CN105297073A - Preparation method of copper-based titanium black electrode plate - Google Patents
Preparation method of copper-based titanium black electrode plate Download PDFInfo
- Publication number
- CN105297073A CN105297073A CN201510716682.0A CN201510716682A CN105297073A CN 105297073 A CN105297073 A CN 105297073A CN 201510716682 A CN201510716682 A CN 201510716682A CN 105297073 A CN105297073 A CN 105297073A
- Authority
- CN
- China
- Prior art keywords
- titanium oxide
- copper
- sub
- electrode plate
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 64
- 239000010949 copper Substances 0.000 title claims abstract description 64
- 239000010936 titanium Substances 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229910052719 titanium Inorganic materials 0.000 title abstract description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title abstract description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 49
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 39
- 239000010408 film Substances 0.000 claims abstract description 29
- 229910052751 metal Inorganic materials 0.000 claims abstract description 18
- 239000002184 metal Substances 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000010409 thin film Substances 0.000 claims abstract description 11
- 238000007750 plasma spraying Methods 0.000 claims abstract description 9
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 7
- 239000000843 powder Substances 0.000 claims description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 239000007921 spray Substances 0.000 claims description 8
- 229910052786 argon Inorganic materials 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 238000005488 sandblasting Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 claims description 4
- 239000004576 sand Substances 0.000 claims description 2
- 238000003723 Smelting Methods 0.000 claims 1
- SLZVKEARWFTMOZ-UHFFFAOYSA-N copper;oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Cu+2] SLZVKEARWFTMOZ-UHFFFAOYSA-N 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 8
- 238000005260 corrosion Methods 0.000 abstract description 8
- 239000002253 acid Substances 0.000 abstract description 6
- 239000007772 electrode material Substances 0.000 abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 238000005507 spraying Methods 0.000 description 11
- 239000004408 titanium dioxide Substances 0.000 description 11
- 239000002245 particle Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000006004 Quartz sand Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229910000978 Pb alloy Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000004626 scanning electron microscopy Methods 0.000 description 3
- 238000004506 ultrasonic cleaning Methods 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000009854 hydrometallurgy Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- -1 titanium metals Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electrolytic Production Of Metals (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
本发明公开一种铜基亚氧化钛电极板的制备方法,电极材料制备技术领域。本发明所述铜基亚氧化钛电极板包括铜金属板载体和亚氧化钛薄膜,亚氧化钛薄膜的主要成分为Ti4O7、TiO2,其中Ti4O7含量不低于亚氧化钛的薄膜总质量的50%。本发明所述铜基亚氧化钛电极板的制备采用等离子喷涂技术,在高温下将亚氧化钛与铜板结合,制备出亚氧化钛薄膜。本发明制备得到的铜基亚氧化钛电极板具有析氧电位低、导电性好、耐腐蚀性强、机械强度高和成本低的特点,可用作高能铅酸蓄电池正极板栅、双极性电池极板和其他相关电化学极板。The invention discloses a method for preparing a copper-based titanium oxide electrode plate, which belongs to the technical field of electrode material preparation. The copper-based titanium oxide electrode plate of the present invention includes a copper metal plate carrier and a titanium oxide film, the main components of the titanium oxide film are Ti 4 O 7 and TiO 2 , wherein the content of Ti 4 O 7 is not less than that of titanium oxide 50% of the total mass of the film. The preparation of the copper-based titanium suboxide electrode plate of the present invention adopts plasma spraying technology, and the titanium suboxide is combined with the copper plate at high temperature to prepare the titanium suboxide thin film. The copper-based titanium suboxide electrode plate prepared by the present invention has the characteristics of low oxygen evolution potential, good conductivity, strong corrosion resistance, high mechanical strength and low cost, and can be used as a positive electrode grid for high-energy lead-acid batteries, bipolar Battery plates and other related electrochemical plates.
Description
技术领域 technical field
本发明涉及一种铜基亚氧化钛电极板的制备方法,电极材料制备技术领域。 The invention relates to a method for preparing a copper-based titanium suboxide electrode plate, and relates to the technical field of electrode material preparation.
背景技术 Background technique
钛电极尺寸稳定、耐腐蚀性好、质量轻、强度高,被迅速而成功地用于氯碱工业,但是钛电极的内阻大,而且钛电极主要以铱、钌等稀贵金属氧化物作为活性涂层原料,不仅成本昂贵,而且在硫酸电解过程中涂层易脱落失效。铅电极作为工业中广泛用使用的阳极材料,在硫酸体系中操作稳定、表面氧化物即使破损也能自行恢复,但铅合金电极内阻大、易溶解、重量大、强度低、已发生弯曲变形等致命缺点。为了弥补钛电极和铅电极的不足,采用密度小、成本低、电导率高、阳极电位低、机械加工性能好的铜电极材料。同时,为了保证铜板表面的稳定性,需要在其表面制备特殊的导电保护层,这一保护层需要具有高导电性和耐酸腐蚀性。 Titanium electrodes are stable in size, good in corrosion resistance, light in weight and high in strength, and have been rapidly and successfully used in the chlor-alkali industry. layer raw materials, not only the cost is expensive, but also the coating is easy to fall off and fail during the sulfuric acid electrolysis process. As a widely used anode material in industry, lead electrode is stable in operation in sulfuric acid system, and the surface oxide can recover by itself even if it is damaged. However, lead alloy electrodes have large internal resistance, easy to dissolve, heavy weight, low strength, and have been bent and deformed. And other fatal flaws. In order to make up for the shortage of titanium electrodes and lead electrodes, copper electrode materials with low density, low cost, high conductivity, low anode potential and good machinability are used. At the same time, in order to ensure the stability of the surface of the copper plate, it is necessary to prepare a special conductive protective layer on its surface. This protective layer needs to have high conductivity and acid corrosion resistance.
Ti4O7属于Magneli相氧化钛物质,在室温下具有良好的导电性能,同时亚氧化钛(Ti4O7)本身就是一种极好的活性物质;Ti4O7具有优良的导电性,高的耐酸碱腐蚀性和耐蚀性,低的析氧电位、寿命长、不易溶解,作为电极材料具有良好的催化活性和与催化剂的相容性。Ti4O7在高电流密度、高酸条件下不钝化不腐蚀而优于石墨和钛金属,已作为电极用于电积锌,金属回收,电解氧化锰,金属箔生产以及印刷线路板蚀刻液的回收处理再利用。 Ti 4 O 7 belongs to the Magneli phase titanium oxide material, which has good electrical conductivity at room temperature, and titanium oxide (Ti 4 O 7 ) itself is an excellent active material; Ti 4 O 7 has excellent electrical conductivity, High acid and alkali corrosion resistance and corrosion resistance, low oxygen evolution potential, long life, not easy to dissolve, as an electrode material, it has good catalytic activity and compatibility with catalysts. Ti 4 O 7 is superior to graphite and titanium metals without passivation or corrosion under high current density and high acid conditions. It has been used as electrodes for electrodeposited zinc, metal recovery, electrolytic manganese oxide, metal foil production and printed circuit board etching Liquid recycling and reuse.
本发明的目的在于克服钛、铅电极板内阻较大的不足,而提供一种高导电、耐腐蚀的铜基亚氧化钛电极板,该种铜基亚氧化钛电极板可用作电积锌,金属回收,电解氧化锰等电化学过程中的极板。 The purpose of the present invention is to overcome the deficiency of large internal resistance of titanium and lead electrode plates, and provide a highly conductive, corrosion-resistant copper-based titanium suboxide electrode plate, which can be used as an electrolytic electrode plate Plates in electrochemical processes such as zinc, metal recovery, electrolytic manganese oxide, etc.
发明内容 Contents of the invention
本法的目的在于提供一种铜基亚氧化钛电极板,所述铜基亚氧化钛电极板由铜金属板载体和处于铜金属板表面的亚氧化钛薄膜,亚氧化钛薄膜的主要成分为Ti4O7、TiO2,Ti4O7含量不低于亚氧化钛薄膜总质量的50%。 The purpose of this method is to provide a copper-based titanium oxide electrode plate, the copper-based titanium oxide electrode plate is composed of a copper metal plate carrier and a titanium oxide film on the surface of the copper metal plate, the main component of the titanium oxide film is The content of Ti 4 O 7 , TiO 2 , and Ti 4 O 7 is not less than 50% of the total mass of the titanium oxide film.
优选的,本发明所述亚氧化钛的薄膜厚度为70~150μm。 Preferably, the thickness of the titanium dioxide film in the present invention is 70-150 μm.
本法的另一目的在于提供所述铜基亚氧化钛电极板的制备方法,具体包括以下步骤: Another object of this method is to provide a method for preparing the copper-based titanium oxide electrode plate, which specifically includes the following steps:
(1)对铜金属板载体进行清洗、喷砂处理; (1) Clean and sandblast the copper metal plate carrier;
(2)在铜基载体表面采用等离子喷涂法制备亚氧化钛薄膜,将Ti4O7粉末熔化后喷涂到铜金属板载体表面上得到高导电性的亚氧化钛薄膜。 (2) Titanium oxide film was prepared by plasma spraying method on the surface of copper-based carrier, and Ti 4 O 7 powder was melted and then sprayed on the surface of copper metal plate carrier to obtain highly conductive titanium oxide film.
优选的,本发明步骤(1)所述喷砂处理中砂(石英砂)的粒度为100~500μm。 Preferably, the particle size of the sand (quartz sand) in the sand blasting treatment in step (1) of the present invention is 100-500 μm.
优选的,本发明步骤(2)中等离子喷涂法中:保护气为氩气和氮气,氮气流速为1800~2000L/h,氩气流速为1800~2000/h,喷涂功率为32~36kW,送粉电位为12~16V,喷涂距离为10~14cm,喷射角为90°。 Preferably, in the plasma spraying method in the step (2) of the present invention: the protective gas is argon and nitrogen, the nitrogen flow rate is 1800~2000L/h, the argon flow rate is 1800~2000/h, and the spraying power is 32~36kW. The powder potential is 12~16V, the spray distance is 10~14cm, and the spray angle is 90°.
优选的,本发明步骤(3)中亚氧化钛粉末的粒度为微米级,粒径在1~100μm之间。 Preferably, the particle size of the titanium dioxide powder in step (3) of the present invention is in the order of microns, and the particle size is between 1 and 100 μm.
本发明所述清洗为常规清洗,依次用碱、硝酸、清水进行清洗。 The cleaning described in the present invention is conventional cleaning, which is cleaned with alkali, nitric acid and clear water successively.
本发明所述铜基亚氧化钛电极可用作高能铅酸蓄电池正极板栅、双极性电池极板和湿法冶金等领域电极材料。 The copper-based titanium suboxide electrode of the invention can be used as an electrode material in the fields of high-energy lead-acid battery positive grid, bipolar battery plate, hydrometallurgy and the like.
本发明的有益效果: Beneficial effects of the present invention:
和现有技术相比,本发明采用等离子喷涂将亚氧化钛粉末喷涂到铜金属板载体表面,由于铜的内阻小,可以降低再生产过程中的电损,达到节能的目的;密度比铅合金的小,减轻搬运的负担;铜的价格比钛合金、铅合金的低,可以大大降低原材料的成本。本发明采用的工艺较为简单,直接在铜金属板载体表面进行喷涂,即可获得与铜金属板结合良好、高导电、机械强度高和耐蚀性好的亚氧化钛薄膜,该铜基亚氧化钛板可用于电积锌,金属回收,电解氧化锰,金属箔生产以及印刷线路板蚀刻液的回收处理再利用,还可用作高能铅酸蓄电池正极板栅、双极性电池极板和其他相关电化学极板。 Compared with the prior art, the present invention uses plasma spraying to spray titanium dioxide powder onto the surface of the copper metal plate carrier. Because the internal resistance of copper is small, the electric loss in the reproduction process can be reduced, and the purpose of energy saving can be achieved; the density is higher than that of lead alloy The small size reduces the burden of handling; the price of copper is lower than that of titanium alloy and lead alloy, which can greatly reduce the cost of raw materials. The technology adopted in the present invention is relatively simple, and directly spraying on the surface of the copper metal plate carrier can obtain a titanium suboxide film that is well bonded to the copper metal plate, has high electrical conductivity, high mechanical strength and good corrosion resistance. Titanium plate can be used for electrolytic deposition of zinc, metal recycling, electrolytic manganese oxide, metal foil production and recycling of printed circuit board etching solution, and can also be used as positive grid of high-energy lead-acid battery, bipolar battery plate and others Related electrochemical plates.
附图说明 Description of drawings
图1是铜基亚氧化钛制备流程示意图。 Figure 1 is a schematic diagram of the preparation process of copper-based titanium oxide.
图2是实施例1(a)、2(b)、3(c)制备的亚氧化钛薄膜的XRD图谱。 Fig. 2 is the XRD spectrum of the TiO thin films prepared in Examples 1(a), 2(b) and 3(c).
图3是实施例1(a)、2(b)、3(c)制备的亚氧化钛薄膜的SEM图。 Fig. 3 is the SEM image of the titanium oxide thin film prepared in embodiment 1 (a), 2 (b), 3 (c).
具体实施方式 detailed description
下面结合附图和具体实施例对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。 The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments, but the protection scope of the present invention is not limited to the content described.
实施例1 Example 1
(1)将电解铜板进行清洗,用碱液(1mol/L)浸泡铜板20min除油,再用10%的HNO3溶液进行室温超声清洗5min,取出用水清洗后浸泡于无水乙醇溶液中;晾干后进行喷砂处理(石英砂的粒度为500μm),获得表面粗化的铜基板1。 (1) Clean the electrolytic copper plate, soak the copper plate with lye (1mol/L) for 20 minutes to remove oil, then use 10% HNO 3 solution for room temperature ultrasonic cleaning for 5 minutes, take it out and wash it with water and soak it in absolute ethanol solution; After drying, perform sandblasting treatment (the particle size of the quartz sand is 500 μm) to obtain a copper substrate 1 with a roughened surface.
(2)采用等离子喷涂法在表面粗化的铜基板上制备亚氧化钛薄膜2:将表面粗化的铜基板固定在工作架上,将粒径范围为20~50μm的Ti4O7粉末放入送粉器中,设定氮气流速为2000L/h,氩气流速为2000L/h,喷涂功率为36kW,送粉电位为16V,喷涂距离为10cm,检查设备设定参数无误和送粉器送粉均匀连续后,点击电脑上预先编程好的喷涂路径进行喷涂,利用亚氧化钛和铜之间良好的结合力获得高导电性、机械性能好的铜基亚氧化钛电极板。 (2) Preparation of TiO thin film on roughened copper substrate by plasma spraying method 2: Fix the roughened copper substrate on the working frame, put Ti 4 O 7 powder with a particle size range of 20-50 μm Into the powder feeder, set the nitrogen flow rate to 2000L/h, the argon flow rate to 2000L/h, the spraying power to 36kW, the powder feeding potential to 16V, and the spraying distance to 10cm. After the powder is uniform and continuous, click the pre-programmed spraying path on the computer to spray, and use the good bonding force between titanium dioxide and copper to obtain a copper-based titanium dioxide electrode plate with high conductivity and good mechanical properties.
(3)对喷涂的亚氧化钛薄膜进行物相表征,从图2(a)薄膜的XRD图谱可知分析,以TiO2和Ti4O7的衍射峰为主,对薄膜的成分进行定量分析,可知Ti4O7的含量为61.5%,TiO2的含量和Ti4O7的含量比较接近;从图3(a)的SEM分析可知,该亚氧化钛薄膜厚度为110μm,且致密,铜基和亚氧化钛薄膜结合良好;因此采用此发明可制备出高导电、机械性强的铜基亚氧化钛薄膜。 (3) Perform phase characterization of the sprayed titanium dioxide film. From the XRD pattern of the film in Figure 2(a), it can be seen that the analysis is based on the diffraction peaks of TiO 2 and Ti 4 O 7 , and the composition of the film is quantitatively analyzed. It can be seen that the content of Ti 4 O 7 is 61.5%, and the content of TiO 2 is relatively close to that of Ti 4 O 7 ; from the SEM analysis of Figure 3(a), it can be seen that the thickness of the titanium oxide film is 110 μm, and it is dense, copper-based It is well combined with the titanium oxide film; therefore, the invention can prepare a copper-based titanium oxide film with high conductivity and strong mechanical properties.
实施例2 Example 2
(1)将电解铜板进行清洗,用碱液(1mol/L)浸泡铜板20min除油,再用10%的HNO3溶液进行室温超声清洗5min,取出用水清洗后浸泡于无水乙醇溶液中;晾干后进行喷砂处理(石英砂的粒度为300μm),获得表面粗化的铜基板1。 (1) Clean the electrolytic copper plate, soak the copper plate with lye (1mol/L) for 20 minutes to remove oil, then use 10% HNO 3 solution for room temperature ultrasonic cleaning for 5 minutes, take it out and wash it with water and soak it in absolute ethanol solution; After drying, perform sandblasting treatment (the particle size of the quartz sand is 300 μm), to obtain a copper substrate 1 with a roughened surface.
(2)采用等离子喷涂法在表面粗化的铜基板上制备亚氧化钛薄膜2:将表面粗化的铜基板固定在工作架上,将粒径范围为40~70μm的Ti4O7粉末放入送粉器中,设定氮气流速为1900L/h,氩气流速为1900L/h,喷涂功率为32kW,送粉电位为14V,喷涂距离为14cm,检查设备设定参数无误和送粉器送粉均匀连续后,点击电脑上预先编程好的喷涂路径进行喷涂,利用亚氧化钛和铜之间良好的结合力获得高导电性、机械性能好的铜基亚氧化钛电极板。 (2) Preparation of TiO thin film on roughened copper substrate by plasma spraying method 2: Fix the roughened copper substrate on the working frame, put Ti 4 O 7 powder with a particle size range of 40-70 μm Into the powder feeder, set the nitrogen flow rate to 1900L/h, the argon flow rate to 1900L/h, the spraying power to 32kW, the powder feeding potential to 14V, and the spraying distance to 14cm. After the powder is uniform and continuous, click the pre-programmed spraying path on the computer to spray, and use the good bonding force between titanium dioxide and copper to obtain a copper-based titanium dioxide electrode plate with high conductivity and good mechanical properties.
(3)对喷涂的亚氧化钛薄膜进行物相表征,从图2(b)薄膜的XRD图谱可知分析,以TiO2和Ti4O7的衍射峰为主,对薄膜的成分进行定量分析,可知Ti4O7的含量为69.3%,Ti4O7的含量比较高;从图3(b)的SEM分析可知,该亚氧化钛薄膜厚度为80μm,且致密,铜基和亚氧化钛薄膜结合良好;因此采用此发明可制备出高导电、机械性强的铜基亚氧化钛薄膜。 (3) Perform phase characterization of the sprayed titanium oxide film. From the XRD pattern of the film in Figure 2(b), it can be seen that the analysis is based on the diffraction peaks of TiO 2 and Ti 4 O 7 , and the composition of the film is quantitatively analyzed. It can be seen that the content of Ti 4 O 7 is 69.3%, and the content of Ti 4 O 7 is relatively high; from the SEM analysis of Figure 3(b), it can be seen that the thickness of the titanium suboxide film is 80 μm, and it is dense, and the copper-based and titanium suboxide films The combination is good; therefore, the invention can be used to prepare a copper-based titanium oxide film with high conductivity and strong mechanical properties.
实施例3 Example 3
(1)将电解铜板进行清洗,用碱液(1mol/L)浸泡铜板20min除油,再用10%的HNO3溶液进行室温超声清洗5min,取出用水清洗后浸泡于无水乙醇溶液中;晾干后进行喷砂处理(石英砂的粒度为100μm),获得表面粗化的铜基板1。 (1) Clean the electrolytic copper plate, soak the copper plate with lye (1mol/L) for 20 minutes to remove oil, then use 10% HNO 3 solution for room temperature ultrasonic cleaning for 5 minutes, take it out and wash it with water and soak it in absolute ethanol solution; After drying, sandblasting is performed (the particle size of the quartz sand is 100 μm) to obtain a copper substrate 1 with a roughened surface.
(2)采用等离子喷涂法在表面粗化的铜基板上制备亚氧化钛薄膜2:将表面粗化的铜基板固定在工作架上,将粒径范围为60~90μm的Ti4O7粉末放入送粉器中,设定氮气流速为1800L/h,氩气流速为1800L/h,喷涂功率为34kW,送粉电位为15V,喷涂距离为12cm,检查设备设定参数无误和送粉器送粉均匀连续后,点击电脑上预先编程好的喷涂路径进行喷涂,利用亚氧化钛和铜之间良好的结合力获得高导电性、机械性能好的铜基亚氧化钛电极板。 (2) Preparation of TiO thin film on roughened copper substrate by plasma spraying method 2: Fix the roughened copper substrate on the working frame, put Ti 4 O 7 powder with a particle size range of 60-90 μm Into the powder feeder, set the nitrogen flow rate to 1800L/h, the argon flow rate to 1800L/h, the spraying power to 34kW, the powder feeding potential to 15V, and the spraying distance to 12cm. After the powder is uniform and continuous, click the pre-programmed spraying path on the computer to spray, and use the good bonding force between titanium dioxide and copper to obtain a copper-based titanium dioxide electrode plate with high conductivity and good mechanical properties.
(3)对喷涂的亚氧化钛薄膜进行物相表征,从图2(c)薄膜的XRD图谱可知分析,以TiO2和Ti4O7的衍射峰为主,对薄膜的成分进行定量分析,可知Ti4O7的含量为73.4%,Ti4O7的含量比较高;从图3(c)的SEM分析可知,该亚氧化钛薄膜厚度为130μm,且致密,铜基和亚氧化钛薄膜结合良好;因此采用此发明可制备出高导电、机械性强的铜基亚氧化钛薄膜。 (3) Perform phase characterization of the sprayed titanium dioxide film. From the XRD pattern of the film in Figure 2(c), it can be seen that the analysis is based on the diffraction peaks of TiO 2 and Ti 4 O 7 , and the composition of the film is quantitatively analyzed. It can be seen that the content of Ti 4 O 7 is 73.4%, and the content of Ti 4 O 7 is relatively high; from the SEM analysis of Figure 3(c), it can be seen that the thickness of the titanium suboxide film is 130 μm, and it is dense, copper-based and titanium suboxide film The combination is good; therefore, the invention can be used to prepare a copper-based titanium oxide film with high conductivity and strong mechanical properties.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510716682.0A CN105297073A (en) | 2015-10-30 | 2015-10-30 | Preparation method of copper-based titanium black electrode plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510716682.0A CN105297073A (en) | 2015-10-30 | 2015-10-30 | Preparation method of copper-based titanium black electrode plate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105297073A true CN105297073A (en) | 2016-02-03 |
Family
ID=55194863
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510716682.0A Pending CN105297073A (en) | 2015-10-30 | 2015-10-30 | Preparation method of copper-based titanium black electrode plate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105297073A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105776429A (en) * | 2016-03-15 | 2016-07-20 | 中国矿业大学(北京) | Circular tubular titanium black membrane electrode with electrochemical oxidation activity and preparation method of circular tubular titanium black membrane electrode |
CN107130203A (en) * | 2017-05-10 | 2017-09-05 | 宝鸡市新福泉机械科技发展有限责任公司 | A kind of preparation method of titanium oxide conductivity ceramics coating |
CN108998753A (en) * | 2018-06-26 | 2018-12-14 | 昆明理工大学 | A kind of aluminum-base composite ceramic coating electrode plate and preparation method thereof |
CN109338269A (en) * | 2018-10-30 | 2019-02-15 | 昆明理工大学 | A kind of preparation method of copper-based conductive ceramic coating electrode material |
CN110071302A (en) * | 2019-04-26 | 2019-07-30 | 西安理工大学 | A kind of titanium-based Asia titanium oxide bipolar plates and preparation method thereof |
CN110391423A (en) * | 2018-04-17 | 2019-10-29 | 中国电力科学研究院有限公司 | A positive electrode grid of lead-carbon battery and its preparation method and lead-carbon battery |
CN113149156A (en) * | 2021-06-07 | 2021-07-23 | 陕西科技大学 | Preparation method of titanium suboxide DSA anode |
CN114520343A (en) * | 2020-11-19 | 2022-05-20 | 中国科学院大连化学物理研究所 | A kind of proton exchange membrane fuel cell anti-reverse electrode catalyst and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3616445A (en) * | 1967-12-14 | 1971-10-26 | Electronor Corp | Titanium or tantalum base electrodes with applied titanium or tantalum oxide face activated with noble metals or noble metal oxides |
GB1438462A (en) * | 1973-01-05 | 1976-06-09 | Hoechst Ag | Electrode for electrolytic processes |
US4931213A (en) * | 1987-01-23 | 1990-06-05 | Cass Richard B | Electrically-conductive titanium suboxides |
CN1212025A (en) * | 1996-01-22 | 1999-03-24 | 阿特拉韦尔达有限公司 | Method of applying conductive coating |
-
2015
- 2015-10-30 CN CN201510716682.0A patent/CN105297073A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3616445A (en) * | 1967-12-14 | 1971-10-26 | Electronor Corp | Titanium or tantalum base electrodes with applied titanium or tantalum oxide face activated with noble metals or noble metal oxides |
GB1438462A (en) * | 1973-01-05 | 1976-06-09 | Hoechst Ag | Electrode for electrolytic processes |
US4931213A (en) * | 1987-01-23 | 1990-06-05 | Cass Richard B | Electrically-conductive titanium suboxides |
CN1212025A (en) * | 1996-01-22 | 1999-03-24 | 阿特拉韦尔达有限公司 | Method of applying conductive coating |
Non-Patent Citations (3)
Title |
---|
孙家枢等: "《热喷涂科学与技术》", 31 October 2013, 冶金工业出版社 * |
张浩等: ""Magneli相亚氧化钛的制备及其应用"", 《电池工业》 * |
高根芳等: ""Ti4O7正极添加剂在铅蓄电池中的应用"", 《蓄电池》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105776429A (en) * | 2016-03-15 | 2016-07-20 | 中国矿业大学(北京) | Circular tubular titanium black membrane electrode with electrochemical oxidation activity and preparation method of circular tubular titanium black membrane electrode |
CN107130203A (en) * | 2017-05-10 | 2017-09-05 | 宝鸡市新福泉机械科技发展有限责任公司 | A kind of preparation method of titanium oxide conductivity ceramics coating |
CN110391423A (en) * | 2018-04-17 | 2019-10-29 | 中国电力科学研究院有限公司 | A positive electrode grid of lead-carbon battery and its preparation method and lead-carbon battery |
CN110391423B (en) * | 2018-04-17 | 2022-03-18 | 中国电力科学研究院有限公司 | Lead-carbon battery positive grid, preparation method thereof and lead-carbon battery |
CN108998753A (en) * | 2018-06-26 | 2018-12-14 | 昆明理工大学 | A kind of aluminum-base composite ceramic coating electrode plate and preparation method thereof |
CN109338269A (en) * | 2018-10-30 | 2019-02-15 | 昆明理工大学 | A kind of preparation method of copper-based conductive ceramic coating electrode material |
CN110071302A (en) * | 2019-04-26 | 2019-07-30 | 西安理工大学 | A kind of titanium-based Asia titanium oxide bipolar plates and preparation method thereof |
CN110071302B (en) * | 2019-04-26 | 2022-03-22 | 西安理工大学 | Titanium-based titanium suboxide bipolar plate and preparation method thereof |
CN114520343A (en) * | 2020-11-19 | 2022-05-20 | 中国科学院大连化学物理研究所 | A kind of proton exchange membrane fuel cell anti-reverse electrode catalyst and preparation method thereof |
CN114520343B (en) * | 2020-11-19 | 2023-11-07 | 中国科学院大连化学物理研究所 | A proton exchange membrane fuel cell anti-reverse catalyst and its preparation method |
CN113149156A (en) * | 2021-06-07 | 2021-07-23 | 陕西科技大学 | Preparation method of titanium suboxide DSA anode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105297073A (en) | Preparation method of copper-based titanium black electrode plate | |
Zhang et al. | Effect of CeO2 and graphite powder on the electrochemical performance of Ti/PbO2 anode for zinc electrowinning | |
TWI596827B (en) | Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell | |
EP3202957A1 (en) | Aluminum plate | |
CA2859936C (en) | Anode for oxygen generation and manufacturing method for the same | |
CN106086919A (en) | A kind of two dimension molybdenum bisuphide, Wolfram disulfide nano thin slice electrochemical preparation method | |
CN104037468B (en) | A kind of method reclaiming manganese and copper resource from waste and old lithium ion battery | |
CN103014751B (en) | Active cathode and preparation method thereof | |
CN101245469A (en) | A preparation method of titanium-based lead dioxide electrode with controllable coating particle size | |
CN105469901A (en) | In-situ-growth-based method for preparing nickel hydroxide-nickel oxide film electrode | |
CN100399604C (en) | Surface treatment method of lithium ion battery current collector copper foil | |
CN104313652B (en) | Preparation method of aluminum-based multiphase inert composite anode material | |
CN109023399A (en) | The regeneration method of regeneration treatment liquid of electrolytic copper foil Ni―Ti anode and preparation method thereof and Ni―Ti anode | |
CN109338269A (en) | A kind of preparation method of copper-based conductive ceramic coating electrode material | |
EP2783025B1 (en) | Method for exfoliating coating layer of electrode for electrolysis | |
CN108754396A (en) | The preparation method of cathode plate for electrolyzing zinc surface anticorrosion erosion resisting coating | |
CN108754395B (en) | Preparation method of anti-corrosion coating on the surface of electrolytic zinc anode plate | |
JP5686457B2 (en) | Method for producing oxygen generating anode | |
CN107723746A (en) | A kind of novel gradient dioxide composite chloride plate and preparation method thereof | |
CN205170984U (en) | A titanium anode for electrolytic manganese dioxide | |
CN108998753A (en) | A kind of aluminum-base composite ceramic coating electrode plate and preparation method thereof | |
CN115125594A (en) | Lead dioxide anode for zinc electrodeposition and rapid preparation method thereof | |
CN103938229B (en) | Method for preparing ultrafine flake zinc powder by adding antimony compound alkali liquor to electrolyze | |
CN102953106A (en) | Protective layer for metal surface and preparation thereof | |
KR101122630B1 (en) | The preparation of V2O5 thin films using e-beam irradiation and the V2O5 thin films improved energy storage capacity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160203 |
|
RJ01 | Rejection of invention patent application after publication |