CN105312572B - Molten iron alloy low-gravity 3D printing method and device - Google Patents
Molten iron alloy low-gravity 3D printing method and device Download PDFInfo
- Publication number
- CN105312572B CN105312572B CN201510788846.0A CN201510788846A CN105312572B CN 105312572 B CN105312572 B CN 105312572B CN 201510788846 A CN201510788846 A CN 201510788846A CN 105312572 B CN105312572 B CN 105312572B
- Authority
- CN
- China
- Prior art keywords
- molten
- ferroalloy
- printing
- metal zinc
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000640 Fe alloy Inorganic materials 0.000 title claims abstract description 24
- 238000010146 3D printing Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims abstract description 14
- 229910001021 Ferroalloy Inorganic materials 0.000 claims abstract description 69
- 239000002184 metal Substances 0.000 claims abstract description 62
- 229910052751 metal Inorganic materials 0.000 claims abstract description 62
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 57
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 56
- 239000011701 zinc Substances 0.000 claims abstract description 56
- 238000007639 printing Methods 0.000 claims abstract description 49
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- 230000001105 regulatory effect Effects 0.000 claims abstract description 13
- 239000000919 ceramic Substances 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 238000001816 cooling Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 abstract description 5
- 239000007769 metal material Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 5
- 230000005484 gravity Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010017 direct printing Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
本发明提供一种熔融铁合金低重力3D打印制造的方法和装置,属于金属材料加工及制造技术领域。该装置包括高温熔融态铁合金容器、熔融态铁合金陶瓷导管、加热线圈、熔融态铁合金流量调节阀、温度测量热电偶、熔融态铁合金打印喷嘴、熔融态金属锌、熔融态金属锌容器槽、铁合金打印底板等,熔融态铁合金陶瓷导管安装于高温熔融态铁合金容器下方,熔融态铁合金陶瓷导管外侧为加热线圈,熔融态铁合金通过熔融态铁合金流量调节阀传送至熔融态铁合金打印喷嘴。熔融态铁合金打印喷嘴下方为熔融态金属锌容器槽。在熔融态金属锌容器槽的底部有铁合金打印底板,打印部件在此开始打印。该装置能够提高复杂铁合金构件的加工效率,提高产品质量。
The invention provides a method and device for low-gravity 3D printing and manufacturing of molten iron alloys, belonging to the technical field of metal material processing and manufacturing. The device includes high-temperature molten ferroalloy container, molten ferroalloy ceramic conduit, heating coil, molten ferroalloy flow regulating valve, temperature measuring thermocouple, molten ferroalloy printing nozzle, molten metal zinc, molten metal zinc container tank, ferroalloy printing The bottom plate, etc., the molten ferroalloy ceramic conduit is installed under the high temperature molten ferroalloy container, and the outer side of the molten ferroalloy ceramic conduit is a heating coil, and the molten ferroalloy is sent to the molten ferroalloy printing nozzle through the molten ferroalloy flow regulating valve. Below the molten iron alloy print nozzle is the molten metal zinc tank. At the bottom of the molten metal zinc tank there is a ferroalloy print base where the printed parts start printing. The device can improve the processing efficiency of complex ferroalloy components and improve product quality.
Description
技术领域technical field
本发明涉及金属材料加工及制造技术领域,特别是指一种熔融铁合金低重力3D打印制造的方法和装置。The invention relates to the technical field of metal material processing and manufacturing, in particular to a method and device for low-gravity 3D printing and manufacturing of molten iron alloys.
背景技术Background technique
3D打印制造技术是智能制造发展的代表性新技术之一,其主要方法是通过材料堆积的方式将产品的数字模型或部件直接加工成型(杨永强,刘洋,宋长辉.《金属零件3D打印技术现状及研究进展》,机电工程技术,2013,42(4):1-7.),3D打印技术已在医学、航空、建筑等领域取得了应用(曾光,韩志宇,梁书锦,张鹏,陈小林,张平祥.《金属零件3D打印技术的应用研究》,中国材料进展,2014,33(6):376-382.)。但目前3D打印的原料中,金属材料主要为粉末,并通过激光或等离子烧结技术将其成型,因此具有效率慢、致密性不足及力学性能低等缺点(王淑峰,姬强,迟静,赵健,高飞,李惠琪.《等离子束在金属零件3D打印中的研究现状和发展趋势》,材料导报,2015,29(1):111-116.),对于大批量或大尺寸构件的应用需求难以满足。随着3D打印技术的不断发展、相关冶金及控制技术的进步,利用熔融态金属进行直接打印加工将成为金属材料加工、生产的一种重要方法(齐乐华,钟宋义,罗俊.《基于均匀金属微滴喷射的3D打印技术》,中国科学:信息科学,2015,45(2)::212–223.)。但由于熔融态金属在空气中易于氧化以及由于重力作用下的流淌和飞溅,使得产品的表面质量较差(柳建,殷凤良,孟凡军,顾海清.《3D打印再制造目前存在问题与应对措施》,机械,2014,41(6):8-11.)。同时,对于空间大角度的横向打印,由于重力作用,需要进行辅助支撑,使得工艺复杂,对有些情况,辅助支撑的去除也是一个较麻烦的问题,因此如果有一个可以解决氧化及重力所引起的问题,熔融态金属的3D打印的应用就会更加广泛。本申请提出的方案对于这些问题具有良好的解决能力。3D printing manufacturing technology is one of the representative new technologies in the development of intelligent manufacturing. Its main method is to directly process the digital model or parts of the product through the accumulation of materials (Yang Yongqiang, Liu Yang, Song Changhui. "Current Status of 3D Printing Technology for Metal Parts and Research Progress", Electromechanical Engineering Technology, 2013, 42(4): 1-7.), 3D printing technology has been applied in medicine, aviation, construction and other fields (Zeng Guang, Han Zhiyu, Liang Shujin, Zhang Peng, Chen Xiaolin, Zhang Pingxiang . "Application Research of Metal Parts 3D Printing Technology", China Materials Progress, 2014,33(6):376-382.). However, among the raw materials for 3D printing at present, the metal material is mainly powder, and it is shaped by laser or plasma sintering technology, so it has the disadvantages of slow efficiency, insufficient compactness and low mechanical properties (Wang Shufeng, Ji Qiang, Chi Jing, Zhao Jian , Gao Fei, Li Huiqi. "Research Status and Development Trend of Plasma Beam in 3D Printing of Metal Parts", Materials Herald, 2015, 29(1): 111-116.), for the application requirements of large batches or large-scale components Difficult to satisfy. With the continuous development of 3D printing technology and the advancement of related metallurgy and control technologies, direct printing using molten metal will become an important method for metal material processing and production (Qi Lehua, Zhong Songyi, Luo Jun. "Based on Uniform 3D printing technology of metal droplet jetting", Chinese Science: Information Science, 2015, 45(2):: 212–223.). However, due to the easy oxidation of molten metal in the air and the flow and splash under the action of gravity, the surface quality of the product is poor (Liu Jian, Yin Fengliang, Meng Fanjun, Gu Haiqing. "Current Problems and Countermeasures in 3D Printing Remanufacturing", Machinery, 2014, 41(6): 8-11.). At the same time, for horizontal printing with a large angle in space, due to the effect of gravity, auxiliary supports are required, which makes the process complicated. In some cases, the removal of auxiliary supports is also a troublesome problem. Therefore, if there is one that can solve oxidation and gravity Problems, the application of 3D printing of molten metal will be more extensive. The scheme proposed in this application has a good ability to solve these problems.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种熔融铁合金低重力3D打印制造的方法和装置。The technical problem to be solved by the present invention is to provide a method and device for low-gravity 3D printing of molten iron alloys.
该装置包括熔融铁合金供应及打印系统和熔融态金属锌及温度控制系统,熔融铁合金供应及打印系统包括高温熔融态铁合金容器、熔融态铁合金陶瓷导管、加热线圈、熔融态铁合金流量调节阀、温度测量热电偶和熔融态铁合金打印喷嘴,熔融态金属锌及温度控制系统包括熔融态金属锌、熔融态金属锌容器槽、铁合金打印底板和熔融态金属锌加热及冷却温度调节系统;其中,熔融态铁合金陶瓷导管安装于高温熔融态铁合金容器下方,熔融态铁合金陶瓷导管外侧为加热线圈,加热线圈与温度测量热电偶共同构成温度控制系统,熔融态铁合金通过熔融态铁合金流量调节阀传送至熔融态铁合金打印喷嘴,熔融态铁合金打印喷嘴下方为熔融态金属锌容器槽,熔融态金属锌容器槽内部存储熔融态金属锌,熔融态金属锌容器槽内设置熔融态金属锌加热及冷却温度调节系统,在熔融态金属锌容器槽的底部设置铁合金打印底板。其中,熔融态铁合金流量调节阀为电磁节流阀。The device includes molten ferroalloy supply and printing system, molten metal zinc and temperature control system. The molten ferroalloy supply and printing system includes high temperature molten ferroalloy container, molten ferroalloy ceramic conduit, heating coil, molten ferroalloy flow regulating valve, temperature measurement Thermocouple and molten iron alloy printing nozzle, molten metal zinc and temperature control system include molten metal zinc, molten metal zinc container tank, ferroalloy printing base plate and molten metal zinc heating and cooling temperature adjustment system; among them, molten iron alloy The ceramic conduit is installed under the high-temperature molten ferroalloy container, and the outer side of the molten ferroalloy ceramic conduit is a heating coil. The heating coil and the temperature measuring thermocouple together constitute a temperature control system. The molten ferroalloy is sent to the molten ferroalloy for printing through the molten ferroalloy flow regulating valve. Nozzle, molten metal zinc container tank under the molten iron alloy printing nozzle, the molten metal zinc container tank stores molten metal zinc, molten metal zinc heating and cooling temperature adjustment system is set in the molten metal zinc container tank, during the melting The ferroalloy printing bottom plate is set at the bottom of the state metal zinc container tank. Wherein, the molten ferroalloy flow regulating valve is an electromagnetic throttle valve.
打印前,在金属锌开始加热前,将整个装置(包括熔融铁合金供应及打印系统)置于真空箱内,当真空箱内的真空度达到一定值时,开始对金属锌进行加热至熔融态。整个打印过程在真空状态或者惰性气体保护状态下进行。Before printing, the entire device (including the molten iron alloy supply and printing system) is placed in a vacuum box before the metal zinc starts to heat. When the vacuum in the vacuum box reaches a certain value, the metal zinc is heated to a molten state. The whole printing process is carried out under vacuum or inert gas protection.
打印时,熔融态金属锌容器槽不动,熔融铁合金供应及打印系统整体运动,其可在X、Y、Z三个方向进行自由协同运动将,熔融态铁合金打印喷嘴置于熔融态金属锌内部,在铁合金打印底板上开始逐层打印。打印完成后,将熔融态铁合金打印喷嘴抬出熔融态金属锌液表面,将部件连同铁合金打印底板一同取出。When printing, the container tank of molten metal zinc does not move, and the molten iron alloy supply and printing system move as a whole, which can freely cooperate in three directions of X, Y, and Z. Put the molten iron alloy printing nozzle inside the molten metal zinc , start printing layer by layer on the ferroalloy printing base. After printing is completed, lift the molten ferroalloy print nozzle out of the surface of the molten metal zinc liquid, and take out the part together with the ferroalloy print base.
由于金属锌的熔点较低(420℃)进入熔融锌槽的铁合金会迅速凝固成型,同时可以避免铁合金打印过程中的氧化;熔融金属锌的密度为7.14g/cm3,而熔融铁合金的密度约为7.8g/cm3,较熔融锌的密度略高,可大大降低熔融铁合金打印过程中由于重力导致的飞溅及流淌,可适用于打印形状复杂的部件。Due to the low melting point of zinc metal (420°C), the ferroalloy entering the molten zinc tank will solidify quickly and form, and at the same time, it can avoid the oxidation of the ferroalloy during printing; the density of the molten metal zinc is 7.14g/cm 3 , while the density of the molten ferroalloy is about The density is 7.8g/cm 3 , which is slightly higher than that of molten zinc, which can greatly reduce the splash and flow caused by gravity during the printing process of molten iron alloy, and is suitable for printing parts with complex shapes.
本发明的上述技术方案的有益效果如下:The beneficial effects of above-mentioned technical scheme of the present invention are as follows:
该装置利用低熔点的熔融态金属锌作为辅助打印介质,在熔融金属锌中进行铁合金的打印成型,利用熔融金属锌与熔融铁合金之间高的换热系数,使熔融铁合金快速凝固成型,利用熔融金属锌的浮力,使空间大角度横向打印成为可能,同时避免熔融铁合金打印过程外流与飞溅造成的表面质量问题。能够提高复杂铁合金构件的加工效率,提高产品质量。The device uses molten metal zinc with a low melting point as an auxiliary printing medium to print and form iron alloys in the molten metal zinc, and utilizes the high heat transfer coefficient between molten metal zinc and molten iron alloys to rapidly solidify the molten iron alloys. The buoyancy of metal zinc makes it possible to print horizontally at a large angle in space, and at the same time avoids surface quality problems caused by outflow and splashing during the printing process of molten iron alloys. It can improve the processing efficiency of complex ferroalloy components and improve product quality.
附图说明Description of drawings
图1为本发明的熔融铁合金低重力3D打印制造的装置的结构示意图。Fig. 1 is a structural schematic diagram of a device manufactured by low-gravity 3D printing of molten iron alloy according to the present invention.
其中:1-高温熔融态铁合金容器;2-熔融态铁合金陶瓷导管;3-加热线圈;4-熔融态铁合金流量调节阀;5-温度测量热电偶;6-熔融态铁合金打印喷嘴;7-熔融态金属锌;8-熔融态金属锌容器槽;9-铁合金打印底板;10-熔融态金属锌加热及冷却温度调节系统。Among them: 1- high temperature molten ferroalloy container; 2- molten ferroalloy ceramic conduit; 3- heating coil; 4- molten ferroalloy flow regulating valve; 5- temperature measuring thermocouple; 6- molten ferroalloy printing nozzle; 7- melting State metal zinc; 8-molten metal zinc container tank; 9-iron alloy printing bottom plate; 10-molten metal zinc heating and cooling temperature adjustment system.
具体实施方式detailed description
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the following will describe in detail with reference to the drawings and specific embodiments.
本发明提供一种熔融铁合金低重力3D打印制造的方法和装置,如图1所示,该装置中,熔融态铁合金陶瓷导管2安装于高温熔融态铁合金容器1下方,熔融态铁合金陶瓷导管2外侧为加热线圈3,加热线圈3与温度测量热电偶5共同构成温度控制系统,熔融态铁合金通过熔融态铁合金流量调节阀4传送至熔融态铁合金打印喷嘴6,熔融态铁合金打印喷嘴6下方为熔融态金属锌容器槽8,熔融态金属锌容器槽8内部存储熔融态金属锌7,熔融态金属锌容器槽8内设置熔融态金属锌加热及冷却温度调节系统10,在熔融态金属锌容器槽8的底部设置铁合金打印底板9。The present invention provides a low-gravity 3D printing method and device for molten ferroalloy. As shown in FIG. It is the heating coil 3, the heating coil 3 and the temperature measuring thermocouple 5 together constitute a temperature control system, the molten ferroalloy is sent to the molten ferroalloy printing nozzle 6 through the molten ferroalloy flow regulating valve 4, and the molten ferroalloy printing nozzle 6 is in a molten state The metal zinc container tank 8 stores molten metal zinc 7 inside the molten metal zinc container tank 8, and the molten metal zinc heating and cooling temperature regulating system 10 is set in the molten metal zinc container tank 8, and the molten metal zinc container tank 8 The ferroalloy printing bottom plate 9 is set at the bottom.
熔融态铁合金3D打印装置安装调试完毕后,对真空箱抽真空,当真空达到一定程度后,开启高温熔融态铁合金容器及管路加热系统,高温熔融态铁合金容器及管路达到设定温度。同时对金属锌开始加热并使熔融态金属锌保持在适当的温度范围。使熔融态铁合金打印喷嘴6浸入熔融态金属锌液内部,并调整到合适高度,调节熔融态铁合金流量调节阀,按程序在铁合金打印底板上开始按设定轨迹运动,打印出所需尺寸构件。After the installation and debugging of the molten ferroalloy 3D printing device is completed, the vacuum box is evacuated. When the vacuum reaches a certain level, the high-temperature molten ferroalloy container and pipeline heating system are turned on, and the high-temperature molten ferroalloy container and pipeline reach the set temperature. At the same time, the metal zinc is heated and the molten metal zinc is kept in an appropriate temperature range. Dip the molten ferroalloy printing nozzle 6 into the molten metal zinc liquid and adjust it to a suitable height, adjust the molten ferroalloy flow regulating valve, start to move on the ferroalloy printing base plate according to the set track according to the program, and print out the required size components.
实施例1Example 1
对熔融态铁合金选择液态金属容器、管路及中间液态金属包中的控制温度为1520-1540℃,控制熔融态金属锌的温度为440-450℃。控制金属流量为1ml/s,熔融态铁合金打印喷嘴6水平移动速率为200mm/s,每次垂直移动距离为2mm。可实现厚度为2.5mm板材及部件的打印制造。For the molten ferroalloy, the control temperature in the liquid metal container, pipeline and intermediate liquid metal bag is 1520-1540°C, and the temperature of the molten metal zinc is 440-450°C. The metal flow rate is controlled to be 1ml/s, the horizontal movement rate of the molten ferroalloy printing nozzle 6 is 200mm/s, and each vertical movement distance is 2mm. It can realize the printing and manufacturing of plates and components with a thickness of 2.5mm.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above description is a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, these improvements and modifications It should also be regarded as the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510788846.0A CN105312572B (en) | 2015-11-17 | 2015-11-17 | Molten iron alloy low-gravity 3D printing method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510788846.0A CN105312572B (en) | 2015-11-17 | 2015-11-17 | Molten iron alloy low-gravity 3D printing method and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105312572A CN105312572A (en) | 2016-02-10 |
CN105312572B true CN105312572B (en) | 2017-05-17 |
Family
ID=55241447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510788846.0A Active CN105312572B (en) | 2015-11-17 | 2015-11-17 | Molten iron alloy low-gravity 3D printing method and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105312572B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106825565B (en) * | 2017-01-09 | 2019-01-08 | 华南农业大学 | Suitable for precinct laser fusion with rotating excitation field substrate and using the 3D printing method of the substrate |
CN107520447A (en) * | 2017-08-28 | 2017-12-29 | 潘涌 | A kind of metal increasing material manufacturing device and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203766032U (en) * | 2014-03-26 | 2014-08-13 | 朱兴建 | 3d printer |
CN105014976A (en) * | 2015-08-24 | 2015-11-04 | 吴江中瑞机电科技有限公司 | Sealed type selective laser melting equipment |
CN105033251A (en) * | 2015-07-02 | 2015-11-11 | 西安交通大学 | Double-piston metal laser selective melting molding equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9308583B2 (en) * | 2013-03-05 | 2016-04-12 | Lawrence Livermore National Security, Llc | System and method for high power diode based additive manufacturing |
-
2015
- 2015-11-17 CN CN201510788846.0A patent/CN105312572B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203766032U (en) * | 2014-03-26 | 2014-08-13 | 朱兴建 | 3d printer |
CN105033251A (en) * | 2015-07-02 | 2015-11-11 | 西安交通大学 | Double-piston metal laser selective melting molding equipment |
CN105014976A (en) * | 2015-08-24 | 2015-11-04 | 吴江中瑞机电科技有限公司 | Sealed type selective laser melting equipment |
Also Published As
Publication number | Publication date |
---|---|
CN105312572A (en) | 2016-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105312573B (en) | Method and device for conducting 3D printing directly with liquid metal | |
US11524332B2 (en) | Array-spraying additive manufacturing apparatus and method for manufacturing large-sized equiaxed crystal aluminum alloy ingot | |
CN106925783B (en) | A kind of metal 3D printing device and method | |
CN104959606B (en) | Partial temperature control system for metal material 3D printing | |
CN108555301B (en) | A partitioned parallel three-dimensional printing forming method for large precision metal parts | |
CN110802300A (en) | Equipment and method for controlling forming precision and quality in electric arc additive manufacturing process | |
CN103817290B (en) | A kind of hot investment casting preparation method of large size thin-walled titanium alloy bucket body structure | |
CN103302242A (en) | Precise casing method of tiles of floating wall of combustion chamber of aeroengine | |
CN104001906B (en) | Thin layer rapid solidification molding device and method | |
CN110202152B (en) | Intermittent spray type alloy ingot additive manufacturing device and method | |
CN105834430B (en) | 3d printing device | |
CN202461467U (en) | Plunger type equal liquid level pressure amorphous belt building machine | |
CN102389952A (en) | Plunger type equal-liquid-level pressure amorphous strip maker | |
CN106363920A (en) | High-efficiency high-mechanical-property 3D printing device and method based on fused deposition | |
CN103978187A (en) | Device and method for counter-gravity casting of solidification process controlled titanium-based alloy | |
CN110814305A (en) | A kind of Cu-Fe composite material double melt mixed casting equipment and technology | |
CN105312572B (en) | Molten iron alloy low-gravity 3D printing method and device | |
KR20120019943A (en) | Production equipment for thin plate and parts, with liquid and semi-solid materials by using vacuum system | |
JP2022501198A (en) | Bearing body anti-friction layer copper alloy filling device and bearing body Bimetal composite material manufacturing method | |
CN108500261A (en) | A kind of high vacuum multi-function metal 3D printing equipment | |
EP3851224B1 (en) | Method for manufacturing equiaxed crystal aluminum alloy cast ingot by using additive manufacturing and rapid solidification techniques | |
CN205183787U (en) | Device for 3D prints manufacturing with liquid metal is direct | |
CN101450377B (en) | Device for manufacture porous material | |
Ma et al. | A metal additive manufacturing methodology: Pneumatic extruding direct-writing deposition | |
CN106552908B (en) | A short-process high-purity beryllium foil preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |