CN110578912B (en) 2021-04-06
CN110578912A (en) 2019-12-17

Similar Documents

Publication Publication Date Title
TWI728348B (en) Light-emitting apparatus
US20240044476A1 (en) Light source device and display unit
JP5279329B2 (en) Light-emitting unit with lens
CN105318278B (en) light emitting assembly
US7370993B2 (en) Light recycling illumination systems having restricted angular output
US9461218B2 (en) Surface light source
US20090046459A1 (en) Lighting device
US8267565B2 (en) LED illumination device and LED illumination module for generating uniform stripped light source
CN102803834B (en) Illumination system for spot illumination
KR101283867B1 (en) Light-emitting element array, Backlight apparatus, and Illumination apparatus
CN110190169A (en) light emitting device
US10400988B2 (en) Light emitting module and light emitting apparatus
KR102304267B1 (en) Light emitting device package and backlight unit including the package
JP6812185B2 (en) Organic EL display device
TWI579504B (en) Light emitting device
CN111373194B (en) Lighting device
JP4681077B1 (en) Lighting device
JP4730860B1 (en) Lighting device
KR102127448B1 (en) Light Emitting Device package

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant