CN105314688B - A kind of preparation method and applications of nickel oxide nano piece - Google Patents
A kind of preparation method and applications of nickel oxide nano piece Download PDFInfo
- Publication number
- CN105314688B CN105314688B CN201510924207.2A CN201510924207A CN105314688B CN 105314688 B CN105314688 B CN 105314688B CN 201510924207 A CN201510924207 A CN 201510924207A CN 105314688 B CN105314688 B CN 105314688B
- Authority
- CN
- China
- Prior art keywords
- nickel oxide
- preparation
- nickel
- water
- light green
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000480 nickel oxide Inorganic materials 0.000 title claims abstract description 42
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title claims abstract description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 27
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims abstract description 12
- 239000001509 sodium citrate Substances 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims abstract description 11
- 150000002815 nickel Chemical class 0.000 claims abstract description 8
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000008367 deionised water Substances 0.000 claims abstract description 3
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 3
- 238000005119 centrifugation Methods 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 10
- 238000004321 preservation Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 claims description 2
- 229940078494 nickel acetate Drugs 0.000 claims description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical group Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 claims description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 claims description 2
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- BYMZQQLCZDLNKW-UHFFFAOYSA-N nickel(2+);tetracyanide Chemical compound [Ni+2].N#[C-].N#[C-].N#[C-].N#[C-] BYMZQQLCZDLNKW-UHFFFAOYSA-N 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 239000002135 nanosheet Substances 0.000 abstract description 40
- 239000012456 homogeneous solution Substances 0.000 abstract description 18
- 239000002244 precipitate Substances 0.000 abstract description 18
- 239000000047 product Substances 0.000 abstract description 4
- -1 Potassium tetracyanonickel (II) Chemical compound 0.000 abstract 1
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 11
- LXWJYIBQIPSFSE-UHFFFAOYSA-N dipotassium;nickel(2+);tetracyanide Chemical compound [K+].[K+].[Ni+2].N#[C-].N#[C-].N#[C-].N#[C-] LXWJYIBQIPSFSE-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000007772 electrode material Substances 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- LAIZPRYFQUWUBN-UHFFFAOYSA-L nickel chloride hexahydrate Chemical compound O.O.O.O.O.O.[Cl-].[Cl-].[Ni+2] LAIZPRYFQUWUBN-UHFFFAOYSA-L 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 239000002086 nanomaterial Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000012983 electrochemical energy storage Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 238000001027 hydrothermal synthesis Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 150000002902 organometallic compounds Chemical group 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000593 microemulsion method Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229940053662 nickel sulfate Drugs 0.000 description 1
- RRIWRJBSCGCBID-UHFFFAOYSA-L nickel sulfate hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-]S([O-])(=O)=O RRIWRJBSCGCBID-UHFFFAOYSA-L 0.000 description 1
- 229940116202 nickel sulfate hexahydrate Drugs 0.000 description 1
- DTNVUQFDRPOYFY-UHFFFAOYSA-L nickel(2+);diacetate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].CC([O-])=O.CC([O-])=O DTNVUQFDRPOYFY-UHFFFAOYSA-L 0.000 description 1
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000003115 supporting electrolyte Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
Abstract
本发明提供一种氧化镍纳米片的制备方法及其应用,制备方法包括以下步骤:a、将可溶性镍盐、柠檬酸钠按比例加入到水中混合后充分搅拌,得到均一溶液,b、将可溶性四氰合镍(Ⅱ)酸钾加入到水中混合后充分搅拌,得到均一溶液,c、将步骤a得到的溶液加入到步骤b中的溶液,然后于静置,得到生长有淡绿色沉淀,d、然后将步骤c中得到的淡绿色沉淀离心收集,用去离子水和乙醇充分洗涤,所得产物保温干燥,随后在不同温度下进行热处理,焙烧,既得到淡绿色氧化镍纳米片粉体。所述氧化镍纳米片可用于超级电容电极。本发明的有益效果是所述氧化镍纳米片具有较大的比表面积,用于构筑超级电容器电极具有良好的比容量和循环性能等优点。
The invention provides a preparation method and application of nickel oxide nanosheets. The preparation method includes the following steps: a. adding soluble nickel salt and sodium citrate into water in proportion and mixing them thoroughly to obtain a homogeneous solution; b. Potassium tetracyanonickel (II) is added to water and mixed fully to obtain a homogeneous solution, c, the solution obtained in step a is added to the solution in step b, and then left to stand to obtain growth with a light green precipitate, d, Then the light green precipitate obtained in step c was collected by centrifugation, fully washed with deionized water and ethanol, the obtained product was heat-preserved and dried, then heat-treated at different temperatures, and calcined to obtain light green nickel oxide nanosheet powder. The nickel oxide nanosheets can be used for supercapacitor electrodes. The beneficial effect of the present invention is that the nickel oxide nanosheet has a larger specific surface area, and has the advantages of good specific capacity and cycle performance when used to construct supercapacitor electrodes.
Description
技术领域technical field
本发明属于无机先进材料技术领域和电化学储能技术领域,尤其是涉及一种氧化镍纳米片的制备方法及其应用。The invention belongs to the technical field of inorganic advanced materials and the technical field of electrochemical energy storage, and in particular relates to a preparation method and application of nickel oxide nanosheets.
背景技术Background technique
由于具有较大电容量、功率密度、能量密度和长寿命等特点,近年来超级电容器的研究备受人们关注(Nanoscale,2013,5(10):4378-4387),有望成为21世纪新型的绿色能源。众所周知,电极材料的更新对超级电容器的性能具有举足轻重的作用。传统的高比表面活性炭材料作为电极是用来增加电容器的双电层电容。然而,中间有十几年由于电极材料一直沿用炭材料,使得超级电容器的发展一度处于停滞状态。上个世纪末,伴随着纳米技术的迅速发展,人们逐渐加深了对具有高表面积的炭材料的孔径的重要性的认识,同时,对具有“法拉第准电容(或氧化还原电容)”行为的过渡金属氧化物的开发利用,大大促进了超级电容器的发展,大多数金属氧化物作为电极时的储电机制属于氧化还原界面储电。鉴于目前超级电容器研究中炭基材料的比电容较小和钌基材料的价格昂贵等缺陷,人们尝试合成价格便宜、性能优良的替代性氧化物电极材料(如氧化镍、氧化钴、氧化锰等)。在这些替代材料中,因为氧化镍具备优良的电化性能和相对低廉的价格等优点,近期在超级电容器领域引起了广泛研究和关注。文献表明:氧化还原电容的储能主要通过在电极材料(如金属氧化物)表面或近表面的氧化还原反应(Electrochim.Acta,2005,50,5641–5646)。根据这一储能机理可知,制备纳米材料是增大金属氧化物法拉第准电容的有效方法之一。通过改变金属氧化物纳米材料的形貌,增大材料的比表面积、提高材料的孔结构等方面,所制备的金属氧化物纳米材料都表现出优良的电化学性能。Due to the characteristics of large capacitance, power density, energy density and long life, the research on supercapacitors has attracted much attention in recent years (Nanoscale, 2013, 5(10): 4378-4387), and it is expected to become a new type of green capacitor in the 21st century. energy. It is well known that the renewal of electrode materials plays a decisive role in the performance of supercapacitors. Conventional high specific surface activated carbon materials are used as electrodes to increase the electric double layer capacitance of capacitors. However, for more than ten years in the middle, the development of supercapacitors was once stagnant due to the use of carbon materials as electrode materials. At the end of the last century, with the rapid development of nanotechnology, people have gradually deepened their understanding of the importance of the pore size of carbon materials with high surface area. The development and utilization of oxides has greatly promoted the development of supercapacitors. The electricity storage mechanism of most metal oxides as electrodes belongs to the redox interface electricity storage. In view of the small specific capacitance of carbon-based materials and the high price of ruthenium-based materials in the current supercapacitor research, people try to synthesize alternative oxide electrode materials with low price and good performance (such as nickel oxide, cobalt oxide, manganese oxide, etc. ). Among these alternative materials, nickel oxide has recently attracted extensive research and attention in the field of supercapacitors because of its excellent electrochemical performance and relatively low price. The literature shows that the energy storage of redox capacitors is mainly through redox reactions on or near the surface of electrode materials (such as metal oxides) (Electrochim. Acta, 2005, 50, 5641–5646). According to this energy storage mechanism, the preparation of nanomaterials is one of the effective methods to increase the Faraday quasi-capacitance of metal oxides. By changing the morphology of metal oxide nanomaterials, increasing the specific surface area of the material, improving the pore structure of the material, etc., the prepared metal oxide nanomaterials show excellent electrochemical performance.
目前,制备氧化镍纳米片主要采用的方法为:模板法、辐射合成法、微乳液法、化学气相反应法和水热法等。值得注意的是,溶液法和水热法是制备氧化镍纳米片的好方法,但其大多制备过程需要调pH值,并且产量较低,难以大规模推广(J.Mater.Chem.,2011,21,18792-18798;《安徽大学学报(自然科学版)》,2013年03期)。以镍盐为原料的模板法因其原料价格较贵,步骤较多,不太适合工业化生产(J.Mater.Chem.,2011,21,6602-6606)。此外,化学气相反应法和辐射合成法因其制备需要的设备特殊,增加了生产成本。目前,从简化操作与节省能源角度考虑,金属-有机化合物热分解法逐渐成为合成纳米氧化物的主要研究方法(J.Phys.Chem.C,2012,116,7227-7235),该方法制备的产物具有结构均一、无团聚、相对面积较大、孔道丰富等特点被许多工作者广泛关注。迄今为止,利用金属-有机化合物热分解法制备具有二维、多孔、纳米片状结构的氧化镍材料及其相关应用的报道还尚未报道。因此,发展出一种操作简单,效率高、成本低、环境友好的制备方法,获得结构均一、孔道丰富、表面积高、可控性强等特点的氧化镍纳米片材料,具有十分重要的意义。At present, the main methods used to prepare nickel oxide nanosheets are: template method, radiation synthesis method, microemulsion method, chemical gas phase reaction method and hydrothermal method, etc. It is worth noting that the solution method and the hydrothermal method are good methods for preparing nickel oxide nanosheets, but most of the preparation processes need to adjust the pH value, and the yield is low, so it is difficult to promote on a large scale (J.Mater.Chem., 2011, 21, 18792-18798; "Journal of Anhui University (Natural Science Edition), Issue 03, 2013). The template method using nickel salt as raw material is not suitable for industrial production because of its expensive raw material price and many steps (J.Mater.Chem., 2011, 21, 6602-6606). In addition, the chemical vapor phase reaction method and the radiation synthesis method increase the production cost because of the special equipment required for their preparation. At present, from the perspective of simplifying operations and saving energy, the thermal decomposition of metal-organic compounds has gradually become the main research method for synthesizing nano-oxides (J.Phys.Chem.C, 2012, 116, 7227-7235). The product has the characteristics of uniform structure, no agglomeration, relatively large area, and rich channels, which has attracted widespread attention from many workers. So far, there have been no reports on the preparation of nickel oxide materials with two-dimensional, porous, nanosheet structures and their related applications by the thermal decomposition of metal-organic compounds. Therefore, it is of great significance to develop a simple, efficient, low-cost, and environmentally friendly preparation method to obtain nickel oxide nanosheet materials with uniform structure, rich pores, high surface area, and strong controllability.
发明内容Contents of the invention
本发明的目的是提供一种制备成本较低,易于实现工业化,实施有效、可行的,介观结构保持完好的氧化镍纳米片的制备方法及其应用。The purpose of the present invention is to provide a preparation method and application of nickel oxide nanosheets with low preparation cost, easy to realize industrialization, effective and feasible implementation, and intact mesoscopic structure.
本发明的技术方案是:本发明的氧化镍纳米片的制备方法,包括以下步骤:Technical scheme of the present invention is: the preparation method of nickel oxide nanosheet of the present invention, comprises the following steps:
a、将可溶性镍盐、柠檬酸钠按比例加入到水中混合后充分搅拌,得到均一溶液,a. Add soluble nickel salt and sodium citrate in proportion to water and mix thoroughly to obtain a homogeneous solution.
b、将可溶性四氰合镍(Ⅱ)酸钾加入到水中混合后充分搅拌,得到均一溶液,b. Add soluble potassium tetracyanonickelate (II) into water and mix thoroughly to obtain a homogeneous solution.
c、将步骤a得到的溶液加入到步骤b中的溶液,然后于静置,得到生长有淡绿色沉淀;c. Add the solution obtained in step a to the solution in step b, and then let it stand to obtain a light green precipitate;
d、然后将步骤c中得到的淡绿色沉淀离心收集,用去离子水和乙醇充分洗涤,所得产物置于真空干燥箱中保温干燥,随后在不同温度下进行热处理,焙烧,既得到淡绿色氧化镍纳米片粉体。d. Then centrifuge the light green precipitate obtained in step c, wash it fully with deionized water and ethanol, place the product in a vacuum drying oven for heat preservation and drying, then heat treat it at different temperatures, and roast it to obtain light green oxide Nickel nanosheet powder.
进一步,所述步骤a中的所述可溶性镍盐、柠檬酸钠的摩尔比为1∶2,所述步骤a中水的量为200mL。Further, the molar ratio of the soluble nickel salt and sodium citrate in the step a is 1:2, and the amount of water in the step a is 200 mL.
进一步,所述步骤b中水的量为200mL。Further, the amount of water in the step b is 200mL.
进一步,所述步骤a中可溶性镍盐为氯化镍、醋酸镍、硝酸镍或硫酸镍。Further, the soluble nickel salt in step a is nickel chloride, nickel acetate, nickel nitrate or nickel sulfate.
进一步,所述步骤c中的静置时间为所述步骤c中的静置温度为 Further, the standing time in the step c is The standing temperature in the step c is
进一步,所述步骤d中真空干燥箱中保温干燥处理是在的温度环境中进行的,时长为12小时。Further, in the vacuum drying oven in the step d, the heat preservation and drying treatment is carried out at The temperature environment is carried out, and the duration is 12 hours.
进一步,所述步骤d中热处理优选在的温度环境中进行,速率升温为且时间优选为 Further, the heat treatment in the step d is preferably at In the temperature environment, the rate of heating is and the time is preferably
所述氧化镍纳米片,用于电化学储能领域,尤其是可用作超级电容器电极材料。The nickel oxide nanosheets are used in the field of electrochemical energy storage, especially as supercapacitor electrode materials.
所述氧化镍纳米片由无数个纳米颗粒单体组成,所述纳米颗粒为氧化镍,所述纳米片为二维多孔六边形或五边形,所述纳米片单元的尺寸约为厚度约为27nm。The nickel oxide nanosheets are composed of countless nanoparticle monomers, the nanoparticles are nickel oxide, the nanosheets are two-dimensional porous hexagons or pentagons, and the size of the nanosheet units is about The thickness is about 27nm.
本发明具有的优点和积极效果是:本发明所述方法制备工艺简单、操作方便、没有环境污染、低能耗、重复性好、适合进行大规模工业化生产,通过本发明所述方法获得的氧化镍纳米片具有较大的比表面积,用于构筑超级电容器电极具有良好的比容量和循环性能等优点。The advantages and positive effects of the present invention are: the method of the present invention has simple preparation process, convenient operation, no environmental pollution, low energy consumption, good repeatability, and is suitable for large-scale industrial production; the nickel oxide obtained by the method of the present invention Nanosheets have a large specific surface area, and have the advantages of good specific capacity and cycle performance when used to construct supercapacitor electrodes.
附图说明Description of drawings
图1为实施例1和2中样品的X射线衍射光谱图;Fig. 1 is the X-ray diffraction spectrogram of sample in embodiment 1 and 2;
图2为实施例1中样品的低倍扫描电镜图;Fig. 2 is the low magnification scanning electron micrograph of sample in embodiment 1;
图3为实施例2中样品的高倍透射电镜图;Fig. 3 is the high magnification transmission electron microscope figure of sample in embodiment 2;
图4为实施例1中样品的比表面积测量曲线;Fig. 4 is the specific surface area measurement curve of sample in embodiment 1;
图5为实施例3中样品的低倍扫描电镜图;Fig. 5 is the low magnification scanning electron micrograph of sample in embodiment 3;
图6为实施例1中样品制备所得电极在不同扫速下的循环伏安图;Fig. 6 is the cyclic voltammogram of the electrode obtained by sample preparation in Example 1 at different scan rates;
图7为实施例1中样品制备所得电极的循环稳定性图。FIG. 7 is a graph of the cycle stability of the electrode prepared from the sample in Example 1. FIG.
具体实施方式detailed description
下面结合附图对本发明做详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings.
实施例1Example 1
制备氧化镍纳米片:Preparation of nickel oxide nanosheets:
a、将六水合氯化镍、柠檬酸钠按摩尔比例1∶2加入到200mL水中混合后充分搅拌2min,得到均一溶液,a. Add nickel chloride hexahydrate and sodium citrate into 200mL water in a molar ratio of 1:2 and mix them thoroughly for 2 minutes to obtain a homogeneous solution.
b、将可溶性四氰合镍(Ⅱ)酸钾加入到200mL水中混合后充分搅拌2min,得到均一溶液,b. Add soluble potassium tetracyanonickelate(II) into 200mL water and mix thoroughly for 2 minutes to obtain a homogeneous solution.
c、将步骤a得到的溶液加入到步骤b中的溶液,然后于温度20℃静置24h,得到生长有淡绿色沉淀;c. Add the solution obtained in step a to the solution in step b, and then stand at a temperature of 20° C. for 24 hours to obtain a light green precipitate growing;
d、然后将步骤c中得到的淡绿色沉淀离心、洗涤后,收集并于温度50℃烘干12h,最后在300℃焙烧,升温速率为1℃/min,焙烧1h,既得到淡绿色氧化镍纳米片粉体。d. Then centrifuge and wash the light green precipitate obtained in step c, collect and dry at 50°C for 12 hours, and finally roast at 300°C with a heating rate of 1°C/min for 1 hour to obtain light green nickel oxide Nanosheet powder.
如图1所示,将实施例1得到的氧化镍纳米片用X射线粉末衍射仪表征,结果显示样品峰与氧化镍的标准谱图相吻合(JCPDS file no.4-835,space group:Fm3m),这说明实验成功制备了氧化镍纳米片;图2是实施例1的低倍扫描电镜图结果显示样品为多孔氧化镍纳米片。As shown in Figure 1, the nickel oxide nanosheet that embodiment 1 obtains is characterized by X-ray powder diffractometer, and the result shows that the sample peak matches the standard spectrogram of nickel oxide (JCPDS file no.4-835, space group: Fm3m ), which shows that the experiment successfully prepared nickel oxide nanosheets; Fig. 2 is a low magnification scanning electron microscope result of Example 1 showing that the sample is a porous nickel oxide nanosheet.
如图4所示,根据测量曲线计算,实施例1所得氧化镍纳米片的比表面积为118.2m2/g。As shown in FIG. 4 , calculated according to the measurement curve, the specific surface area of the nickel oxide nanosheets obtained in Example 1 is 118.2 m 2 /g.
氧化镍纳米片电化学性能测试:Electrochemical performance test of nickel oxide nanosheets:
将本发明实施例1中所得氧化镍纳米片材料与乙炔黑及PVDF按质量比75:15:10混合,再滴加少许N-甲基吡咯烷酮(NMP)使其混和均匀,在15MPa的压力下将其压在处理过的泡沫镍上制成工作电极,电极面积为约为1cm2,厚度约0.2mm。电化学实验装置采用三电极体系,分别以饱和甘汞电极为参比电极,铂电极(1cm×1cm)为对电极,1M KOH溶液为支持电解质,以CHI760D电化学工作站分别进行循环伏安和充放电等电化学测试。Mix the nickel oxide nanosheet material obtained in Example 1 of the present invention with acetylene black and PVDF at a mass ratio of 75:15:10, and then add a little N-methylpyrrolidone (NMP) dropwise to make it evenly mixed. Press it on the treated foamed nickel to make a working electrode with an electrode area of about 1 cm 2 and a thickness of about 0.2 mm. The electrochemical experimental device adopts a three-electrode system, with a saturated calomel electrode as a reference electrode, a platinum electrode (1cm×1cm) as a counter electrode, and a 1M KOH solution as a supporting electrolyte. Electrochemical tests such as discharge.
图6为实施例1所获得产物在1M KOH溶液中的不同扫描速率下循环伏安曲线。由图可见,材料的循环伏安曲线明显区别与典型的双电层电容器的接近矩形的形状,这表明该材料的电容主要来自于基于氧化还原过程的赝电容。Figure 6 is the cyclic voltammetry curves of the product obtained in Example 1 at different scan rates in 1M KOH solution. It can be seen from the figure that the cyclic voltammetry curve of the material is obviously different from the nearly rectangular shape of a typical electric double layer capacitor, which indicates that the capacitance of the material mainly comes from the pseudocapacitance based on the redox process.
图7为实施例1氧化镍活性电极的充放电循环寿命曲线。从图中也可以发现,电极的比电容随循环次数的增加而逐渐衰减,循环500圈后比电容仍保持了首圈比电容的75%左右,显示出较好的循环性能。Fig. 7 is the charge-discharge cycle life curve of the nickel oxide active electrode of Example 1. It can also be seen from the figure that the specific capacitance of the electrode gradually decays with the increase of the number of cycles. After 500 cycles, the specific capacitance still maintains about 75% of the specific capacitance of the first cycle, showing good cycle performance.
实施例2Example 2
制备氧化镍纳米片:Preparation of nickel oxide nanosheets:
a、将六水合氯化镍、柠檬酸钠按摩尔比例1∶2加入到200mL水中混合后充分搅拌2min,得到均一溶液,a. Add nickel chloride hexahydrate and sodium citrate into 200mL water in a molar ratio of 1:2 and mix them thoroughly for 2 minutes to obtain a homogeneous solution.
b、将可溶性四氰合镍(Ⅱ)酸钾加入到200mL水中混合后充分搅拌2min,得到均一溶液,b. Add soluble potassium tetracyanonickelate(II) into 200mL water and mix thoroughly for 2 minutes to obtain a homogeneous solution.
c、将步骤a得到的溶液加入到步骤b中的溶液,然后于温度20℃静置0.5h,得到生长有淡绿色沉淀;c. Add the solution obtained in step a to the solution in step b, and then stand at a temperature of 20°C for 0.5h to obtain a light green precipitate;
d、然后将步骤c中得到的淡绿色沉淀离心、洗涤后,收集并于温度60℃烘干12h,最后在300℃焙烧,升温速率为1℃/min,焙烧1h,既得到淡绿色氧化镍纳米片粉体。d. Then centrifuge and wash the light green precipitate obtained in step c, collect and dry at 60°C for 12 hours, and finally roast at 300°C with a heating rate of 1°C/min for 1 hour to obtain light green nickel oxide Nanosheet powder.
图3为实施例2中所得氧化镍纳米片的高倍透射电镜图。FIG. 3 is a high-magnification transmission electron microscope image of nickel oxide nanosheets obtained in Example 2.
实施例3Example 3
制备氧化镍纳米片:Preparation of nickel oxide nanosheets:
a、将六水合氯化镍、柠檬酸钠按摩尔比例1∶2加入到200mL水中混合后充分搅拌2min,得到均一溶液,a. Add nickel chloride hexahydrate and sodium citrate into 200mL water in a molar ratio of 1:2 and mix them thoroughly for 2 minutes to obtain a homogeneous solution.
b、将可溶性四氰合镍(Ⅱ)酸钾加入到200mL水中混合后充分搅拌2min,得到均一溶液,b. Add soluble potassium tetracyanonickelate(II) into 200mL water and mix thoroughly for 2 minutes to obtain a homogeneous solution.
c、将步骤a得到的溶液加入到步骤b中的溶液,然后于温度20℃静置24h,得到生长有淡绿色沉淀;c. Add the solution obtained in step a to the solution in step b, and then stand at a temperature of 20° C. for 24 hours to obtain a light green precipitate growing;
d、然后将步骤c中得到的淡绿色沉淀离心、洗涤后,收集并于温度50℃烘干12h,最后在350℃焙烧,升温速率为1℃/min,焙烧0.5h,既得到淡绿色氧化镍纳米片粉体。d. Then centrifuge and wash the light green precipitate obtained in step c, collect and dry at 50°C for 12 hours, and finally roast at 350°C with a heating rate of 1°C/min for 0.5h to obtain light green oxide Nickel nanosheet powder.
图5是实施例3中得到的氧化镍纳米片的低倍扫描电镜图,结果显示样品为多孔氧化镍纳米片。FIG. 5 is a low-magnification scanning electron microscope image of the nickel oxide nanosheets obtained in Example 3, and the results show that the samples are porous nickel oxide nanosheets.
实施例4Example 4
制备氧化镍纳米片:Preparation of nickel oxide nanosheets:
a、将六水合氯化镍、柠檬酸钠按摩尔比例1∶2加入到200mL水中混合后充分搅拌2min,得到均一溶液,a. Add nickel chloride hexahydrate and sodium citrate into 200mL water in a molar ratio of 1:2 and mix them thoroughly for 2 minutes to obtain a homogeneous solution.
b、将可溶性四氰合镍(Ⅱ)酸钾加入到200mL水中混合后充分搅拌2min,得到均一溶液,b. Add soluble potassium tetracyanonickelate(II) into 200mL water and mix thoroughly for 2 minutes to obtain a homogeneous solution.
c、将步骤a得到的溶液加入到步骤b中的溶液,然后于温度80℃静置24h,得到生长有淡绿色沉淀;c. Add the solution obtained in step a to the solution in step b, and then stand at a temperature of 80° C. for 24 hours to obtain a light green precipitate;
d、然后将步骤c中得到的淡绿色沉淀离心、洗涤后,收集并于温度80℃烘干12h,最后在300℃焙烧,升温速率为1℃/min,焙烧1h,既得到淡绿色氧化镍纳米片粉体。d. Then centrifuge and wash the light green precipitate obtained in step c, collect and dry at 80°C for 12 hours, and finally roast at 300°C with a heating rate of 1°C/min for 1 hour to obtain light green nickel oxide Nanosheet powder.
实施例5Example 5
制备氧化镍纳米片:Preparation of nickel oxide nanosheets:
a、将六水合硫酸镍、柠檬酸钠按摩尔比例1∶2加入到200mL水中混合后充分搅拌2min,得到均一溶液,a. Add nickel sulfate hexahydrate and sodium citrate into 200mL water in a molar ratio of 1:2 and mix them thoroughly for 2 minutes to obtain a homogeneous solution.
b、将可溶性四氰合镍(Ⅱ)酸钾加入到200mL水中混合后充分搅拌2min,得到均一溶液,b. Add soluble potassium tetracyanonickelate(II) into 200mL water and mix thoroughly for 2 minutes to obtain a homogeneous solution.
c、将步骤a得到的溶液加入到步骤b中的溶液,然后于温度40℃静置24h,得到生长有淡绿色沉淀;c. Add the solution obtained in step a to the solution in step b, and then stand at a temperature of 40° C. for 24 hours to obtain a light green precipitate growing;
d、然后将步骤c中得到的淡绿色沉淀离心、洗涤后,收集并于温度70℃烘干12h,最后在300℃焙烧,升温速率为2℃/min,焙烧1h,既得到淡绿色氧化镍纳米片粉体。d. Then centrifuge and wash the light green precipitate obtained in step c, collect and dry at 70°C for 12 hours, and finally roast at 300°C with a heating rate of 2°C/min for 1 hour to obtain light green nickel oxide Nanosheet powder.
实施例6Example 6
制备氧化镍纳米片:Preparation of nickel oxide nanosheets:
a、将六水合醋酸镍、柠檬酸钠按摩尔比例1∶2加入到200mL水中混合后充分搅拌2min,得到均一溶液,a. Add nickel acetate hexahydrate and sodium citrate in a molar ratio of 1:2 to 200mL water and mix them thoroughly for 2 minutes to obtain a homogeneous solution.
b、将可溶性四氰合镍(Ⅱ)酸钾加入到200mL水中混合后充分搅拌2min,得到均一溶液,b. Add soluble potassium tetracyanonickelate(II) into 200mL water and mix thoroughly for 2 minutes to obtain a homogeneous solution.
c、将步骤a得到的溶液加入到步骤b中的溶液,然后于温度30℃静置12h,得到生长有淡绿色沉淀;c. Add the solution obtained in step a to the solution in step b, and then stand at a temperature of 30° C. for 12 hours to obtain a light green precipitate growing;
d、然后将步骤c中得到的淡绿色沉淀离心、洗涤后,收集并于温度50℃烘干12h,最后在300℃焙烧,升温速率为1℃/min,焙烧1h,既得到淡绿色氧化镍纳米片粉体。d. Then centrifuge and wash the light green precipitate obtained in step c, collect and dry at 50°C for 12 hours, and finally roast at 300°C with a heating rate of 1°C/min for 1 hour to obtain light green nickel oxide Nanosheet powder.
实施例7Example 7
制备氧化镍纳米片:Preparation of nickel oxide nanosheets:
a、将六水合硝酸镍、柠檬酸钠按摩尔比例1∶2加入到200mL水中混合后充分搅拌2min,得到均一溶液,a. Add nickel nitrate hexahydrate and sodium citrate into 200mL water in a molar ratio of 1:2 and mix them thoroughly for 2 minutes to obtain a homogeneous solution.
b、将可溶性四氰合镍(Ⅱ)酸钾加入到200mL水中混合后充分搅拌2min,得到均一溶液,b. Add soluble potassium tetracyanonickelate(II) into 200mL water and mix thoroughly for 2 minutes to obtain a homogeneous solution.
c、将步骤a得到的溶液加入到步骤b中的溶液,然后于温度30℃静置1h,得到生长有淡绿色沉淀;c. Add the solution obtained in step a to the solution in step b, and then stand at a temperature of 30° C. for 1 hour to obtain a light green precipitate growing;
d、然后将步骤c中得到的淡绿色沉淀离心、洗涤后,收集并于温度50℃烘干12h,最后在300℃焙烧,升温速率为1℃/min,焙烧7h,既得到淡绿色氧化镍纳米片粉体。d. Then centrifuge and wash the light green precipitate obtained in step c, collect and dry at 50°C for 12 hours, and finally roast at 300°C with a heating rate of 1°C/min for 7 hours to obtain light green nickel oxide Nanosheet powder.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510924207.2A CN105314688B (en) | 2015-12-11 | 2015-12-11 | A kind of preparation method and applications of nickel oxide nano piece |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510924207.2A CN105314688B (en) | 2015-12-11 | 2015-12-11 | A kind of preparation method and applications of nickel oxide nano piece |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105314688A CN105314688A (en) | 2016-02-10 |
CN105314688B true CN105314688B (en) | 2017-03-29 |
Family
ID=55243123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510924207.2A Expired - Fee Related CN105314688B (en) | 2015-12-11 | 2015-12-11 | A kind of preparation method and applications of nickel oxide nano piece |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105314688B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107285392A (en) * | 2017-06-28 | 2017-10-24 | 济南大学 | A kind of NiO In2O3The preparation method of nano composite material |
CN109187512B (en) * | 2018-09-17 | 2021-07-20 | 四川大学 | A catalytic luminescence analysis method and sensor device for detecting hydrogen sulfide based on nickel oxide |
CN111686734B (en) * | 2020-06-05 | 2023-08-11 | 苏州机数芯微科技有限公司 | Preparation method and application of magnetic porous nickel nanosheets |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101338215B1 (en) * | 2012-03-07 | 2013-12-05 | 부산대학교 산학협력단 | Method of preparing NiO nanosheet and the NiO nanosheet prepared by the method |
CN102603016A (en) * | 2012-03-08 | 2012-07-25 | 中国科学院苏州纳米技术与纳米仿生研究所 | Method for preparing nanometer nickel oxide and application of method |
CN102677129B (en) * | 2012-06-13 | 2014-07-02 | 西北有色金属研究院 | Ni-base NiO nanosheet array film electrode and preparation method thereof |
-
2015
- 2015-12-11 CN CN201510924207.2A patent/CN105314688B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN105314688A (en) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Venkatachalam et al. | Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications | |
Zhou et al. | Simple method for the preparation of highly porous ZnCo2O4 nanotubes with enhanced electrochemical property for supercapacitor | |
CN104282446B (en) | A nickel cobaltate@nickel molybdate core-shell structure nanomaterial, its preparation method and its application | |
CN106654192B (en) | A kind of tin sulfide/graphene sodium ion battery composite negative electrode material and preparation method thereof | |
CN104616915B (en) | A kind of preparation method of graphene ruthenium-oxide composite | |
CN105244191A (en) | Manganese cobalt oxide porous nanometer sheet/foam nickel compound electrode material preparation method | |
CN103035916B (en) | Preparation method of a kind of nano-stannic oxide-graphene composite material and products thereof | |
CN108461306A (en) | A kind of multi-layer N doped carbon nanometer rod composite materials and preparation method thereof | |
Yuan et al. | Cu-doped NiO for aqueous asymmetric electrochemical capacitors | |
CN104882298A (en) | A method for preparing NiCo2O4/graphene supercapacitor material by microwave method | |
CN104377040A (en) | Electrode applied to electrochemical energy storage device and preparation method thereof | |
CN103227327A (en) | Pyrolysis preparation method of two-dimensional nano-sheet-layer lithium ion battery negative electrode material | |
CN106910639B (en) | A kind of NiTe for electrode material for super capacitor2Preparation method | |
CN104495788A (en) | Preparation method of porous carbon | |
Liu et al. | Bi2O3 with reduced graphene oxide composite as a supercapacitor electrode | |
CN110581026A (en) | A kind of transition metal selenide/ordered porous graphene airgel composite electrode material and preparation method thereof | |
CN105293470A (en) | Template preparation method for hierarchical porous structure three-dimensional carbon nanometer net electrode material of supercapacitor | |
CN107946089A (en) | A kind of MnFe2O4The preparation method of/rGO composite materials and its application as electrode material for super capacitor | |
CN105271438B (en) | A kind of preparation method of the sour magnesium loose structure electrode material of the cobalt of pair of sea urchin pattern | |
CN105314688B (en) | A kind of preparation method and applications of nickel oxide nano piece | |
CN104466110A (en) | Preparation method of high-performance lithium ion battery negative electrode material | |
CN108711517B (en) | A kind of γ-Fe2O3Nano material and its preparation method and application | |
CN110391091A (en) | Preparation method, preparation product and application of Mn7O13·5H2Oα-Fe2O3 composite material | |
CN108231427B (en) | 3D porous graphene/transition metal oxide composite material and preparation method and application thereof | |
CN103151182B (en) | A kind of nano nickel oxide electrode material and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170329 Termination date: 20171211 |
|
CF01 | Termination of patent right due to non-payment of annual fee |