CN105283753B - 流体动力聚焦设备和方法 - Google Patents
流体动力聚焦设备和方法 Download PDFInfo
- Publication number
- CN105283753B CN105283753B CN201480028102.2A CN201480028102A CN105283753B CN 105283753 B CN105283753 B CN 105283753B CN 201480028102 A CN201480028102 A CN 201480028102A CN 105283753 B CN105283753 B CN 105283753B
- Authority
- CN
- China
- Prior art keywords
- fluid
- focusing
- vertical
- microfluidic
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1404—Handling flow, e.g. hydrodynamic focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502769—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
- B01L3/502776—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
- B01F33/301—Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
- B01F33/3011—Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions using a sheathing stream of a fluid surrounding a central stream of a different fluid, e.g. for reducing the cross-section of the central stream or to produce droplets from the central stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D1/00—Pipe-line systems
- F17D1/08—Pipe-line systems for liquids or viscous products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D5/00—Protection or supervision of installations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0636—Focussing flows, e.g. to laminate flows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0867—Multiple inlets and one sample wells, e.g. mixing, dilution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K99/00—Subject matter not provided for in other groups of this subclass
- F16K2099/0073—Fabrication methods specifically adapted for microvalves
- F16K2099/008—Multi-layer fabrications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1404—Handling flow, e.g. hydrodynamic focusing
- G01N15/1409—Handling samples, e.g. injecting samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1404—Handling flow, e.g. hydrodynamic focusing
- G01N15/1409—Handling samples, e.g. injecting samples
- G01N2015/1411—Features of sheath fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1404—Handling flow, e.g. hydrodynamic focusing
- G01N2015/1413—Hydrodynamic focussing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0262—Shape of the specimen
- G01N2203/0264—Beam
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/206—Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
- Y10T137/2076—Utilizing diverse fluids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/8158—With indicator, register, recorder, alarm or inspection means
- Y10T137/8359—Inspection means
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
提供了一种具有用于处理样本的微通道的微流体芯片。微通道可通过使用聚焦流体和芯流形成几何结构来聚焦样本。芯流形成几何结构可包括横向流体聚焦部件以及一个或多个垂直流体聚焦部件。微流体芯片可包括在微流体芯片上平行工作的多个微通道。
Description
相关申请
本申请要求2013年3月14日提交的、发明名称为“Hydrodynamic FocusingApparatus and Methods”的美国临时申请61/785,734的优先权,其全部内容通过引用包含于此。
技术领域
本发明大体涉及流体动力聚焦,尤其涉及微流体装置。更具体地,本发明涉及用于在流通道中、并且尤其是在微流体装置中的微通道中产生鞘流(sheath flow)的系统和方法。
背景技术
鞘流是一种特殊类型的层流,其中在该层流中,一层聚焦流体在多于一侧上包围颗粒或另一层样本流体颗粒。将颗粒流(particle stream)限制在流体中的过程被称为“鞘流”构造。例如,在鞘流构造中,鞘流体(sheath fluid)可包络和夹紧包含多个颗粒的样本流体。可以将包含悬浮在样本流体中的颗粒的样本流体的流缩窄到几乎为鞘流体中心中的颗粒的外径。所得到的鞘流在孔或通道内以层流状态流动,使得微粒对准(aligned)并精确地以单个队列行的形式通过孔或通道。
许多应用中均使用鞘流,其中,例如在需要保护颗粒免遇空气的应用中,优选通过一层鞘流体来保护颗粒或流体。例如,在颗粒分选系统、流式细胞仪和用于分析样本的其它系统中,通常将待分选或分析的颗粒供给至由无颗粒的液体鞘所包围的中心流体流中的测量位置。
鞘流是有用的,因为其能够将颗粒相对于传感器或其它部件定位,并防止鞘流体所包围的中心流体中的颗粒接触流通道的侧面,从而防止通道堵塞。鞘流使得样本材料能够具有更快的流速和更高的吞吐量。在不撕裂中心流体中的细胞的情况下的更快的流速是可能的,因为鞘流体保护细胞免受流通道的壁处的可能较高的剪切力。
已应用于实现鞘流的常规设备具有相对复杂的设计,并且相对难以制造。
发明内容
根据本发明的方面,可提出一种包括基板和形成在基板中的流通道的微流体颗粒处理组件。流通道可包括:入口;流体聚焦区,其具有用于聚焦所述流通道中的颗粒的相关联的流体聚焦特征;以及检验区,其至少部分位于所述流体聚焦区的下游。此外,流通道可具有第一出口和第二出口。
根据其它方面,流通道聚焦区的流体聚焦特征可包括:芯流形成几何结构。芯流形成几何结构还可包括:横向流体聚焦区;第一垂直流体聚焦部件;以及第二垂直流体聚焦部件。
根据一些方面,第一垂直流体聚焦部件可包括垂直流体聚焦通道,并且第二垂直流体聚焦部件可包括第二垂直流体聚焦通道。第一垂直流体聚焦部件和第二垂直流体聚焦部件可沿相对的垂直方向与流体聚焦区连通。第一垂直流体聚焦部件可提供第一垂直影响,并且所述第二垂直流体聚焦部件可提供与第一垂直影响方向相对的第二垂直影响。
根据其它方面,流通道还可包括与鞘源流体连通的鞘入口。样本入口可布置在鞘入口所产生的鞘流中,以促成同轴的鞘和样本的流。样本入口可包括渐缩或斜面入口。
根据其它方面,流通道可具有样本入口处的第一宽度和第一高度。流通道可具有在第一过渡点处的第二宽度和第二高度。流通道的高度可在样本入口和第一过渡点之间下降。流通道可具有第二过渡点处的第三宽度和第三高度。流通道的高度可在所述第一过渡点和所述第二过渡点之间保持恒定,并且流通道的宽度可在所述第一过渡点和所述第二过渡点之间减小。流通道的第三高度和第三宽度可在所述检验区中维持。流通道可从方形截面过渡到矩形截面。流通道可从圆形截面过渡到椭圆形截面。
微流体组件还可包括这里所呈现的多个流通道。
根据其它方面,流体聚焦区的流体聚焦特征还包括用于在各个流通道的聚焦区中产生压力波的超声波换能器。超声波换能器可以是用于沿流通道产生驻压力波的超声波换能器的阵列。
根据其它方面,可提供与流通道连通的换向机构。换向机构可包括气泡阀。可替代地,换向机构可包括超声波换能器的阵列和/或驻声波换能器。可选地,转移机构可包括叉指换能器(IDT)。
根据某些方面,一种微流体芯片可包括:大致为平面的芯片基板,其具有上表面和下表面。微流体流通道可设置在所述芯片基板内。第一入口端口可形成于所述芯片基板的上表面上,用于接收聚焦流体。第一入口端口可与所述微流体流通道流体连通。微流体流通道可包括第一聚焦流体入口,用于沿第一方向将聚焦流体从第一入口端口引入微流体通道;第二聚焦流体入口,用于沿第二方向将聚焦流体从第一入口端口引入微流体通道;以及第三聚焦流体入口,用于沿第三方向将聚焦流体从第一入口端口引入微流体通道。
根据某些其它方面,微流体芯片还可包括在所述芯片基板的上表面上形成的第二入口端口,用于接收聚焦流体。第二入口端口可与微流体流通道流体连通。微流体流通道可包括第四聚焦流体入口,用于沿第四方向将聚焦流体从第二入口端口引入微流体通道。第二聚焦流体入口被配置为沿第二方向将聚焦流体从第二入口端口引入微流体通道,以及第三聚焦流体入口被配置为沿第三方向将聚焦流体从第二入口端口引入微流体通道。
微流体流通道可包括具有上游端区和下游端区的流体流聚焦区。第一聚焦流体入口可被配置为在上游端区中将聚焦流体引入流体流聚焦区。第二聚焦流体入口和第三聚焦流体入口可被配置为在下游端区中将聚焦流体引入流体流聚焦区。
根据其它方面,微流体芯片可包括具有上表面和下表面的大致为平面的基板。微流体通道可形成在大致为平面的基板中,并且具有上表面和下表面。入口端口可形成在大致为平面的基板的上表面上,并且可以用于接收聚焦流体。可提供与入口端口流体连通第一聚焦流体通道。第一聚焦流体通道可用于通过微流体通道的上表面中的第一孔将聚焦流体引入微流体通道。可提供与所述入口端口流体连通的第二聚焦流体通道。第二聚焦流体通道可用于通过微流体通道的下表面中的第二孔将聚焦流体引入微流体通道。
在上基板层的下表面和下基板层的上表面连接在一起的情况下,可形成微流体通道和第一聚焦流体通道和第二聚焦流体通道。
微流体通道可位于所述第一孔上游的第一平面,并且位于所述第二孔下游的第二平面。
至少一个出口端口可形成在大致为平面的基板的上表面上并且与流体流聚焦区流体连通。
下面概括所公开的设备和方法的特定实施例。这些实施例并非意在限制本发明的范围,而是用作典型实施例的简要说明。本公开及所要求保护的发明可涵盖不同于这些概括的各种形式。
附图说明
参考附图进一步描述本发明的典型实施例。应注意,可以以不同的方式对以下描述的和在附图中示出的各种特征和特征的组合进行配置和/或组织,以得到仍然在本发明的精神和范围之内的实施例。为了帮助本领域的普通技术人员制造和使用所公开的系统、组件和方法,参考附图。
图1示意性地示出了根据本发明的典型颗粒处理系统。
图2示出了根据本发明的典型微流体芯片。
图3A是根据这里所描述的特定实施例的流通道几何结构的一部分的顶视立体图,其中用箭头示意性地描述了样本流体和聚焦流体的流。
图3B是根据图3A的实施例的流通道几何结构的一部分的底视立体图,其中用箭头示意性地描述了根据这里所述的特定实施例的样本流体和聚焦流体的流。
图3C是根据图3A的实施例的流通道几何结构的一部分的顶视图。
图3D是根据图3A的实施例的流通道几何结构的一部分的沿图3C的3D-3D线的截面。
图3E是根据图3A的实施例的流通道几何结构的一部分的底视图。
图4A示出了根据这里所述的特定实施例的流通道几何结构的一部分的顶视立体图,其中用箭头示意性地描述了样本流体和聚焦流体的流。
图4B是根据图4A的实施例的流通道几何结构的一部分的顶视图。
图4C是根据图4A的实施例的流通道几何结构的一部分的沿图4B的4C-4C线的截面。
图4D示出了根据图4A的实施例的流通道几何结构的一部分的底视图。
图5A示出了根据这里所述的特定实施例的流通道几何机构的一部分的顶视立体图,其中用箭头示意性地描述了样本流体和聚焦流体的流。
图5B是根据图5A的实施例的流通道几何结构的一部分的顶视图。
图5C是根据图5A的流通道几何结构的一部分的沿图5B的5C-5C线的截面。
图5D是根据图5A的实施例的流通道几何结构的一部分的底视图。
图6A是根据这里所述的特定实施例的流通道几何结构的一部分的顶视立体图,其中用箭头示意性描述了样本流体和聚焦流体的流。
图6B是根据图6A的实施例的流通道几何结构的一部分的顶视图。
图6C是根据图6A的实施例的流通道几何结构的一部分的沿图6B的6C-6C线的截面。
图6D是根据图6A的实施例的流通道几何结构的一部分的底视图。
图7A是微流体芯片的基板的一部分的顶视图,其示意性示出了根据图5A的实施例的形成在上基板层和下基板层之间的微通道几何结构。
图7B是根据图5A和7A的实施例的上基板层的一部分的底视图,其示意性示出了上基板层的下表面中所形成的微通道几何结构。
图7C是根据图5A和7A的实施例的下基板层的一部分的顶视图,其示意性示出了下基板层的上表面中所形成的微通道几何结构。
尽管可以利用各种修改和替代形式来实施本发明,但这里以说明性示例的方式,在附图中示出特定实施例并对其进行说明。应理解,附图和详细说明并非意在将权利要求书的范围限制为所公开的特定形式,而是意在覆盖落入权利要求书的精神和范围之内的所有修改、替代和等同物。
具体实施方式
根据一些实施例,针对微流体芯片的微流体颗粒(例如细胞)分析和/或分选系统作为能够进行(诸如输血、骨髓移植、和/或动员外周血移植等的)基于细胞的治疗的治疗医学装置,可具有广泛的各种应用。微流体分选系统的实施例可能能够基于由独立于方案和必要的试剂的、光与细胞的相互作用(例如散射、反射和/或自发荧光)所确定的固有特性来选择细胞。微流体系统可采用包括微流体芯片的闭合、无菌、一次性的盒。微流体系统可以处理高速颗粒(例如细胞),并传送具有高产率和高纯度的颗粒(例如细胞)。
这里所描述的某些实施例是关于用于在流通道中、并且特别是微流体装置中的微通道中产生鞘流的系统和方法。
如这里所使用的,术语“颗粒”包括但不限于细胞(例如血小板、白细胞、肿瘤细胞、胚胎细胞、精子等)、合成珠(synthetic bead,例如聚苯乙烯)、细胞器和多细胞有机体。颗粒可包括脂质体、脂蛋白体、酵母菌、细菌、病毒、花粉、藻等。颗粒也可以指非生物颗粒。例如,颗粒可以包括金属、矿物、聚合物物质、玻璃、陶瓷、复合材料等。此外,颗粒可以包括细胞、遗传材料、RNA、DNA、片段、蛋白质等,或者具有例如结合有荧光染料的抗体的珠(bead)。
如这里所使用的,术语“微流体系统”指的是包括至少一个具有微型尺寸的流体通道的系统或装置。微流体系统可被配置为对流体样本和/或流体样本内的颗粒进行操作、处理、检测、分析、喷射和/或分选。这里所使用的术语“通道”指的是在介质中或穿过介质所形成的通路,其中该通路使得诸如液体和气体等的流体能够移动。术语“微通道”指的是一种优选地形成在微流体系统或设备中的通道,其中该通道具有范围在约1.0μm~约2000μm、优选约25μm~约500μm、最优选约50μm~约300μm以内的截面尺寸。本领域的普通技术人员将能够针对所期望的应用来确定合适的微通道体积和长度。上述范围意在包括以上记载的值作为上限或下限。微通道可具有任何选择的截面形状或排列,其非限制性的示例包括线状或非线状结构、U形或D形结构、和/或矩形、三角形、椭圆/卵形、圆形、正方形或梯形几何形状。微流体装置或微流体芯片可包括任何适当数量的用于传送流体的微通道。微流体芯片可被设置为具有闭合通道系统的一次性盒。
这里所使用的术语“垂直”、“横向”、“顶”、“底”、“之上”、“之下”、“上”、“下”以及其它类似的短语应被理解为提供附图中所描绘的特征之间的大致关系的描述性术语,并非对权利要求构成限定,特别是与这里所描述的可以在任何方位上进行工作的流通道和微流体芯片有关的那些。
本发明与美国专利号7,311,476相关,其通过引用包含于此。
现在参考附图1,颗粒处理系统200可被配置为、尺寸设计为、并且适配为用于对颗粒(例如细胞、微粒等)等进行分析、分选和/或处理(例如纯化、测量、分离、检测、监视和/或富集)。例如,系统200可以是血细胞计数器和/或细胞纯化系统等,尽管本发明不限于此。当然,系统200可采取各种形式,并且应注意,所描述的系统和方法可应用于其它颗粒处理系统。
在典型实施例中,系统200是微流体流分选器的颗粒处理系统(例如基于微流体芯片的系统)等。典型微流体流分选器的颗粒处理系统和部件等例如公开在:美国专利号8,529,161(序列号13/179,084);8,277,764(序列号11/295,183);8,123,044(序列号11/800,469);7,569,788(序列号11/101,038);7,492,522(序列号11/906、621)和6,808,075(序列号10/179,488);以及美国专利公开号2012/0277902(序列号13/342,756);2011/0196637(序列号13/022,525)以及2009/0116005(序列号12/259,235);以及美国专利申请序列号61/647,821(序列号13/896,213);以及61/702,114(序列号14/029,485),61/784,323,上述全部内容通过引用包含于此。
在其它典型实施例中,系统200可以是多通道或多喷嘴流分选器的颗粒处理系统(例如基于多毛细管或多流体喷嘴的系统)等。典型多通道或多喷嘴流分选器的颗粒处理系统和部件等例如公开在美国专利公开号2005/0112541(序列号10/812,351)中,其全部内容通过引用包含于此。
图1描述了适用于实现本发明的描述性实施例的系统200。系统200包括微流体组件220。微流体组件220包括颗粒检验区和样本流体输入区和/或与颗粒检验区和样本流体输入区连通。微流体组件220可包括多个微通道,其用于输送通过该多个微通道的诸如颗粒或细胞等的物质。在某些实施例中,并且如本领域技术人员能够理解的,微流体组件220可以是微流体芯片、微通道、试管、毛细管、管嘴或喷嘴的组合,可以将它们组合起来以制造多通道颗粒处理系统。微通道将流体和/或颗粒传送通过组件220以(例如对液体样本)进行处理、操作和/或进行任何合适的运作。组件220可包括任何合适数量的用于将流体传送通过组件220的微通道。
在典型实施例中,可设置与微流体组件220一起使用的光学检测器系统226。光学检测器系统226可被配置为查询(interrogation)流经或位于查询区内的颗粒。此外,光学检测器系统226可以同时监控通过多个通道的流。在典型实施例中,系统226可针对一个或多个特定特性(例如尺寸、形状、荧光性、光学散射以及其它特性)来检验单独的颗粒。
系统200还包括至少一个电磁辐射源或光源221(例如激光源等)以同时或依次照射各查询区的至少一部分。电磁辐射源221可连接到光束整形光学部件225(例如一个或多个分节镜等)和/或与光束整形光学部件225连通,以产生并形成电磁辐射(例如光)束227。光源221可被设置为一个或多个单色光源、多色光源或以上所述的任意组合。通常,电磁辐射源221可具有任何合适的波长,并且本领域技术人员将明了可以使用任何合适的光源。
在一些实施例中,一个或多个辐射束227可通过与微流体组件220中的多个颗粒-输送微通道对准的光掩模。光掩模可以呈与多个微通道的查询区相关联的(例如设置在不透光层中的)针孔阵列的形式。可以在颗粒处理系统200的照射和/或检测路径中设置其它的空间滤波器阵列和/或光谱滤波器阵列。
在束227与颗粒相互作用的情况下,光学颗粒分析、血细胞计数和/或分选中可产生的光信号的示例包括但不限于:光学消光、依赖于角度的光散射(前向和/或侧向散射)以及荧光。光学消光指的是颗粒消灭、吸收或阻挡的电磁辐射或光的量。依赖于角度的光散射是指远离或朝向入射电磁辐射束的、以各个角度发生散射或弯曲的电磁辐射的部分。荧光电磁辐射可以是由与颗粒或细胞相关联的分子吸收和/或散射并且以不同波长被重新发射的电磁辐射。在一些示例中,可以使用本征荧光的分子来进行荧光检测。
在典型实施例中,光学检测器系统226可包括一个或多个检测器子系统230以捕捉和观察由电磁辐射束227与通道中的颗粒的相交而产生的光信号。检测器子系统230可包括用于捕捉消光信号的一个或多个消光检测器组件231、用于捕捉散射信号的一个或多个散射检测器组件233、以及用于捕捉荧光信号的一个或多个荧光检测器组件235。在优选实施例中,检测器系统226可包括至少一个消光检测器组件231、至少一个散射检测器组件233、和至少一个荧光检测器组件235。检测器组件231、233、235可包括光电倍增器、光电二极管、照相机或其它合适的设备。
根据某些方面,检测器子系统230可包括一个或多个微透镜系统250。多个微透镜系统250可被设置为微透镜阵列260。此外,检测器子系统230可包括光纤或其它波导型光传输元件以将信号引导到传感器元件、一个或多个透镜、滤波器、镜、和/或其它光学元件,以对离开查询区222的且被检测器子系统230接收到的信号进行收集、成形、发送等。
根据某些实施例,信号检测器子系统230可以与多个查询场所(例如微流体通道)相关联,并且因此可以从多个查询场所中的每一个(同时、依次、重叠或非重叠等地)接收信号。检测器子系统230可以连接到电子器件(未示出)以分析从检测器组件接收到的信号和/或控制颗粒分选系统200的一个或多个方面。
根据某些实施例并参考图2,微流体组件220可被配置为微流体芯片20并可包括具有布置或形成有多个通道30(例如微通道)的基板21。微通道30可被配置为将流体和/或颗粒传送通过微流体芯片20以进行处理、操作和/或针对液体样本进行任何合适的操作(例如,颗粒分选系统)。例如,各微通道30均可以是流式细胞仪。根据某些方面,微通道30可被配置为彼此平行。
如图2所最佳示出的,微流体芯片20可包括输入区24,其中在输入区24中,将包括颗粒(例如细胞等)的样本输入到微流体芯片20以供处理,并输入到输出区26以从微流体芯片20去除处理后的样本。基板21可被设置为大致为平面的基板,也就是说,基板21的第一维度(例如厚度t)比其它两个维度(例如长L和宽W)小得多。此外,微流体芯片20的基板21可包括第一主平面表面和第二主平面表面:上表面21a和下表面21b。
样本流体可通过微流体芯片20的上表面21a经由样本入口端口410输入。各个微通道30均可具有与其相关联的查询区222。通道30中的颗粒可在流经查询区222时被检测到。在查询区222处,可针对诸如尺寸、形状、定向、荧光强度等的特定特性来检验或测量单独颗粒。可通过微流体芯片20的上表面21a和/或下表面21b来照射查询区222。
多个通道30可沿着微流体芯片20的宽度W均匀分布(即均匀间隔)。根据某些实施例,通道30之间的中心线-中心线间距可在0.2mm~5.0mm的范围内。微通道30之间的中心线-中心线间距可以小于4.0mm、小于3.0mm或甚至小于1.0mm。根据某些实施例,微通道30之间的中心线-中心线间距可在2.5mm~3.0mm的范围内。有利地,为了使微流体芯片20的封装尺寸最小化,微通道30之间的中心线-中心线间距可以小于2.0mm、小于1.5mm或甚至小于1.0mm。根据某些实施例,微通道30之间的中心线-中心线间距可以在0.7mm~1.2mm的范围内。
微流体芯片20的基板21可以由一个或多个基板层60形成。如图2所示,基板21可以通过将上基板层62接合或附接到下基板层64来形成。通常,可使用任何数量的层来形成微流体芯片20。
微流体芯片20的基板层60可以是玻璃(例如UV熔融石英、石英、肖特特种浮法玻璃(borofloat)等)、PDMS、PMMA、COC或任何其它合适的透射材料。第一基板层62的厚度可在大约100μm~大约1000μm的范围内。在某些优选实施例中,基板层62的厚度可在大约200μm~大约600μm的范围内。例如,基板层62的厚度可为大约400μm。在其它优选实施例中,基板层62的厚度可在大约500μm~大约900μm的范围内。以非限制性示例的方式,基板层62的厚度可以是大约700μm或大约750μm。在某些实施例中,微流体芯片20可仅由两个基板层62、64形成。
在图2所示的实施例中,微流体芯片20包括24个微通道30,尽管通常可以设置任何数量的微通道30(例如,作为非限制性的示例,2、4、8、24、36、72、144或288个通道)。根据一些实施例,在微流体芯片20具有24个微通道30的情况下,微流体芯片20可具有范围在70mm~80mm内的总宽度W。
根据某些实施例,多个微通道30可各自包括用于将在通道30内流动的颗粒引导到各种下游通道中的分选或换向机构28。分选和/或换向可通过一种或多种机制实现,该一种或多种机制可包括但不限于:通过利用压电致动器、热致动器、光学力技术、电介质方法(例如电泳力)、超声换能器27(块体和/或表面)、表面声波致动器和其它合适的分选机制或技术使膜发生偏转,来使颗粒发生机械位移。表面声波致动器可被设置为叉指换能器(interdigitated transducer,IDT)。例如,在全部内容通过引用方式包含于此的美国专利序列号12/631,059和13/818,146中公开了典型超声换能器。
颗粒处理系统200可包括用于可移除地容纳微流体芯片20的收容器或保持器(未示出)。此外,颗粒处理系统200可包括用于将微流体芯片20相对于光检测系统226定位的一个或多个级。级可以使得微流体芯片20能够移动(平移和/或转动)。
根据本发明的方面,提供了一种具有用于处理样本流体的微通道的微流体芯片。微通道30可与被配置为接收样本流体S的一个或多个样本入口端口410(参见图2)流体连通。样本入口端口410可与样本储存器、歧管、通道、井、测试管等流体连通。此外,微通道30可与配置为接收聚焦流体SF的一个或多个聚焦流体入口端口450(450a和450b)流体连通。聚焦流体入口端口450可与鞘流体储存器、歧管、通道、袋、瓶、容器等流体连通。
根据本发明的方面,微通道30可通过使用聚焦流体(例如鞘流体)和例如被限定在微流体芯片20的基板21中的芯流形成几何结构300来聚焦样本。芯流形成几何结构300可用于利用聚焦流体SF的包围鞘对样本流体S的流进行层状聚焦、减速、加速和/或使其成流线型(streamline)。在一些实施例中,芯流形成几何结构300可包括横向流体聚焦部件(例如参见图3A~E的实施例的横向流体聚焦部件432)和一个或多个垂直流体聚焦部件(例如参见图3A~E的垂直流体聚焦部件434)。在图2的实施例的上下文中,“横向”可以指大体在大致为平面的微流体芯片20的平面中延伸的方向,并且“垂直”可以指大体延伸出微流体芯片20的平面的方向。
现在参考图3A和3B,示出了具有芯流形成几何结构400的微通道30的部分。流过微通道30的样本流体S可沿着芯流形成几何结构400的(从上方观看的情况下的)纵向中心线CL进入芯流形成几何结构400。聚焦流体SF可相对于芯流形成几何结构400的纵向中心线CL呈对称地进入芯流形成几何结构400。聚焦流体可在芯流形成几何结构的上游区400a处并且还可在芯流形成几何结构的下游区400b处进入芯流形成几何结构400。可通过包括一个或多个泵(例如蠕动泵)、超声波驱动器等的本领域已知的任何部件,诱导样本流体S和聚焦流体SF流过微通道30。
芯流形成几何结构400可包括并入流通道30的区域以生成聚焦芯流的流的流体聚焦区430,其中,聚焦流体SF使样本流S成形。芯流形成几何结构400被示出为(诸如上述的那些微流体芯片等的)微流体芯片20中的流通道30的内表面。所示出的芯流形成几何结构400提供了改进的鞘流能力,并因此提供改进的样本聚焦能力。可以使用微细加工、注塑成型、冲压、机械加工、3D打印或通过其它适当的加工技术来以塑料、聚碳酸酯、玻璃、金属或其它适当的材料制造芯流几何结构400。如此,芯流形成几何结构400可以由单个基板层形成,或由多个堆叠层形成。
参考图3A和3B,鞘入口端口450可具有圆锥形入口形状,其中各入口端口均容纳在鞘聚集体422处。鞘聚集体422可配备有单个出口或鞘流体通道442、或者多个出口或鞘流体通道以进一步将聚焦流体SF传送到流通道30部件。在一些实施例中,可能不存在任何可明确识别为鞘聚集体的特征,并且聚焦流体可从鞘入口端口450直接流到聚焦流体分配网络。
在图3A和3B中,两个鞘入口端口450a、450b与单个微通道30相关联。各个鞘入口端口450均配备有单端口出口或鞘流体通道440。鞘流体通道440a被示出为延伸自鞘流体入口端口450a,并且鞘流体通道440b被示出为延伸自鞘流体入口端口450b。各个鞘流体通道440均从流体聚焦区430的上游区430a延伸到流体聚焦区430的下游区430b。各个鞘流体通道440均被配置为将聚焦流体SF从鞘入口端口450传送到流体聚焦区430的下游区430b中的微通道20。在图3A~3E的实施例中,芯流形成几何结构400相对于(从上方观看的情况下的)微通道30的纵向中心线CL呈对称地形成。
根据替代实施例,可设置单个鞘流体入口端口450,并且分支的鞘流体通道可被配置为将聚焦流体从单个鞘流体入口端口450传送到芯流形成几何结构400的多个区域。另外,可以对从鞘聚集体422伸出的一个或多个流体路径进行流量限制。
流体聚焦区域430可包括横向流体聚焦部件432和垂直流体聚焦部件434,二者均可用于使样本流S成形并提高通过流通道30的聚焦流体或鞘流体FS以及样本S两者的轴向加速度。横向流体聚焦部件可包括横向流体聚焦室420。向横向流体聚焦室420提供来自与样本入口端口410流体连通的微通道30的一部分的样本流体S。此外,向横向流体聚焦室420提供来自一个或多个鞘流体入口端口450的鞘流体或聚焦流体SF。
根据图3A~3E的实施例,横向流体聚焦室420在其上游端420a处最宽,并且在其下游端420b处最窄。在上游端420a和下游端420b之间,室420在横向方向上相对于中心线CL呈对称地、大致呈线性地渐缩。在上游端420a和下游端420b之间,室420具有大致恒定的厚度。此外,上游端420a被设置为具有分别位于各拐角处的两个开口的大致平坦的壁,其中所述开口用于接纳聚焦流体SF。
因此,如图所示,两个鞘入口端口450a、450b可将聚焦流体SF对称地引入横向流体聚焦室420。在图3A~3E中,相对较短的通道442a在鞘聚集体422a和横向流体聚焦室420的拐角开口之间延伸。类似地,相对较短的通道442b在鞘聚集体442b和横向流体聚焦室420的横向相对拐角开口之间延伸。因此,聚焦流体SF从聚焦室420的上游端420a的相对的横向边缘(或横向侧)进入室420。
如在图3B、3D和3E最佳示出的,在聚焦室420的上游端420a处,传送样本流体S的微通道30的样本入口部分32在横向流体聚焦室420的平面下方延伸。微通道30的样本入口部分32沿着纵向中心线CL居中。样本S通过微通道30的样本入口部分32和横向流体聚焦室420重叠OL处的开口注入聚焦室42的平面。如图3E所示,重叠OL的长度大约是聚焦室420的长度的三分之一。换言之,样本入口部分32和横向流体聚焦室420共用公共的开口(其中否则的话它们将共用公共的壁)。样本流体S经由长度与重叠OL区相等并且宽度与微通道30的宽度相等的对称居中的开口从下方进入聚焦室420,。因此,在本实施例中,随着样本流S被引入到聚焦室,将样本流S从上游微通道30的平面向上轻推至聚焦室的平面内的聚焦流体SF中。
随着样本流和聚焦流体沿着横向流体聚焦室420的前进,室420的横向尺寸减小。随着室420在流体向下游移动的过程中在横向方向上变窄或渐缩,来自室420的横向侧的增大的内向力作用在室内的流体上,因此趋于将样本S聚焦(例如收缩)在横向流体聚焦室420的中间。增大的内向力还趋于使流通道30中的流体聚焦区430内的鞘和样本两者加速。
在横向流体聚焦室420的下游端420b处,垂直流体聚焦部件提供垂直的、方向向上的聚焦力。具体地,垂直流体聚焦通道440a、440b将聚焦流体FS从入口端口450a、450b引入下游端420b处的横向流体聚焦室420。如在图3B、3D和3E中最佳示出的,垂直流体聚焦通道440a、440b在通道30下延伸。在通道440a的上表面与通道30的下表面30b相交处,开口或孔形成垂直聚焦流入口446,以使得来自通道440a、440b的聚焦流体FS可进入通道30。因此,垂直流体聚焦通道440a,440b在垂直聚焦流入口446处将聚焦流体FS从下方引入流体聚焦室420。
现在参考图3A,3B,3C或3E,垂直流体聚焦通道440a、440b可包括U形或环形通道,其中该U形或环形通道从横向流体聚焦室420分支出来,并且被设置为与更下游的横向流体聚焦室420在孔区446处流体连通。按照这种方式,垂直流体聚焦通道440可提供用于对鞘流体的一部分进行换向然后可以在随后的时间点将该部分重新引入流通道30以聚焦样本S的芯流的垂直位置的部件。
如图3D和3E中最佳示出的,样本S在横向流体聚焦室420所在的平面P2(参见图3D)下方的平面P1(参见图3D)中的上游端430a处进入流体聚焦区430。在重叠区OL中,样本S从平面P1被向上引导到横向流体聚焦室420的平面P2中。然后,在流体聚焦区430的下游端430b处,通过在垂直聚焦流入口446处从下方引入聚焦流体SF使聚焦流体的鞘内的横向聚焦后的样本(S+SF)垂直地向上聚焦。聚焦后的流在P2平面(参见图3D)排出流体聚焦区430。
图3C是包括流体聚焦区430和横向流体聚焦部件420的芯流形成几何结构400的顶视图。样本流S被示出为从微通道30进入横向聚焦室420。聚焦流体流SF被示出为从横向流体聚焦室420的上游区420b处的各个鞘入口端口450进入横向流体聚焦室420。此外,将聚焦流体SF从横向边缘引入横向流体聚焦室420。在该特定实施例中,将聚焦流体SF在流体聚焦室420的横向上游拐角处引入横向流体聚焦室420。
横向流体聚焦室420的宽度沿下游方向减小。在该特定实施例中,该宽度在整个流体聚焦区430的大部分中线性地减小。鞘流SF在样本S上提供增大的剪切力,从而既对样本流S进行加速,又分隔开样本中的颗粒,并且将样本流横向聚焦到横向流体聚焦室420的中心。
样本S的垂直流受芯流形成几何结构400的两个特征的影响,这最容易从图3D看出。图3D表示沿芯流形成几何结构400的纵轴的垂直截面。对样本流的第一向下垂直影响是在样本流进入横向流体聚焦室420时产生的,由于样本是从横向流体聚焦区420下方引入的,因此样本流的上升流会受到样本流上方的鞘流SF的抵抗。
样本流S通过微通道30并通过样本入口部分32进入芯流形成几何结构区。样本S到达重叠样本入口区OL的端部并与横向流体聚焦室420的平面中的鞘流SF相对地向上移动。在样本S的芯流到达垂直聚焦流入口446之后,垂直流体聚焦通道440a、440b将聚焦流体SF向上引,从而引导样本S向上并聚焦样本S使其离开流通道30的底部。
图3D展示出两个显著有利的概念。第一,代表性的样本流S反映了例如通过样本入口部分32的样本S的非垂直注入点。因此,在典型实施例中,微通道30的样本入口部分32可被配置为以与聚焦流体SF大致相同的流方向(纵向)引入样本S。第二,为了提供增强的芯形成和芯居中,可设置用于将聚焦流体SF引入流体聚焦区430的多个鞘流体入口。例如,在下游聚焦区420b中,垂直流体聚焦通道440a、440b可将聚焦流体SF在垂直聚焦流入口446处引入。
芯流形成几何结构400对样本S以及围绕居中引入的样本S的鞘流体SF进行加速和聚焦。优选地,流体聚焦区430使样本S离开微通道的侧面而聚焦。连接到流体聚焦区域430下游的微通道30的垂直聚焦部件提供聚焦流体SF内的样本S的附加的聚焦。在图3A~3E的实施例中,该二次聚焦从样本S下方使样本沿垂直方向聚焦。横向聚焦和垂直聚焦的组合提供了围绕样本的鞘流体的三维聚焦。有利地,所得到的流以离开流通道30的壁的方式流体动力地聚焦于样本S的所有侧面,使得样本S悬浮作为通道30的近似中心中的聚焦芯。
在聚焦区430中进行了聚焦之后,样本可继续通过检验区和颗粒转向和/或分选区。此外,可根据以下说明中的特定特征对颗粒进行对准和/或定向,并且可根据各种机制进行分选动作。
图4A~4D、5A~5D和6A~6D介绍各种实施例,这些实施例包括附加的聚焦区,例如二次聚焦区下游的三次聚焦区。
参考图4A~4D,示出了包含流体聚焦区530的替代芯流形成几何结构500。流体聚焦区530包括垂直流体聚焦部件534,其中垂直流体聚焦部件534被配置为双马蹄或双环且包括第一组垂直流体聚焦通道540和第二组垂直流体聚焦通道550。该实施例涉及具有第一对垂直流体聚焦通道540a、540b和第二对垂直流体聚焦通道550a、550b的芯流形成几何结构500,其中这些通道用于将相反的垂直流体聚焦鞘流引入横向流体聚焦室520以改进芯流形成。具体地,如图4A和4C最佳示出的,第一对垂直流体聚焦通道540a、540b在垂直聚焦流入口548(参见图4C)处将聚焦流体SF从上方引入流体聚焦室520的下游端520b。第二对垂直流体聚焦通道550a、550b在垂直聚焦流入口546(参见图4C)处将聚焦流体SF从下方引入流体聚焦室520的下游端520b。垂直聚焦流入口548位于垂直聚焦流入口546的上游。因此,在进行了横向聚焦之后,对流进行向下垂直聚焦,然后进行向上垂直聚焦。
图4A和4C示出微通道30的样本入口52(参见图4A)与横向流体聚焦室520定位于相同的垂直平面。此外,横向流体聚焦室520、垂直流体聚焦通道550a、550b和样本入口52均处于同一平面,即平面P1(参见图4C)。另外,垂直流体聚焦通道540a、540b位于平面P1(参见图4C)之上的平面P2(参见图4C)中。在经过了横向聚焦室520的横向定向的聚焦特征之后,垂直聚焦通道540a、540b和垂直聚焦通道550a、550b(分别通过垂直聚焦流入口548、546)引入作用在样本S上的相反的垂直聚焦力。聚焦后的流在P2平面排出流体聚焦区530。有利地,可得到更聚焦的和/或对准的样本芯流。
参考图4A,流体聚焦区530包括包含横向流体聚焦室520的横向流体聚焦部件532。类似于图3A~3E的实施例,横向流体聚焦室520在其上游端520a处最宽,在其下游端520b处最窄。在上游端520a和下游端520b之间,室520相对于沿横向方向的中心线CL呈对称地、大致呈线性地渐缩。在上游端520a和下游端520b之间,室520具有大致恒定的厚度。此外,上游端520a被设置为具有分别位于各拐角处的两个开口的大致平坦的壁,用于接纳聚焦流体SF。
因此,如图所示,两个鞘入口端口450a、450b可将聚焦流体SF对称地引入横向流体聚焦室520。参考图4A,相对较短的通道542a在鞘聚集体422a和横向流体聚焦室520的拐角开口之间延伸。类似地,相对较短的通道542b在鞘聚集体422b和横向流体聚焦室520的横向相对的拐角开口之间延伸。因此,聚焦流体SF从聚焦室520的上游端520a的相对的横向边缘(或横向侧)进入室520。
与图3A~3E的实施例对比,并如图4C所最佳示出的,在聚焦室520的上游端520a处,样本流体S通过微通道30的样本入口52(参见图4A)在室520所在的同一平面P1中直接流到室520中。
参考图4B,聚焦流体SF从鞘入口端口450流入横向流体聚焦室520。可将来自各个入口端口450的聚焦流体SF分割为三个鞘流部分。第一聚焦流体部分可在横向流体聚焦室520的上游拐角处进入横向流体聚焦室520。响应于横向流体聚焦室520的变窄的横向宽度,聚焦流体SF趋于将样本S聚焦在横向流体聚焦通道520的中心中。可通过垂直流体聚焦通道550a(或550b)使来自各个入口端口450的第二聚焦流体部分转向,并且可通过垂直流体聚焦通道540a(或540b)来引导第三聚焦流体部分。
在该实施例中,鞘聚集体522可有利地提供比圆锥鞘入口450的端部更大的截面面积,因此提供了有利的体积,以经由各个鞘流部分来分配鞘流速率相对较高的聚焦流体。此外,垂直聚焦通道540a、540b的长度小于垂直聚焦通道550a、550b的长度。更短的垂直聚焦通道540a、540b的长度意味着这些通道(与垂直聚焦通道550a、550b相比)对于流经它们的聚焦流体的流具有更小的阻力。因此,可在垂直聚焦流入口548处引入流体聚焦区530中的聚焦流体的体积可大于可在垂直聚焦流入口546处引入流体聚焦区530中的聚焦流体的体积。可修改垂直聚焦通道540、550的相对长度,以控制流的垂直聚焦。特别地,可通过第一组垂直聚焦通道540和第二组垂直聚焦通道550的聚焦流体流的差异来提供对流通道30中的芯流的垂直位置进行聚焦的改进能力。通常,可能期望维持垂直聚焦流入口548和垂直聚焦流入口546处的垂直聚焦力之间的平衡。
现在转向图4C,沿着芯流形成几何结构500的纵轴的垂直截面示出了在大致相同的垂直位置引入流通道30的样本S的芯流和聚焦流体SF。来自第一组垂直流体聚焦通道540的聚焦流体SF提供了对样本S的芯流的向下的聚焦影响,接下来是来自第二组垂直流体聚焦通道550所提供的鞘流体的向上的聚焦影响。流通道30在相反的垂直鞘流之后的部分处于相对于横向流体聚焦室520和样本入口52有所升高的垂直位置。可在被设计为对样本的芯流中的颗粒进行定向的区域中进一步操纵流通道30的在聚焦区域之后的部分。
图5A~5D示出了具有与图4A~4D的实施例大致相同的垂直截面(将图4C与图5C比较)的芯流形成几何结构600的替代实施例。在与图5A~5D所示的鞘流体流路径相关的几个流线型方面可能提升特定效率。在一方面,鞘流体从各个鞘聚集体422通过,进入渐缩的聚焦入口632,该聚焦入口632立即将聚焦流体置于用于横向聚焦样本流体S的芯流的轨道中。渐缩入口621a、621b可消除可能由钝的入口几何形状导致的任何流体死区。
此外,渐缩入口621有利地被配置为使得聚焦流体SF能够在扩展的入口通道中行进,以使得聚焦流体与样本流体S大致平行(或成小角度)地行进,其中样本流体S在紧挨在与通道30合并的渐缩入口621之前的微通道30中流动。该角度相对于微通道30的纵轴可小于45度。在优选实施例中,该角度可小于30度、小于25度、且甚至小于20度。入口621可扩展至与微通道30合并的点。入口621的结构提供可与样本流体流大致对准的聚焦流体流轨道。显著地,使得聚焦流体SF在合并之前能够与样本S大致平行地扩展和行进,这使得随着流体的合并,能够建立所有流体均平行行进的层流区。该流线型的合并可充分减小合并点处的流体混合和湍流。
此外,渐缩入口621使得横向流体聚焦部件632和垂直流体聚焦部件634能够在一定程度上彼此隔离。特别地,垂直流体聚焦部件的上游端是样本S进入流体聚焦室620处的上游,因此缓和了样本S不慎流入垂直流体聚焦部件634的可能性。
在该特定实施例中,横向流体聚焦室620具有略微凸出的曲线横向边缘。
第一组垂直流体聚焦通道640和第二垂直流体聚焦通道650中也各自与公共入口655成流线型。然而,相比于图4A~4D的实施例,在该实施例中,垂直聚焦通道650、640的截面面积无需沿其长度为恒定,而是可以从一部分到另一部分有所变化。此外,垂直流体聚焦通道640的截面面积可大于垂直流体聚焦通道650的更平坦的截面面积。相对于垂直流体聚焦通道650的更平坦的截面,垂直流体聚焦通道640的该更大的截面面积可使得要在垂直聚焦流体入口648(参见图5C)处进入室620的垂直聚焦流体的流能够比要在垂直聚焦流入口646(参见图5C)处进入室620的垂直聚焦流体的流更大。
垂直聚焦通道640a、640b的更大的截面面积和更短的长度意味着这些通道对通过其中的聚焦流体的流的阻力(与垂直聚焦通道650a、650b相比)更小。因此,可在垂直聚焦流入口648处引入流体聚焦区630的聚焦流体的体积可大于可在垂直聚焦流入口646引入流体聚焦区630的聚焦流体的体积。可修改垂直聚焦通道640、650的相对截面面积和/或相对长度,以控制流的垂直聚焦。在某些方面,可能期望维持垂直聚焦流入口548和垂直聚焦流入口546处的垂直聚焦力之间的平衡。因此,针对不同的垂直流体聚焦通道设置变化的长度、截面面积和/或非恒定的截面面积可使得垂直聚焦力能够平衡。
因此,有利地,这里所公开的方面使得设计者能够调整作用在流上的聚焦流,以使得通道内的被聚焦的流的位置和/或形状最优化。
图6A~6D示出了芯流形成几何结构700的另一实施例。与图5A~5D的实施例相似,并且如图6A中最佳示出的,该实施例也具有流线型流体聚焦流部件,诸如从入口端口450延伸到横向流体聚焦室720中的专用的渐缩入口721、以及直接连接到各个鞘入口450的鞘聚集体422并将聚焦流体SF提供给第一组垂直流体聚焦通道740和第二组垂直流体聚焦通道750的公共聚焦流体通道755等。此外,图6A~6D示出了第一垂直流体聚焦通道740和第二垂直流体聚焦通道750各自的一些部分的替代垂直布置。
此外,相比于图5A~5D的实施例,图6A~6D的实施例设置有第一组垂直流体聚焦通道740和第二组垂直流体聚焦通道750两者的相对较大的截面面积。相对于进入横向流体聚焦部件732的聚焦流体,该更大的截面面积对进入垂直流体聚焦部件734的聚焦流体提供更小的阻力。因此,通过控制进入垂直流体聚焦部件734和进入横向流体聚焦部件732的聚焦流体流的相对流体阻力,来提供用以平衡和/或控制作用在样本S上的聚焦力的另一种方法。
此外,图6A~6D的实施例配备有增强的鞘聚集体422以容纳第一组垂直流体聚焦通道740和第二组垂直流体聚焦通道750两者的相对较大的截面面积。还有利的是,垂直流体聚焦通道740、750配置有(与设置在通道的上游部分的更大的截面面积相比)减小了的下游截面面积。
回来参考图2,并且还参考3D、4C、5C和6C,根据特定的实施例,可通过将上基板层62接合或附接至下基板层64来形成基板21。现在参考图7A,示出了基板21的顶视图,其中经由基板的顶层可见芯流形成几何结构300。图7B示出了图7A的基板的上基板62的下表面62b。示出芯流形成几何结构300的流体聚焦部件300’的部分被设置在下表面62b中。在图7B中,示出了图7A的基板的上基板62的下表面62b。示出芯流形成几何结构300的流体聚焦部件300”的补充部分被设置在下表面62b中。在图7C中,示出了图7A的基板的下基板64的上表面64a。示出流体聚焦部件的部分被设置在上表面64a中。可(通过加性或减性制造)提供这些基板层表面中所设置的流体聚焦部件300’、300”的部分。当上表面64a和下表面62b在流体聚焦部件的补充部分彼此对准的情况下组装到一起时,形成了完整的芯流形成几何结构。因此,诸如这里所描述的典型芯流形成几何结构等的复杂的芯流形成几何结构300可简单且有效地仅配备有两个基板层。尽管将图7A~C的实施例所示的芯流形成几何结构300阐述为图5A~D的实施例的典型芯流形成几何结构600,应理解,可类似地使用上基板层62和下基板层64来限定任何数量的不同的流形成几何结构,例如包括这里例如关于图3A~E、4A~D、5A~D和6A~D的实施例所述的任何典型流形成几何结构400、500、600和700。
如根据上文可以理解的,所描述的用于聚焦芯流的特征可与用于对关注颗粒进行监视、检测、分析和/或分选的各种特征进行组合。参见例如美国专利号6,877,528、6,808,075和7,298,478,其全部内容通过引用包含于此。
这里描述了一种用于在诸如微通道等的流通道中产生聚焦样本的系统和方法。如根据上文可以容易理解的,本发明的基本概念可以以各种方式来实施。因此,本申请所附的说明书所公开的或附图所示的特定的实施例或元件并非意在限制本发明或所涵盖的等同物,而是在于针对本发明或所涵盖的等同物的任何特定元件来描述本发明或所涵盖的等同物大体涵盖的多种多样的实施例。此外,单个实施例或元件的特定描述可能没有明确地描述所有可能的实施例或元件,说明书和附图隐式地公开了许多替代物。
此外,为了本发明的目的,术语“一”或“一个”实体是指该实体中的一个或多个。因此,术语“一”或“一个”、“一个或多个”以及“至少一个”在这里是可互换的。
无论是否明确指示,假定这里所有的数值均由术语“大约”来修饰。为了本发明的目的,可以将范围表示为“大约”一个特定值~“大约”另一特定值。应理解,各个范围的端点既与另一端点显著相关,又与另一端点显著独立。在通过使用上述“大约”将值表达为近似值的情况下,应理解该特定值形成另一实施例。
Claims (14)
1.一种微流体组件(220),用于与颗粒处理系统一同使用,所述微流体组件包括:
大致为平面的基板(21),具有上表面(21a)和下表面(21b);以及
在所述大致为平面的基板中形成的微流体流通道(30),所述微流体流通道(30)具有:
入口(52),被配置为接收样本流(S);
流体聚焦区(530、630、730),其具有横向流体聚焦部件、第一垂直流体聚焦部件、第二垂直流体聚焦部件,其中,所述横向流体聚焦部件、所述第一垂直流体聚焦部件和所述第二垂直流体聚焦部件设置于沿着所述微流体流通道的不同的纵向位置处,所述微流体流通道在所述第一垂直流体聚焦部件的第一垂直聚焦流入口(548、648、748)的上游位于第一平面(P1),所述微流体流通道在所述第二垂直流体聚焦部件的第二垂直聚焦流入口(546、646、746)的下游位于第二平面(P2);以及
检验区,其至少部分位于所述流体聚焦区的下游。
2.根据权利要求1所述的微流体组件,其中,所述第一垂直流体聚焦部件和所述第二垂直流体聚焦部件定位于所述横向流体聚焦部件的纵向下游。
3.根据权利要求2所述的微流体组件,其中,所述第一垂直流体聚焦部件与配置在所述微流体流通道的两侧的一对第一垂直流体聚焦通道(540a、540b、640a、640b、740a、740b)流体连通,以及所述第二垂直流体聚焦部件与配置在所述微流体流通道的两侧的一对第二垂直流体聚焦通道(550a、550b、650a、650b、750a、750b)流体连通。
4.根据权利要求1所述的微流体组件,其中,还包括与所述微流体流通道连通的换向机构(28),其中,所述换向机构包括气泡阀、压电致动器、热致动器或表面声波致动器。
5.根据权利要求1所述的微流体组件,其中,所述样本流(S)和来自所述横向流体聚焦部件的聚焦流体(SF)在同一平面内进入所述流体聚焦区。
6.根据权利要求5所述的微流体组件,其中,所述横向流体聚焦部件包括与第二渐缩入口(621a、621b、721a、721b)相对的第一渐缩入口(621a、621b、721a、721b)。
7.根据权利要求1所述的微流体组件,其中,还包括在所述大致为平面的基板中形成的多个微流体流通道(30),其中,所述多个微流体流通道中的各个微流体流通道均具有:
在权利要求1中所述的流体聚焦区(530、630、730)。
8.根据权利要求1所述的微流体组件,其中,还包括:
在所述大致为平面的基板的上表面上形成的第一聚焦流体入口端口(450a、450b),用于接收聚焦流体;
其中,所述第一聚焦流体入口端口与所述微流体流通道经由第一渐缩入口、所述第一垂直流体聚焦部件和所述第二垂直流体聚焦部件流体连通。
9.根据权利要求8所述的微流体组件,其中,还包括:
在所述大致为平面的基板的上表面上形成的第二聚焦流体入口端口(450a、450b),用于接收聚焦流体;
其中,所述流体聚焦区还包括与所述第一渐缩入口相对的第二渐缩入口,以及
所述第二聚焦流体入口端口与所述微流体流通道经由所述第二渐缩入口、所述第一垂直流体聚焦部件和所述第二垂直流体聚焦部件流体连通。
10.根据权利要求9所述的微流体组件,其中,所述横向流体聚焦部件还包括具有上游端(520a、620a、720a)和下游端(520b、620b、720b)的横向流体聚焦室,其中,
所述横向流体聚焦室相对于所述上游端与所述下游端之间的在横向上的中心线对称地渐缩,
所述第一渐缩入口和所述第二渐缩入口位于所述上游端处,以及
所述第一垂直流体聚焦部件和所述第二垂直流体聚焦部件位于所述下游端处。
11.根据权利要求1所述的微流体组件,其中,还包括:
聚焦流体入口端口(450a、450b),其形成在所述大致为平面的基板(21)上,并且用于接收聚焦流体;
第一垂直流体聚焦通道(540a、540b、640a、640b、740a、740b),其与所述聚焦流体入口端口流体连通,并且用于经由所述第一垂直流体聚焦部件将聚焦流体引入所述微流体流通道;以及
第二垂直流体聚焦通道,其与所述聚焦流体入口端口流体连通,并且用于经由所述第二垂直流体聚焦部件(550a、550b、650a、650b、750a、750b)将聚焦流体引入所述微流体流通道。
12.根据权利要求11所述的微流体组件,其中,所述第二垂直流体聚焦通道的第一部分形成在上基板层(62)的下表面(62b)中,以及所述第二垂直流体聚焦通道的第二部分形成在下基板层(64)的上表面(64a)中,其中,所述第二垂直流体聚焦通道是在所述上基板层和所述下基板层连接在一起的情况下形成的。
13.根据权利要求11所述的微流体组件,其中,所述聚焦流体入口端口(450a、450b)形成在所述大致为平面的基板的上表面上,以及至少一个出口端口(26)形成在所述大致为平面的基板的上表面上,并且与所述流体聚焦区在下游流体连通。
14.根据权利要求1所述的微流体组件,其中,所述大致为平面的基板包括大致为平面的芯片基板。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361785734P | 2013-03-14 | 2013-03-14 | |
US61/785,734 | 2013-03-14 | ||
PCT/US2014/029090 WO2014153107A1 (en) | 2013-03-14 | 2014-03-14 | Hydrodynamic focusing apparatus and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105283753A CN105283753A (zh) | 2016-01-27 |
CN105283753B true CN105283753B (zh) | 2020-07-10 |
Family
ID=50686172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480028102.2A Active CN105283753B (zh) | 2013-03-14 | 2014-03-14 | 流体动力聚焦设备和方法 |
Country Status (5)
Country | Link |
---|---|
US (3) | US10583439B2 (zh) |
EP (2) | EP2972212B1 (zh) |
CN (1) | CN105283753B (zh) |
NZ (2) | NZ743491A (zh) |
WO (1) | WO2014153107A1 (zh) |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9943847B2 (en) | 2002-04-17 | 2018-04-17 | Cytonome/St, Llc | Microfluidic system including a bubble valve for regulating fluid flow through a microchannel |
US11243494B2 (en) | 2002-07-31 | 2022-02-08 | Abs Global, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
SG149889A1 (en) | 2003-10-30 | 2009-02-27 | Cytonome Inc | Multilayer hydrodynamic sheath flow structure |
US9260693B2 (en) * | 2004-12-03 | 2016-02-16 | Cytonome/St, Llc | Actuation of parallel microfluidic arrays |
AU2005311631B2 (en) | 2004-12-03 | 2012-06-07 | Cytonome/St, Llc | Unitary cartridge for particle processing |
US10908066B2 (en) | 2010-11-16 | 2021-02-02 | 1087 Systems, Inc. | Use of vibrational spectroscopy for microfluidic liquid measurement |
CN105008895B (zh) * | 2012-10-15 | 2019-02-15 | 纳诺赛莱克特生物医药股份有限公司 | 颗粒分选的系统、设备和方法 |
BR112015023155B1 (pt) * | 2013-03-14 | 2022-09-20 | Inguran, Llc | Dispositivo e métodos de triagem de elevado rendimento de espermatozóides |
US10662408B2 (en) | 2013-03-14 | 2020-05-26 | Inguran, Llc | Methods for high throughput sperm sorting |
NZ743491A (en) | 2013-03-14 | 2020-03-27 | Cytonome St Llc | Hydrodynamic focusing apparatus and methods |
US8961904B2 (en) | 2013-07-16 | 2015-02-24 | Premium Genetics (Uk) Ltd. | Microfluidic chip |
US11796449B2 (en) | 2013-10-30 | 2023-10-24 | Abs Global, Inc. | Microfluidic system and method with focused energy apparatus |
US10960396B2 (en) | 2014-05-16 | 2021-03-30 | Cytonome/St, Llc | Thermal activated microfluidic switching |
JP2018509615A (ja) | 2015-02-19 | 2018-04-05 | プレミアム ジェネティクス (ユーケー) リミテッド | 走査型赤外線測定システム |
JP6911021B2 (ja) * | 2015-06-25 | 2021-07-28 | サイトノーム/エスティー・エルエルシー | 音響操作を用いるマイクロ流体デバイスおよびシステム |
CN105149019B (zh) * | 2015-06-29 | 2017-04-19 | 清华大学 | 用于二维流体动力聚焦的微流道结构和微流体芯片 |
US9700891B2 (en) | 2015-11-13 | 2017-07-11 | International Business Machines Corporation | Integrated nanofluidic arrays for high capacity colloid separation |
CN105854963B (zh) * | 2016-04-06 | 2017-11-21 | 清华大学 | 利用单路鞘液实现二维流体动力聚焦的微流道结构和微流体芯片 |
CN106769733B (zh) * | 2017-01-10 | 2020-09-18 | 中国计量大学 | 超声波聚焦式河流泥沙浓度在线测量仪 |
US11982611B2 (en) | 2017-03-20 | 2024-05-14 | Nanocellect Biomedical, Inc. | Systems, apparatuses, and methods for cell sorting and flow cytometry |
CN106914288B (zh) * | 2017-03-21 | 2019-01-29 | 武汉大学 | 一种微流控高频声聚焦芯片及其制备方法 |
WO2018183744A1 (en) | 2017-03-29 | 2018-10-04 | The Research Foundation For The State University Of New York | Microfluidic device and methods |
US10864555B2 (en) * | 2017-09-21 | 2020-12-15 | AMP Robotics Corporation | Systems and methods for robotic suction grippers |
CN107638836B (zh) * | 2017-11-09 | 2023-10-03 | 东南大学 | 一种多重乳液制备系统 |
US20190283022A1 (en) * | 2018-03-15 | 2019-09-19 | Behrad Vahidi | Highly parallel microfluidic blood separation device |
BR112020023607A2 (pt) | 2018-05-23 | 2021-02-17 | Abs Global, Inc. | sistemas e métodos para focalização de partículas em microcanais |
CN109731621B (zh) * | 2019-01-02 | 2020-07-24 | 京东方科技集团股份有限公司 | 微流控基板及其制备方法、微流控面板 |
US10962427B2 (en) * | 2019-01-10 | 2021-03-30 | Nextinput, Inc. | Slotted MEMS force sensor |
WO2020175381A1 (ja) * | 2019-02-27 | 2020-09-03 | 京セラ株式会社 | 粒子分離計測デバイスおよび粒子分離計測装置 |
BR112021020390A2 (pt) | 2019-04-18 | 2022-01-18 | Abs Global Inc | Sistema de distribuição de crioprotetor, sistema de criopreservação para distribuir um crioprotetor a um espécime biológico, método para distribuir um crioprotetor a um espécime biológico, sistema de distribuição e método para preparar um espécime biológico para criopreservação |
US10532357B1 (en) * | 2019-04-26 | 2020-01-14 | Genus Plc | Single-sheath microfluidic chip |
CN110237873B (zh) * | 2019-04-28 | 2024-05-07 | 杭州电子科技大学 | 一种基于声表面波的用于粒子分离的无鞘流微流控芯片 |
CN110343611B (zh) * | 2019-08-14 | 2022-08-30 | 无锡研奥电子科技有限公司 | 一种微流控芯片 |
US11628439B2 (en) | 2020-01-13 | 2023-04-18 | Abs Global, Inc. | Single-sheath microfluidic chip |
BR112022012881A2 (pt) * | 2020-01-13 | 2022-09-06 | Abs Global Inc | Chip microfluídico, método de focagem de partículas em um fluxo de fluido e método para produzir um fluido com células de esperma enviesadas por gênero |
US12135270B2 (en) | 2020-11-23 | 2024-11-05 | Abs Global, Inc. | Modular flow cytometry systems and methods of processing samples |
EP4484010A1 (en) | 2023-06-28 | 2025-01-01 | Instytut Chemii Fizycznej PAN | Microfluidic system with integrated single-mode optical fiber |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6159739A (en) * | 1997-03-26 | 2000-12-12 | University Of Washington | Device and method for 3-dimensional alignment of particles in microfabricated flow channels |
CN1886315A (zh) * | 2003-10-30 | 2006-12-27 | 赛托诺姆公司 | 多层流体动力学鞘流结构 |
CN102713640A (zh) * | 2009-06-10 | 2012-10-03 | 辛温尼奥生物系统公司 | 鞘流装置和方法 |
CN105181559A (zh) * | 2008-01-16 | 2015-12-23 | 生命技术公司 | 用于以声学方式集中的硬件与实现的系统和方法 |
Family Cites Families (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3649829A (en) | 1970-10-06 | 1972-03-14 | Atomic Energy Commission | Laminar flow cell |
US4126425A (en) | 1977-06-15 | 1978-11-21 | Hatch Associates Ltd. | Gas mixer for sublimation purposes |
US4503385A (en) | 1983-07-11 | 1985-03-05 | Becton, Dickinson And Company | Apparatus and method for regulating sheath fluid flow in a hydrodynamically focused fluid flow system |
DE3412620A1 (de) | 1984-04-04 | 1985-10-17 | Basf Ag, 6700 Ludwigshafen | Laseroptische anordnung zur messung des dispergiergrades in stroemenden systemen |
ATE48477T1 (de) | 1984-09-11 | 1989-12-15 | Partec Ag | Verfahren und vorrichtung zur sortierung von mikroskopischen partikeln. |
US4836039A (en) | 1986-09-12 | 1989-06-06 | Canadian Patents & Development Limited | Method and apparatus for introduction of a particulate sample for analysis |
US5021244A (en) | 1988-12-06 | 1991-06-04 | Cytogam, Inc. | Sex-associated membrane antibodies and their use for increasing the probability that offspring will be of a desired sex |
DE3851458T2 (de) | 1987-04-08 | 1995-02-09 | Hitachi Ltd | Vorrichtung mit einer scheideförmigen Durchflusszelle. |
US5040890A (en) | 1987-11-25 | 1991-08-20 | Becton, Dickinson And Company | Sheathed particle flow controlled by differential pressure |
US4844610A (en) | 1988-04-29 | 1989-07-04 | Becton, Dickinson And Company | Backflow isolator and capture system |
CA2055494C (en) | 1989-05-10 | 2000-01-18 | Lawrence Arthur Johnson | Method to preselect the sex of offspring |
US4954715A (en) | 1989-06-26 | 1990-09-04 | Zoeld Tibor | Method and apparatus for an optimized multiparameter flow-through particle and cell analyzer |
US5030002A (en) | 1989-08-11 | 1991-07-09 | Becton, Dickinson And Company | Method and apparatus for sorting particles with a moving catcher tube |
JP3111706B2 (ja) | 1992-02-18 | 2000-11-27 | 株式会社日立製作所 | 粒子分析装置及び粒子分析方法 |
US5521079A (en) | 1994-01-24 | 1996-05-28 | The Regents Of The University Of California | Microcapsule generating system containing an air knife and method of encapsulating |
US5311290A (en) | 1992-09-30 | 1994-05-10 | Pulp And Paper Research Institute Of Canada | Imaging apparatus and method of fiber analysis |
DE69628016T2 (de) | 1995-06-16 | 2004-04-01 | University Of Washington, Seattle | Miniaturisierte differentielle extraktionsvorrichtung und verfahren |
AU6854696A (en) | 1995-09-22 | 1997-04-09 | Gore Hybrid Technologies, Inc. | Improved cell encapsulation device |
US5808737A (en) | 1996-02-29 | 1998-09-15 | Sienna Biotech, Inc. | Pre-analysis chamber for a flow particle analyzer |
US6155751A (en) | 1997-12-11 | 2000-12-05 | Ecotech Systems International, Ltd. | Flow development chamber for creating a vortex flow and a laminar flow |
JPH11171340A (ja) | 1997-12-12 | 1999-06-29 | Mitsui High Tec Inc | 球状物の非接触型搬送装置 |
US6149867A (en) | 1997-12-31 | 2000-11-21 | Xy, Inc. | Sheath fluids and collection systems for sex-specific cytometer sorting of sperm |
WO1999060397A1 (en) | 1998-05-18 | 1999-11-25 | University Of Washington | Liquid analysis cartridge |
US7116407B2 (en) | 1998-12-15 | 2006-10-03 | Union Biometrica, Inc. | System for axial pattern analysis of multicellular organisms |
US6473171B1 (en) | 1999-01-15 | 2002-10-29 | Coors Brewing Company | Biocompatible apparatus for ultrasensitive and rapid detection of contaminants in liquids |
JP2000214070A (ja) | 1999-01-21 | 2000-08-04 | Sysmex Corp | シ―スフロ―セルとそれを用いた血液分析装置 |
US6475364B1 (en) | 1999-02-02 | 2002-11-05 | Caliper Technologies Corp. | Methods, devices and systems for characterizing proteins |
US6506609B1 (en) | 1999-05-17 | 2003-01-14 | Caliper Technologies Corp. | Focusing of microparticles in microfluidic systems |
US6592821B1 (en) | 1999-05-17 | 2003-07-15 | Caliper Technologies Corp. | Focusing of microparticles in microfluidic systems |
US7208265B1 (en) | 1999-11-24 | 2007-04-24 | Xy, Inc. | Method of cryopreserving selected sperm cells |
US7553453B2 (en) | 2000-06-02 | 2009-06-30 | Honeywell International Inc. | Assay implementation in a microfluidic format |
US7641856B2 (en) | 2004-05-14 | 2010-01-05 | Honeywell International Inc. | Portable sample analyzer with removable cartridge |
US7242474B2 (en) | 2004-07-27 | 2007-07-10 | Cox James A | Cytometer having fluid core stream position control |
US6890093B2 (en) | 2000-08-07 | 2005-05-10 | Nanostream, Inc. | Multi-stream microfludic mixers |
WO2002068104A1 (en) | 2001-02-23 | 2002-09-06 | Japan Science And Technology Corporation | Process for producing emulsion and microcapsules and apparatus therefor |
US7429354B2 (en) | 2001-03-19 | 2008-09-30 | Gyros Patent Ab | Structural units that define fluidic functions |
US20020150502A1 (en) | 2001-04-03 | 2002-10-17 | Weigl Bernhard H. | Surface tension reduction channel |
ES2405320T3 (es) | 2001-05-17 | 2013-05-30 | Beckman Coulter, Inc. | Citómetro de flujo con un sistema de alienación óptica automatizado activo |
US7105355B2 (en) * | 2001-07-18 | 2006-09-12 | The Regents Of The University Of Michigan | Flow cytometers and detection system of lesser size |
US6663352B2 (en) | 2001-07-25 | 2003-12-16 | Itt Manufacturing Enterprises, Inc. | Method and apparatus for dynamically determining vapor pressure in pumping systems |
US7223371B2 (en) | 2002-03-14 | 2007-05-29 | Micronics, Inc. | Microfluidic channel network device |
US7312085B2 (en) | 2002-04-01 | 2007-12-25 | Fluidigm Corporation | Microfluidic particle-analysis systems |
CA2480200A1 (en) | 2002-04-02 | 2003-10-16 | Caliper Life Sciences, Inc. | Methods and apparatus for separation and isolation of components from a biological sample |
US7157274B2 (en) | 2002-06-24 | 2007-01-02 | Cytonome, Inc. | Method and apparatus for sorting particles |
US6808075B2 (en) | 2002-04-17 | 2004-10-26 | Cytonome, Inc. | Method and apparatus for sorting particles |
US6976590B2 (en) | 2002-06-24 | 2005-12-20 | Cytonome, Inc. | Method and apparatus for sorting particles |
US6877528B2 (en) | 2002-04-17 | 2005-04-12 | Cytonome, Inc. | Microfluidic system including a bubble valve for regulating fluid flow through a microchannel |
US6710874B2 (en) | 2002-07-05 | 2004-03-23 | Rashid Mavliev | Method and apparatus for detecting individual particles in a flowable sample |
US7118676B2 (en) | 2003-09-04 | 2006-10-10 | Arryx, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
US11243494B2 (en) | 2002-07-31 | 2022-02-08 | Abs Global, Inc. | Multiple laminar flow-based particle and cellular separation with laser steering |
US20040043506A1 (en) * | 2002-08-30 | 2004-03-04 | Horst Haussecker | Cascaded hydrodynamic focusing in microfluidic channels |
US6825926B2 (en) * | 2002-11-19 | 2004-11-30 | International Remote Imaging Systems, Inc. | Flow cell for urinalysis diagnostic system and method of making same |
US20060113190A1 (en) | 2002-12-27 | 2006-06-01 | Kurnik Ronald T | Microfluidic device and method for improved sample handling |
HUE026838T2 (en) | 2003-03-28 | 2016-07-28 | Inguran Llc | Method for providing sex-sorted animal sperm |
JP4431857B2 (ja) | 2003-05-30 | 2010-03-17 | 富士フイルム株式会社 | マイクロデバイス |
US7115230B2 (en) | 2003-06-26 | 2006-10-03 | Intel Corporation | Hydrodynamic focusing devices |
US7381361B2 (en) | 2003-06-26 | 2008-06-03 | Intel Corporation | Fabricating structures in micro-fluidic channels based on hydrodynamic focusing |
US7298478B2 (en) | 2003-08-14 | 2007-11-20 | Cytonome, Inc. | Optical detector for a particle sorting system |
CN1860363B (zh) | 2003-08-28 | 2011-12-28 | 赛路拉公司 | 用于在微流通道网络中使用光学开关将细胞分类的方法和设备 |
US7407799B2 (en) | 2004-01-16 | 2008-08-05 | California Institute Of Technology | Microfluidic chemostat |
US20050221339A1 (en) | 2004-03-31 | 2005-10-06 | Medical Research Council Harvard University | Compartmentalised screening by microfluidic control |
US7442339B2 (en) | 2004-03-31 | 2008-10-28 | Intel Corporation | Microfluidic apparatus, Raman spectroscopy systems, and methods for performing molecular reactions |
US20050252840A1 (en) | 2004-05-13 | 2005-11-17 | Eksigent Technologies, Llc | Micromixer |
JP4462058B2 (ja) | 2004-09-22 | 2010-05-12 | 富士ゼロックス株式会社 | 微粒子の分級方法、及び微粒子の分級装置 |
AU2005311631B2 (en) | 2004-12-03 | 2012-06-07 | Cytonome/St, Llc | Unitary cartridge for particle processing |
US7355696B2 (en) | 2005-02-01 | 2008-04-08 | Arryx, Inc | Method and apparatus for sorting cells |
WO2006116616A2 (en) | 2005-04-26 | 2006-11-02 | Applera Corporation | Systems and methods for multiple analyte detection |
US7918244B2 (en) | 2005-05-02 | 2011-04-05 | Massachusetts Institute Of Technology | Microfluidic bubble logic devices |
US8398935B2 (en) | 2005-06-09 | 2013-03-19 | The United States Of America, As Represented By The Secretary Of The Navy | Sheath flow device and method |
US7942568B1 (en) | 2005-06-17 | 2011-05-17 | Sandia Corporation | Active micromixer using surface acoustic wave streaming |
US20090201504A1 (en) * | 2005-08-09 | 2009-08-13 | Maxwell Sensors, Inc. | Hydrodynamic focusing for analyzing rectangular microbeads |
KR100670590B1 (ko) | 2005-10-05 | 2007-01-17 | 주식회사 디지탈바이오테크놀러지 | 확장된 채널을 가진 마이크로칩 및 이를 이용하는 미세입자 분석 장치 |
US7776268B2 (en) | 2005-10-13 | 2010-08-17 | Accuri Cytometers, Inc. | User interface for a fluidic system of a flow cytometer |
US7833421B2 (en) | 2005-10-25 | 2010-11-16 | Elmar Huymann | Degermination through cavitation |
WO2007075920A2 (en) | 2005-12-22 | 2007-07-05 | Honeywell International Inc. | Hematological analyzer system with removable cartridge |
US20110189714A1 (en) * | 2010-02-03 | 2011-08-04 | Ayliffe Harold E | Microfluidic cell sorter and method |
WO2007105584A1 (ja) | 2006-03-09 | 2007-09-20 | Sekisui Chemical Co., Ltd. | マイクロ流体デバイスおよび微量液体希釈方法 |
WO2007130647A2 (en) | 2006-05-05 | 2007-11-15 | Cytonome, Inc. | Actuation of parallel microfluidic arrays |
US20090051372A1 (en) | 2006-10-30 | 2009-02-26 | Palaniappan Sethu | 3D fluid confined sample stream coulter flow cytometry |
US7867778B2 (en) * | 2007-02-23 | 2011-01-11 | Visiongate, Inc. | Fluid focusing for positional control of a specimen for 3-D imaging |
EP2145687B1 (en) | 2007-05-15 | 2014-12-03 | Panasonic Corporation | Component separation device |
KR20080110167A (ko) | 2007-06-14 | 2008-12-18 | 삼성전자주식회사 | 시료 중의 입자를 집중화하고 검출하기 위한 장치 및 그를제조하는 방법 |
US20090001024A1 (en) | 2007-06-26 | 2009-01-01 | Porter Marc D | Using asymmetrical flow focusing to detect and enumerate magnetic particles in microscale flow systems with embedded magnetic-field sensors |
US8941826B2 (en) * | 2007-09-10 | 2015-01-27 | The Penn State Research Foundation | Three-dimensional (3D) hydrodynamic focusing using a microfluidic device |
JP5262064B2 (ja) | 2007-10-30 | 2013-08-14 | 富士ゼロックス株式会社 | マイクロリアクターを用いた反応方法及びマイクロリアクター |
JP4509166B2 (ja) | 2007-11-02 | 2010-07-21 | ソニー株式会社 | 微小粒子の測定方法、及び測定装置 |
JP4661942B2 (ja) | 2008-05-13 | 2011-03-30 | ソニー株式会社 | マイクロチップとその流路構造 |
WO2009151624A1 (en) * | 2008-06-13 | 2009-12-17 | Xy, Inc. | Lubricious microfluidic flow path system |
US8865003B2 (en) | 2008-09-26 | 2014-10-21 | Abbott Laboratories | Apparatus and method for separation of particles suspended in a liquid from the liquid in which they are suspended |
JP2010151777A (ja) | 2008-11-19 | 2010-07-08 | Sony Corp | 微小粒子解析装置、微小粒子解析用マイクロチップ及び微小粒子解析方法 |
US20100140185A1 (en) | 2008-12-05 | 2010-06-10 | John Hill | Wastewater treatment |
WO2010104597A2 (en) | 2009-03-13 | 2010-09-16 | President And Fellows Of Harvard College | Scale-up of microfluidic devices |
JP2010252785A (ja) | 2009-03-31 | 2010-11-11 | Kanagawa Acad Of Sci & Technol | 細胞濃縮分離装置 |
FR2946960B1 (fr) | 2009-06-19 | 2016-07-01 | Presticorc | Coiffe du type a emmanchement pour bouteille et la bouteille equipee d'une telle coiffe |
US20110001963A1 (en) | 2009-07-02 | 2011-01-06 | Durack Gary P | System and method for the measurement of multiple emissions from multiple parallel flow channels in a flow cytometry system |
US20110008817A1 (en) | 2009-07-08 | 2011-01-13 | Durack Gary P | Microfluidic device having a flow channel within a gain medium |
US9625454B2 (en) * | 2009-09-04 | 2017-04-18 | The Research Foundation For The State University Of New York | Rapid and continuous analyte processing in droplet microfluidic devices |
WO2011097032A1 (en) | 2010-02-05 | 2011-08-11 | Cytonome/St, Llc | Multiple flow channel particle analysis system |
US9695390B2 (en) * | 2010-08-23 | 2017-07-04 | President And Fellows Of Harvard College | Acoustic waves in microfluidics |
WO2012054904A2 (en) * | 2010-10-21 | 2012-04-26 | The Regents Of The University Of California | Microfluidics with wirelessly powered electronic circuits |
US8528427B2 (en) | 2010-10-29 | 2013-09-10 | Becton, Dickinson And Company | Dual feedback vacuum fluidics for a flow-type particle analyzer |
WO2012075358A2 (en) * | 2010-12-02 | 2012-06-07 | The Government Of The United States Of America, As Represented By The Secretary Of The Navy | Tubular array for fluidic focusing with integrated optical access region |
JP5720233B2 (ja) | 2010-12-17 | 2015-05-20 | ソニー株式会社 | マイクロチップ及び微小粒子分取装置 |
US8695618B2 (en) | 2010-12-22 | 2014-04-15 | Carnegie Mellon University | 3D chemical pattern control in 2D fluidics devices |
WO2012094325A2 (en) | 2011-01-03 | 2012-07-12 | Cytonome/St. Llc | Method and apparatus for monitoring and optimizing particle sorting |
WO2012135663A2 (en) | 2011-03-31 | 2012-10-04 | University Of South Florida | Two-stage microfluidic device for acoustic particle manipulation and methods of separation |
US8727129B2 (en) | 2011-08-16 | 2014-05-20 | Lawrence Livermore National Security, Llc. | Microfluidic ultrasonic particle separators with engineered node locations and geometries |
KR101242540B1 (ko) | 2011-08-19 | 2013-03-19 | (주)로고스바이오시스템스 | 마이크로 칩 |
US10215995B2 (en) | 2012-05-16 | 2019-02-26 | Cytonome/St, Llc | Large area, low f-number optical system |
WO2013191772A1 (en) | 2012-06-21 | 2013-12-27 | Stc.Unm | Spatially correlated light collection from multiple sample streams excited with a line focused light source |
JP6036496B2 (ja) | 2012-07-24 | 2016-11-30 | ソニー株式会社 | 微小粒子分取方法 |
US9529203B2 (en) | 2012-09-17 | 2016-12-27 | Cytonome/St, Llc | Focal plane shifting system |
US10190960B2 (en) | 2013-03-14 | 2019-01-29 | Cytonome/St, Llc | Micro-lens systems for particle processing systems |
BR112015023155B1 (pt) * | 2013-03-14 | 2022-09-20 | Inguran, Llc | Dispositivo e métodos de triagem de elevado rendimento de espermatozóides |
NZ743491A (en) | 2013-03-14 | 2020-03-27 | Cytonome St Llc | Hydrodynamic focusing apparatus and methods |
JP6205055B2 (ja) | 2013-07-16 | 2017-09-27 | プレミアム ジェネティクス (ユーケー) リミテッド | マイクロ流体チップ |
US8961904B2 (en) | 2013-07-16 | 2015-02-24 | Premium Genetics (Uk) Ltd. | Microfluidic chip |
US11796449B2 (en) | 2013-10-30 | 2023-10-24 | Abs Global, Inc. | Microfluidic system and method with focused energy apparatus |
JP6733909B2 (ja) | 2013-10-30 | 2020-08-05 | エービーエス グローバル インコーポレイテッド | 複数の物質を識別する装置、複数の物質を識別するコンピュータシステム、複数の物質を識別するための複数の命令をコンピュータに実行させるプログラムおよびサンプル流体混合物中を流れる複数の物質を識別する方法 |
US9939362B2 (en) | 2014-02-20 | 2018-04-10 | Malvern Instruments Limited | Heterogeneous fluid sample characterization |
CN107024744A (zh) | 2016-01-29 | 2017-08-08 | 青岛海信宽带多媒体技术有限公司 | 一种光模块及波长监控方法 |
-
2014
- 2014-03-14 NZ NZ743491A patent/NZ743491A/en unknown
- 2014-03-14 CN CN201480028102.2A patent/CN105283753B/zh active Active
- 2014-03-14 WO PCT/US2014/029090 patent/WO2014153107A1/en active Application Filing
- 2014-03-14 US US14/213,800 patent/US10583439B2/en active Active
- 2014-03-14 EP EP14722885.2A patent/EP2972212B1/en active Active
- 2014-03-14 EP EP22214486.7A patent/EP4220124A1/en active Pending
- 2014-03-14 NZ NZ711384A patent/NZ711384A/en unknown
-
2020
- 2020-03-09 US US16/813,255 patent/US11446665B2/en active Active
-
2022
- 2022-09-14 US US17/944,867 patent/US12172163B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6159739A (en) * | 1997-03-26 | 2000-12-12 | University Of Washington | Device and method for 3-dimensional alignment of particles in microfabricated flow channels |
CN1886315A (zh) * | 2003-10-30 | 2006-12-27 | 赛托诺姆公司 | 多层流体动力学鞘流结构 |
CN105181559A (zh) * | 2008-01-16 | 2015-12-23 | 生命技术公司 | 用于以声学方式集中的硬件与实现的系统和方法 |
CN102713640A (zh) * | 2009-06-10 | 2012-10-03 | 辛温尼奥生物系统公司 | 鞘流装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140318645A1 (en) | 2014-10-30 |
NZ711384A (en) | 2018-06-29 |
EP4220124A1 (en) | 2023-08-02 |
CN105283753A (zh) | 2016-01-27 |
WO2014153107A1 (en) | 2014-09-25 |
US12172163B2 (en) | 2024-12-24 |
EP2972212B1 (en) | 2022-12-21 |
US10583439B2 (en) | 2020-03-10 |
EP2972212A1 (en) | 2016-01-20 |
US11446665B2 (en) | 2022-09-20 |
US20200206741A1 (en) | 2020-07-02 |
US20230077773A1 (en) | 2023-03-16 |
NZ743491A (en) | 2020-03-27 |
WO2014153107A8 (en) | 2015-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105283753B (zh) | 流体动力聚焦设备和方法 | |
US11446664B2 (en) | Combined sorting and concentrating particles in a microfluidic device | |
KR101850548B1 (ko) | 미소 입자 분류 장치, 마이크로칩 모듈 및 미소 입자들의 분류 방법 | |
JP4572973B2 (ja) | マイクロチップ及びマイクロチップにおける送流方法 | |
JP4661942B2 (ja) | マイクロチップとその流路構造 | |
KR101776974B1 (ko) | 마이크로칩 및 미립자 분석 장치 | |
US11733152B2 (en) | Microfluidic system with combined electrical and optical detection for high accuracy particle sorting and methods thereof | |
EP2796854A2 (en) | Micro-lens systems for particle processing systems | |
JP2013032994A (ja) | マイクロチップ及び微小粒子分析装置 | |
JP5316530B2 (ja) | マイクロチップとその流路構造 | |
JP5092881B2 (ja) | 流路構造及びマイクロチップ | |
CN113441195A (zh) | 液体处理装置和液体处理方法 | |
JP6965953B2 (ja) | マイクロチップ及び微小粒子分析装置 | |
US20240139741A1 (en) | Massively parallel cell analysis and sorting apparatus and methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |