CN105298924B - Compressor bionics stator blade and its implementation based on humpback flipper - Google Patents
Compressor bionics stator blade and its implementation based on humpback flipper Download PDFInfo
- Publication number
- CN105298924B CN105298924B CN201510697538.7A CN201510697538A CN105298924B CN 105298924 B CN105298924 B CN 105298924B CN 201510697538 A CN201510697538 A CN 201510697538A CN 105298924 B CN105298924 B CN 105298924B
- Authority
- CN
- China
- Prior art keywords
- blade
- arc
- leading edge
- mid
- prototype
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 235000001968 nicotinic acid Nutrition 0.000 title abstract description 6
- 241001456553 Chanodichthys dabryi Species 0.000 title abstract 2
- 238000000034 method Methods 0.000 claims description 15
- 239000011664 nicotinic acid Substances 0.000 claims description 7
- 230000000737 periodic effect Effects 0.000 claims description 4
- 241000283082 Megaptera novaeangliae Species 0.000 claims description 3
- 238000004904 shortening Methods 0.000 claims description 3
- 238000005192 partition Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 12
- 238000000926 separation method Methods 0.000 abstract description 7
- 210000000006 pectoral fin Anatomy 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 241001059810 Cantharellula umbonata Species 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 3
- 241000283153 Cetacea Species 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种航空发动机领域的技术,具体是一种基于座头鲸鳍状肢的压气机仿生学静叶及其实现方法。The invention relates to a technology in the field of aero-engines, in particular to a bionic vane of a compressor based on a humpback whale flipper and a realization method thereof.
背景技术Background technique
航空发动机轴流高压压气机中,叶片附近发生的流动分离是一种很常见的现象。但是严重的流动分离会导致通道的堵塞和气动损失的剧增,甚至会引起压气机失速。Flow separation near blades is a common phenomenon in aeroengine axial-flow high-pressure compressors. However, serious flow separation will lead to channel blockage and a sharp increase in aerodynamic loss, and even cause the compressor to stall.
在压气机设计中控制流动分离的方法可分为主动控制和被动控制两大类,相比于主动控制技术,被动控制技术具有结构简单、易于实现的优点。在诸多被动控制技术中,叶片改型是一种有效的流动控制技术,包括:弯掠叶片造型、局部几何修改造型等,具有实现容易、可靠性高等优点,已被广泛的应用于众多发动机中。然而目前叶片改型仍然存在着动力不足的缺陷。The methods of controlling flow separation in compressor design can be divided into two categories: active control and passive control. Compared with active control technology, passive control technology has the advantages of simple structure and easy implementation. Among many passive control technologies, blade modification is an effective flow control technology, including: curved blade shape, local geometric modification shape, etc. It has the advantages of easy implementation and high reliability, and has been widely used in many engines. . However, the current blade modification still has the defect of insufficient power.
经过对现有技术的检索发现,中国专利文献号CN104612758A,公开(公告)日2015.5.13,公开了一种低损失的低压涡轮叶片,其特点是,将原有低压涡轮叶片沿叶高方向划分成叶根端区、叶尖端区和二维流动区,同时在其前缘上进行波浪形切割而使前缘部位形成多个锯齿,并对原有低压涡轮叶片进行3%轴向弦长的加长,以弥补切割后叶型做功能力的下降,该延长通过在叶片中弧线前缘点烟中弧线切线方向进行。该技术仅考虑了低压涡轮环境中的损失问题,对压气机静叶环境下的情况未作阐述,而且该技术在叶片前缘的锯齿型结构会使波峰波谷处的曲率存在不连续的问题而带来额外的局部损失。After searching the existing technology, it is found that the Chinese patent document number CN104612758A, published (announcement) date 2015.5.13, discloses a low-loss low-pressure turbine blade, which is characterized in that the original low-pressure turbine blade is divided along the blade height direction The blade root area, the blade tip area and the two-dimensional flow area are formed. At the same time, wave-shaped cutting is performed on the leading edge to form multiple serrations on the leading edge, and 3% of the axial chord length of the original low-pressure turbine blade is cut. Lengthening, to make up for the decline in the working ability of the blade shape after cutting, the extension is carried out in the direction of the tangent of the arc in the front edge of the arc in the blade. This technology only considers the loss problem in the low-pressure turbine environment, and does not elaborate on the situation in the compressor vane environment, and the zigzag structure of the technology at the leading edge of the blade will cause discontinuity in the curvature of the crest and trough. bring about additional local losses.
自然界中许多生物的组织和器官常常具有特殊的结构,借助对这些结构及其功能的分析,可以解决我们的很多技术问题。海洋生物学家们在座头鲸鳍状肢形态学方面的研究工作表明,座头鲸鳍状肢能产生高度的机动性和强大的水动力特性,该特性主要归因于前缘的圆齿型结状突起。The tissues and organs of many organisms in nature often have special structures. With the help of the analysis of these structures and their functions, many of our technical problems can be solved. Marine biologists' work on the morphology of the humpback's flippers has shown that the humpback's flippers are capable of high maneuverability and powerful hydrodynamic properties, which are largely attributable to the scalloped shape of the leading edge Nodular protrusions.
发明内容Contents of the invention
本发明针对现有技术存在的上述不足,结合仿生学原理和叶片改型中的被动控制技术,提出了一种基于座头鲸鳍状肢的压气机仿生学静叶及其实现方法,能够实现有效的分离控制,提高航空发动机效率。The present invention aims at the above-mentioned deficiencies existing in the prior art, and combines bionics principles and passive control technology in blade modification, proposes a compressor bionics stator blade based on humpback whale flippers and its implementation method, which can realize Effective separation control improves aero-engine efficiency.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
本发明涉及一种基于座头鲸鳍状肢的压气机仿生学静叶,包括依次积叠的三个叶型,其中:三个叶型的中弧线长为等差数列。The invention relates to a compressor bionic static vane based on the humpback whale flipper, which comprises three leaf shapes stacked in sequence, wherein the middle arc lengths of the three leaf shapes are arithmetic progressions.
所述的三个叶型中,第一叶型和第三叶型的前缘部分的形状为周期变化的波浪型曲线,所述的等差数列的差值为该波浪形曲线的波幅。Among the three airfoils, the shapes of the leading edge portions of the first airfoil and the third airfoil are periodically changing wavy curves, and the difference of the arithmetic sequence is the amplitude of the wavy curves.
所述的波浪型曲线的波幅A范围为1%L≤A≤3%L,波长W范围为5%c≤W≤25%c,其中:L为原型静叶,即第二叶型的中弧线长;c为原型静叶的弦长。The range of amplitude A of the wave-shaped curve is 1%L≤A≤3%L, and the range of wavelength W is 5%c≤W≤25%c, wherein: L is the prototype static blade, that is, the center of the second blade type arc length; c is the chord length of the prototype static blade.
所述的波浪形曲线具体为:具有三次样条函数构成的三次样条曲线,该三次样条曲线在区间[a,b]上给定一个分割a=x0<x1<…<xn-1<xn=b,该区间上的函数F(x)满足:The wavy curve is specifically: a cubic spline curve composed of a cubic spline function, the cubic spline curve is given a division a=x 0 <x 1 <...<x n on the interval [a, b] -1 <x n =b, the function F(x) on this interval satisfies:
1)在每一个小区间[xi-1,xi](i=1,2,…,n)内F(x)分别是三次多项式函数;1) F(x) in each small interval [x i-1 , x i ] (i=1, 2, ..., n) is a cubic polynomial function;
2)在节点F(x)处成立F(k)(xi-0)=F(k)(xi+0),k=0,1,2,即小区间上的三次多项式函数在节点xi处二阶连续;2) Establish F (k) ( xi -0)=F (k) ( xi +0) at the node F(x), k=0, 1, 2, that is, the cubic polynomial function on the small interval is at the node The second-order continuity at x i ;
3)节点(xi,yi)满足条件yi=F(xi)(i=0,1,2,…,n)。3) The node ( xi , y i ) satisfies the condition y i =F( xi ) (i=0, 1, 2, . . . , n).
所述的积叠优选为径向积叠,进一步优选为尾缘积叠。The stacking is preferably radial stacking, more preferably trailing edge stacking.
本发明涉及上述压气机仿生学静叶的实现方法,包括以下步骤:The present invention relates to a method for realizing the above-mentioned bionic vane of the compressor, comprising the following steps:
1)步骤一、对压气机原型静叶进行参数化建模,不同叶高截面的叶型采用中弧线加厚度分布的造型方式,保证前缘点和尾缘点都在中弧线上;1) Step 1: Carry out parametric modeling on the compressor prototype stator blade, and adopt the modeling method of mid-arc and thickness distribution for blades with different blade height sections to ensure that the leading edge points and trailing edge points are all on the mid-arc line ;
2)步骤二、对原型静叶全叶高前缘进行造型,使前缘部位形成周期变化的波浪型曲线,其中:周期变化的波浪型曲线波幅为A,波长为W;所述的周期变化的波浪型曲线为三次样条函数构成的三次样条曲线;2) Step 2, modeling the high leading edge of the prototype vane, so that the leading edge part forms a periodically changing wave-shaped curve, wherein: the amplitude of the periodically changing wave-shaped curve is A, and the wavelength is W; the periodic change The wavy curve is a cubic spline curve composed of cubic spline functions;
3)通过延长近前缘段的中弧线得到中弧线长为L+A的改型叶型,通过缩短近前缘段的中弧线得到中弧线长为L‐A的改型叶型;根据改型叶型的中弧线长对改型叶型的前缘部位造型,使改型叶型的前缘部位形成周期变化的波浪型曲线,并且波幅和波长相对于中弧线长的比例与原型静叶波幅和波长相对于原型静叶中弧线长的比例相同;3) A modified airfoil with a mid-arc length of L+A is obtained by extending the mid-arc of the near-leading edge section, and a modified airfoil with a mid-arc length of L-A is obtained by shortening the mid-arc of the near-leading-edge section; Shape the leading edge of the modified airfoil according to the mid-arc length of the modified airfoil, so that the leading edge of the modified airfoil forms a wave-shaped curve that changes periodically, and the ratio of the amplitude and wavelength to the mid-arc length The same ratio as the prototype vane amplitude and wavelength to the arc length in the prototype vane;
4)按照不同的波长,把原型叶型以及两种改型叶型按尾缘积叠的方式进行径向积叠。4) According to different wavelengths, the prototype airfoil and the two modified airfoils are radially stacked in the way of trailing edge stacking.
技术效果technical effect
与现有技术相比,本发明根据座头鲸鳍状肢前缘结状突起结构的特点,结合局部几何修改造型技术,在静叶前缘应用有一定波幅和波长的波浪型结状突起,利用波浪型结状突起低阻力的特性,控制静叶吸力面的流动分离,从而提高叶片气动性能。Compared with the prior art, according to the characteristics of the nodular protrusion structure at the leading edge of the humpback whale flipper, the present invention combines the local geometric modification modeling technology to apply a wave-shaped nodular protrusion with a certain amplitude and wavelength on the leading edge of the vane. Utilizing the characteristics of low resistance of the wavy knot-like protrusions, the flow separation of the suction surface of the stator blade is controlled, thereby improving the aerodynamic performance of the blade.
附图说明Description of drawings
图1为本发明原型静叶叶片示意图;Fig. 1 is the schematic diagram of the prototype stator blade of the present invention;
图2为本发明中周期变化的波浪型曲线示意图;Fig. 2 is the wavy curve schematic diagram of periodic change among the present invention;
图3为本发明仿生学静叶叶片示意图;Fig. 3 is the schematic diagram of the bionics stator blade of the present invention;
图4为本发明的垂直投影面示意图;Fig. 4 is a schematic diagram of a vertical projection plane of the present invention;
图中:径向方向X、中弧线方向S、节距方向Y、轴向方向Z、前缘LE、尾缘TE。In the figure: radial direction X, middle arc direction S, pitch direction Y, axial direction Z, leading edge LE, trailing edge TE.
具体实施方式detailed description
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。The embodiments of the present invention are described in detail below. This embodiment is implemented on the premise of the technical solution of the present invention, and detailed implementation methods and specific operating procedures are provided, but the protection scope of the present invention is not limited to the following implementation example.
实施例1Example 1
本实施例压气机原型静叶部分设计参数为:原型静叶叶片弦长51mm,叶高51mm,安装角16.9°,展弦比1,中弧线长53.2mm。The design parameters of the stator vane part of the prototype compressor in this embodiment are: the chord length of the prototype vane vane is 51 mm, the blade height is 51 mm, the installation angle is 16.9°, the aspect ratio is 1, and the mid-arc length is 53.2 mm.
本实施例通过以下步骤实现:This embodiment is realized through the following steps:
1)如图1所示,对压气机原型静叶进行参数化建模:如图4所示,不同叶高截面的叶型采用中弧线加厚度分布的造型方式,保证前缘点和尾缘点都在中弧线上,其中:原型静叶弦长c=51mm、中弧线长L=53.2mm,全叶高H=51mm;1) As shown in Figure 1, the parametric modeling of the compressor prototype vane is carried out: as shown in Figure 4, the airfoils with different blade height sections adopt the shape of the middle arc and the thickness distribution to ensure that the leading edge points and The trailing edge points are all on the middle arc, where: the chord length of the prototype stationary blade c=51mm, the middle arc length L=53.2mm, and the full blade height H=51mm;
2)如图2所示,对原型静叶全叶高前缘进行造型,使前缘部位形成周期变化的波浪型曲线,其中:周期变化的波浪型曲线波幅优选为3%L,波长为W优选为20%c,即波幅为1.596mm、波长为10.2mm;所述的周期变化的波浪型曲线为三次样条函数构成的三次样条曲线,保证了曲线二阶连续;2) As shown in Figure 2, shape the high leading edge of the prototype stator blade so that a periodically changing wavy curve is formed at the leading edge, wherein the amplitude of the periodically changing wavy curve is preferably 3% L, and the wavelength is W It is preferably 20% c, that is, the amplitude is 1.596mm, and the wavelength is 10.2mm; the wavy curve of the periodic change is a cubic spline curve formed by a cubic spline function, which ensures the second-order continuity of the curve;
3)通过延长近前缘段的中弧线得到中弧线长为103%L的改型叶型,通过缩短近前缘段的中弧线得到中弧线长为97%L的改型叶型,即两种改型叶型的中弧线长分别为57.796mm和51.604mm;根据改型叶型的中弧线长对改型叶型的前缘部位造型,使改型叶型的前缘部位形成周期变化的波浪型曲线,中弧线长为57.796mm的改型叶型波幅为1.734mm、波长为10.2mm,中弧线长为51.604mm的改型叶型波幅为1.548mm、波长为10.2mm;3) A modified airfoil with a mid-arc length of 103%L is obtained by extending the mid-arc of the near-leading edge section, and a modified airfoil with a mid-arc length of 97%L is obtained by shortening the mid-arc of the near-leading-edge section, That is, the mid-arc lengths of the two modified airfoils are 57.796mm and 51.604mm respectively; according to the mid-arc length of the modified airfoil, the leading edge of the modified airfoil is shaped so that the leading edge of the modified airfoil Form a wave-shaped curve that changes periodically. The modified blade shape with a middle arc length of 57.796mm has an amplitude of 1.734mm and a wavelength of 10.2mm, and the modified blade shape with a middle arc length of 51.604mm has an amplitude of 1.548mm and a wavelength of 10.2mm. mm;
4)按照不同的波长,把原型叶型以及两种改型叶型按尾缘积叠的方式进行径向积叠。4) According to different wavelengths, the prototype airfoil and the two modified airfoils are radially stacked in the way of trailing edge stacking.
如图3所示,根据上述方法获得的压气机仿生学静叶。As shown in Fig. 3, the compressor bionic stator blade obtained according to the above method.
所述的三次样条曲线在区间[a,b]上给定一个分割a=x0<x1<…<xn-1<xn=b,该区间上的函数F(x)满足下列条件:The cubic spline curve is given a division a=x 0 <x 1 <...<x n-1 <x n =b on the interval [a, b], and the function F(x) on this interval satisfies the following condition:
(1)在每一个小区间[xi-1,xi](i=1,2,…,n)内F(x)分别是三次多项式函数;(1) F(x) in each small interval [ xi-1 , x i ] (i=1, 2, ..., n) is a cubic polynomial function;
(2)在节点F(x)处成立F(k)(xi-0)=F(k)(xi+0),k=0,1,2,即小区间上的三次多项式函数在节点xi处二阶连续;(2) Establish F (k) ( xi -0)=F (k) ( xi +0) at the node F(x), k=0, 1, 2, that is, the cubic polynomial function on the cell interval is Second-order continuity at node x i ;
(3)节点(xi,yi)满足条件yi=F(xi)(i=0,1,2,…,n)。(3) The node ( xi , y i ) satisfies the condition y i =F( xi ) (i=0, 1, 2, . . . , n).
就+8°攻角的来流情况而言,本发明的压气机仿生静叶与原型静叶相比:叶片的吸力面分离流动区域缩小,总压损失系数减少了4%。As far as the incoming flow at +8° angle of attack is concerned, the compressor bionic vane of the present invention is compared with the prototype vane: the separation flow area of the suction surface of the vane is reduced, and the total pressure loss coefficient is reduced by 4%.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510697538.7A CN105298924B (en) | 2015-10-23 | 2015-10-23 | Compressor bionics stator blade and its implementation based on humpback flipper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510697538.7A CN105298924B (en) | 2015-10-23 | 2015-10-23 | Compressor bionics stator blade and its implementation based on humpback flipper |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105298924A CN105298924A (en) | 2016-02-03 |
CN105298924B true CN105298924B (en) | 2017-09-15 |
Family
ID=55196573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510697538.7A Active CN105298924B (en) | 2015-10-23 | 2015-10-23 | Compressor bionics stator blade and its implementation based on humpback flipper |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105298924B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108019237A (en) * | 2017-11-28 | 2018-05-11 | 武汉大学 | A kind of bionical blade profile of steam turbine for suppressing flow separation |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106570213B (en) * | 2016-10-11 | 2019-07-16 | 北京航空航天大学 | Design method of variable inlet guide vane and vane and compressor |
CN106402021B (en) * | 2016-10-31 | 2019-11-12 | 中车株洲电力机车有限公司 | A kind of centrifugal blower fan blade wheel |
CN109236727A (en) * | 2018-08-03 | 2019-01-18 | 江苏大学 | One kind being based on bionic axial flow pump blade inner |
CN109058023B (en) * | 2018-08-17 | 2020-04-10 | 武汉大学 | Method for widening operation stability area of pump turbine and pump turbine |
CN109236731B (en) * | 2018-10-18 | 2020-08-28 | 江苏大学 | A wear-resistant blade based on coupled bionic optimization |
CN109667790B (en) * | 2019-01-24 | 2024-06-18 | 大连海事大学 | Bionic front edge blade of high-speed centrifugal compressor |
CN110953187A (en) * | 2019-12-19 | 2020-04-03 | 中国航空发动机研究院 | Transonic compressor plane cascade with bionic sawtooth tail edge structure |
CN110985410A (en) * | 2019-12-19 | 2020-04-10 | 中国航空发动机研究院 | Transonic compressor plane cascade with bionic wavy structure leading edge |
CN111079239B (en) * | 2019-12-19 | 2023-07-21 | 中国航空发动机研究院 | Bionic compressor blade grid modeling method |
CN113833568B (en) * | 2020-06-24 | 2022-09-06 | 中国航发商用航空发动机有限责任公司 | Splitter ring, aircraft engine and splitter ring manufacturing method |
CN113047913B (en) * | 2021-04-16 | 2023-02-03 | 上海理工大学 | Travelling wave vibration wing section |
CN114738314A (en) * | 2022-04-26 | 2022-07-12 | 西安理工大学 | Bionic Humpback Whale Centrifugal Pump Impeller |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201461226U (en) * | 2009-08-05 | 2010-05-12 | 中国科学院工程热物理研究所 | a leaf |
CN102032213A (en) * | 2010-12-30 | 2011-04-27 | 北京理工大学 | Biomimetic processing method for leading edge of blade at end area |
CN204097191U (en) * | 2014-10-06 | 2015-01-14 | 童科 | Anaerobic digester agitator |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2050929B1 (en) * | 2004-06-02 | 2009-10-21 | Rolls-Royce Deutschland Ltd & Co KG | Compressor blade, especially for the fan on plane engines |
-
2015
- 2015-10-23 CN CN201510697538.7A patent/CN105298924B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201461226U (en) * | 2009-08-05 | 2010-05-12 | 中国科学院工程热物理研究所 | a leaf |
CN102032213A (en) * | 2010-12-30 | 2011-04-27 | 北京理工大学 | Biomimetic processing method for leading edge of blade at end area |
CN204097191U (en) * | 2014-10-06 | 2015-01-14 | 童科 | Anaerobic digester agitator |
Non-Patent Citations (1)
Title |
---|
马群毅等.基于座头鲸胸鳍结节的仿生透平叶片内流特性研究.《高等学校工程热物理第二十届全国学术会议》.2014, * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108019237A (en) * | 2017-11-28 | 2018-05-11 | 武汉大学 | A kind of bionical blade profile of steam turbine for suppressing flow separation |
Also Published As
Publication number | Publication date |
---|---|
CN105298924A (en) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105298924B (en) | Compressor bionics stator blade and its implementation based on humpback flipper | |
CN105332948B (en) | A kind of implementation method of the bionical movable vane of compressor | |
CN110059414B (en) | A two-dimensional blade modeling method with direct control channel | |
CN1179503A (en) | Blades for axial fluid machines | |
CN100485194C (en) | Centrifugal impeller | |
CN111622808B (en) | A bionic blade and design method based on steam turbine blade profile modification | |
CN102032213A (en) | Biomimetic processing method for leading edge of blade at end area | |
EP2350439A1 (en) | Method for optimising the shape of an aerofoil and corresponding aerofoil | |
WO2020161943A1 (en) | Method for designing blade for axial flow type fan, compressor and turbine, and blade obtained by means of said design | |
EP3231996B1 (en) | A blade for an axial flow machine | |
CN114738054B (en) | A bionic turbine blade design method for aero-engine | |
CN102454633A (en) | Axial compressor | |
CN104196573A (en) | The exhaust area of 3.6m2 is the final blade of the low-pressure stage group of the variable-speed air-cooled industrial steam turbine | |
CN109779971B (en) | Optimization method of radial stacking modeling of high-load compressor airfoil based on curvature control | |
CN103711655B (en) | The blunt trailing edge pneumatic equipment blades made of a kind of heavy thickness | |
CN102434223A (en) | Low-pressure stage final blade of large-flow air-cooled steam turbine | |
CN105257590B (en) | Half Tandem Blades To An Aeroengine and its design method | |
CN113446261B (en) | Tandem stator blades of a supersonic adsorption compressor | |
CN114021265A (en) | An Airfoil for Aircraft Based on Logarithmic Helix | |
CN103806946B (en) | The steam exhaust area is 2.1m2, and the final blade of the low-pressure stage group of the variable-speed industrial steam turbine | |
CN217270346U (en) | A Wide Load Airfoil for Deep Peak Shaving of Turbine Units | |
CN104895618B (en) | Super-high load low pressure turbine blade, high load low pressure turbine and aviation gas turbine engine | |
CN105443433A (en) | Design method for cavitation-resistance axial flow pump impeller | |
CN110145370A (en) | A low-pressure turbine blade with a wavy suction surface | |
CN209164176U (en) | A kind of blade profile improving helium compressor single-stage pressure ratio |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |