[go: up one dir, main page]

CN105280725B - A kind of gallium nitride diode and its manufacturing method - Google Patents

A kind of gallium nitride diode and its manufacturing method Download PDF

Info

Publication number
CN105280725B
CN105280725B CN201510185726.1A CN201510185726A CN105280725B CN 105280725 B CN105280725 B CN 105280725B CN 201510185726 A CN201510185726 A CN 201510185726A CN 105280725 B CN105280725 B CN 105280725B
Authority
CN
China
Prior art keywords
layer
barrier layer
gallium nitride
anode
layer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510185726.1A
Other languages
Chinese (zh)
Other versions
CN105280725A (en
Inventor
裴轶
邓光敏
张乃千
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU JIEXINWEI SEMICONDUCTOR TECHNOLOGY Co Ltd
Original Assignee
SUZHOU JIEXINWEI SEMICONDUCTOR TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU JIEXINWEI SEMICONDUCTOR TECHNOLOGY Co Ltd filed Critical SUZHOU JIEXINWEI SEMICONDUCTOR TECHNOLOGY Co Ltd
Priority to CN201510185726.1A priority Critical patent/CN105280725B/en
Publication of CN105280725A publication Critical patent/CN105280725A/en
Application granted granted Critical
Publication of CN105280725B publication Critical patent/CN105280725B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/60Schottky-barrier diodes 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/112Constructional design considerations for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layers, e.g. by using channel stoppers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/01Manufacture or treatment
    • H10D8/051Manufacture or treatment of Schottky diodes

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

The invention discloses a kind of gallium nitride diode and preparation method thereof, which includes: substrate;The first channel layer on the substrate;The first two-dimensional electron gas is formed at the interface of the first barrier layer on first channel layer, first barrier layer and first channel layer;Cap layer structure on first barrier layer;On first barrier layer of cap layer structure side and/or cathode within first barrier layer is extended to, is provided with gap between the cap layer structure and the cathode;On first barrier layer of the cap layer structure other side and/or anode within first barrier layer is extended to, and the anode is covered to the upper surface of the cap layer structure.Gallium nitride diode of the present invention have low turn-on voltage, low on-resistance, high forward conduction electric current, high reverse withstand voltage and low reverse leakage characteristic.

Description

一种氮化镓二极管及其制作方法A kind of gallium nitride diode and its manufacturing method

技术领域technical field

本发明涉及半导体技术领域,尤其涉及一种氮化镓二极管及其制作方法。The present invention relates to the technical field of semiconductors, and in particular, to a gallium nitride diode and a manufacturing method thereof.

背景技术Background technique

二极管作为电子电力的基本构成单元,是稳压器、整流器和逆变器中不可缺少的部分。随着现代电力电子的发展,二极管在高击穿电压、低功耗和低漏电等性能上提出了更高的要求。As the basic building block of electronic power, diodes are an indispensable part of voltage regulators, rectifiers and inverters. With the development of modern power electronics, diodes have put forward higher requirements on the performance of high breakdown voltage, low power consumption and low leakage.

半导体材料氮化镓(GaN)具有禁带宽度大、导热效率高、击穿场强大的特性,使得氮化镓器件拥有低导通电阻和高工作频率的优点,能满足现代电力电子发展对二极管的要求。The semiconductor material gallium nitride (GaN) has the characteristics of large band gap, high thermal conductivity, and strong breakdown field, which makes gallium nitride devices have the advantages of low on-resistance and high operating frequency, which can meet the requirements of modern power electronics development for diodes. requirements.

目前,基于GaN材料的二极管已经取得较大发展。现有的GaN肖特基二极管大多是通过该二极管中的金属材料与半导体材料形成的肖特基势垒来实现整流特性的。此时,电子需要越过肖特基势垒才能实现导通,所以正向开启电压较大,一般大于1.5V。若要减小正向开启电压,则需要减小肖特基势垒,但肖特基势垒减小后,当该二极管外加反向偏压时,漏电将会增大,且存在镜像力效应导致肖特基势垒高度降低,漏电增加。围绕着提高击穿电压、降低反向漏电电流、增大正向电流和减小开启电压等方面,GaN肖特基二极管还需要不断改进创新。At present, diodes based on GaN materials have achieved great development. Most of the existing GaN Schottky diodes achieve rectification characteristics through a Schottky barrier formed by metal materials and semiconductor materials in the diodes. At this time, electrons need to cross the Schottky barrier to achieve conduction, so the forward turn-on voltage is relatively large, generally greater than 1.5V. To reduce the forward turn-on voltage, the Schottky barrier needs to be reduced, but after the Schottky barrier is reduced, when the diode is applied with reverse bias, the leakage current will increase, and there is a mirror force effect As a result, the Schottky barrier height is reduced and the leakage current is increased. Around increasing breakdown voltage, reducing reverse leakage current, increasing forward current, and reducing turn-on voltage, GaN Schottky diodes still need continuous improvement and innovation.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于提出一种氮化镓二极管及其制作方法,实现低开启电压和低反向漏电。The purpose of the present invention is to provide a gallium nitride diode and a manufacturing method thereof to achieve low turn-on voltage and low reverse leakage.

为达此目的,本发明采用以下技术方案:For this purpose, the present invention adopts the following technical solutions:

第一方面,本发明公开了一种氮化镓二极管,包括:In a first aspect, the present invention discloses a gallium nitride diode, comprising:

衬底;substrate;

位于所述衬底上的第一沟道层;a first channel layer on the substrate;

位于所述第一沟道层上的第一势垒层,所述第一势垒层与所述第一沟道层的交界面处形成有第一二维电子气;a first potential barrier layer located on the first channel layer, a first two-dimensional electron gas is formed at the interface between the first potential barrier layer and the first channel layer;

位于所述第一势垒层上的帽层结构;a cap layer structure on the first barrier layer;

位于所述帽层结构一侧第一势垒层上和/或延伸至所述第一势垒层之内的阴极,所述帽层结构和所述阴极之间设置有间隙;a cathode located on the first barrier layer on one side of the cap layer structure and/or extending into the first barrier layer, a gap is provided between the cap layer structure and the cathode;

位于所述帽层结构另一侧第一势垒层上和/或延伸至所述第一势垒层之内的阳极,且所述阳极覆盖至所述帽层结构的上表面。An anode located on and/or extending into the first barrier layer on the other side of the cap layer structure and covering the upper surface of the cap layer structure.

进一步地,还包括:Further, it also includes:

位于所述帽层结构之下以及所述帽层结构和所述阴极之间的第一势垒层上的第二沟道层;a second channel layer under the capping structure and on the first barrier layer between the capping structure and the cathode;

位于所述帽层结构和所述第二沟道层之间以及所述帽层结构和所述阴极之间的第二沟道层上的第二势垒层,所述第二势垒层与所述第二沟道层的交界面处形成有第二二维电子气。a second barrier layer on the second channel layer between the cap layer structure and the second channel layer and between the cap layer structure and the cathode, the second barrier layer being connected to A second two-dimensional electron gas is formed at the interface of the second channel layer.

进一步地,所述帽层结构的材料为铟镓氮、铝铟镓氮或者P型铟镓氮。Further, the material of the cap layer structure is indium gallium nitride, aluminum indium gallium nitride or p-type indium gallium nitride.

进一步地,所述P型铟镓氮中掺杂有镁。Further, the P-type indium gallium nitride is doped with magnesium.

进一步地,所述帽层结构的厚度为2纳米~20纳米。Further, the thickness of the cap layer structure is 2 nanometers to 20 nanometers.

进一步地,与所述阴极和所述阳极接触的所述第一势垒层的表面区域分别掺杂有杂质。Further, the surface regions of the first barrier layer in contact with the cathode and the anode are respectively doped with impurities.

进一步地,所述阴极和所述阳极的制备过程完全相同。Further, the preparation process of the cathode and the anode are completely the same.

进一步地,所述阳极包括第一阳极和第二阳极;Further, the anode includes a first anode and a second anode;

所述第一阳极位于所述帽层结构另一侧的所述第一势垒层上,且所述第一阳极与所述帽层结构接触;the first anode is located on the first barrier layer on the other side of the capping structure, and the first anode is in contact with the capping structure;

所述第二阳极位于所述第一阳极和所述帽层结构上;其中,the second anode is located on the first anode and the capping structure; wherein,

所述第一阳极与所述第一势垒层形成欧姆接触,所述第二阳极与所述帽层结构形成肖特基接触。The first anode forms an ohmic contact with the first barrier layer, and the second anode forms a Schottky contact with the cap layer structure.

第二方面,本发明公开了一种氮化镓二极管的制作方法,包括:In a second aspect, the present invention discloses a method for manufacturing a gallium nitride diode, comprising:

提供衬底;provide a substrate;

在所述衬底上形成第一沟道层;forming a first channel layer on the substrate;

在所述第一沟道层上形成第一势垒层,所述第一势垒层与所述第一沟道层的交界面处形成有第一二维电子气;forming a first potential barrier layer on the first channel layer, and a first two-dimensional electron gas is formed at the interface between the first potential barrier layer and the first channel layer;

在所述第一势垒层上形成帽层结构,以及forming a capping layer structure on the first barrier layer, and

在所述帽层结构一侧第一势垒层上和/或延伸至所述第一势垒层之内形成阴极,所述帽层结构和所述阴极之间设置有间隙,以及forming a cathode on and/or extending into the first barrier layer on one side of the cap layer structure, a gap is provided between the cap layer structure and the cathode, and

在所述帽层结构另一侧第一势垒层上和/或延伸至所述第一势垒层之内形成阳极,且所述阳极覆盖至所述帽层结构的上表面。An anode is formed on and/or extending into the first barrier layer on the other side of the capping structure, and the anode covers the upper surface of the capping structure.

进一步地,在所述第一沟道层上形成第一势垒层,所述第一势垒层与所述第一沟道层的交界面处形成有第一二维电子气之后,所述方法还包括:Further, after a first barrier layer is formed on the first channel layer, and a first two-dimensional electron gas is formed at the interface between the first barrier layer and the first channel layer, the Methods also include:

在所述第一势垒层上形成第二沟道层;forming a second channel layer on the first barrier layer;

在所述第二沟道层上形成第二势垒层,所述第二势垒层与所述第二沟道层的交界面处形成有第二二维电子气,A second barrier layer is formed on the second channel layer, and a second two-dimensional electron gas is formed at the interface between the second barrier layer and the second channel layer,

所述形成帽层结构是在所述第二势垒层上形成的。The forming a cap layer structure is formed on the second barrier layer.

本发明实施例提供的氮化镓二极管及其制作方法,通过引入帽层结构,且阳极的一部分覆盖至帽层结构的上表面,使得帽层结构上方的阳极控制帽层结构下方第一沟道层与第一势垒层交界面处第一二维电子气的导通和关断,实现该氮化镓二极管的整流特性,使得该氮化镓二极管同时具有低开启电压、低导通电阻、高正向导通电流、高反向耐压和低反向漏电的特性。In the gallium nitride diode and its manufacturing method provided by the embodiments of the present invention, a cap layer structure is introduced, and a part of the anode covers the upper surface of the cap layer structure, so that the anode above the cap layer structure controls the first channel below the cap layer structure The turn-on and turn-off of the first two-dimensional electron gas at the interface between the layer and the first barrier layer realizes the rectification characteristics of the gallium nitride diode, so that the gallium nitride diode has low turn-on voltage, low on-resistance, Features high forward current, high reverse withstand voltage and low reverse leakage.

附图说明Description of drawings

为了更加清楚地说明本发明示例性实施例的技术方案,下面对描述实施例中所需要用到的附图做一简单介绍。显然,所介绍的附图只是本发明所要描述的一部分实施例的附图,而不是全部的附图,对于本领域普通技术人员,在不付出创造性劳动的前提下,还可以根据这些附图得到其他的附图。In order to illustrate the technical solutions of the exemplary embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in describing the embodiments. Obviously, the introduced drawings are only a part of the drawings of the embodiments to be described in the present invention, rather than all drawings. For those of ordinary skill in the art, without creative work, they can also obtain the drawings according to these drawings. Additional drawings.

图1是本发明实施例一提供的氮化镓二极管导电沟道关闭时的剖面图。FIG. 1 is a cross-sectional view of the gallium nitride diode according to the first embodiment of the present invention when the conduction channel is turned off.

图2A是本发明实施例一提供的氮化镓二极管无外加偏压,且没有帽层结构时的能带图。FIG. 2A is an energy band diagram of the gallium nitride diode provided in the first embodiment of the present invention when there is no external bias voltage and no cap layer structure.

图2B是本发明实施例一提供的氮化镓二极管无外加偏压,且帽层结构的材料是铟镓氮时的能带图。FIG. 2B is an energy band diagram of the gallium nitride diode provided in the first embodiment of the present invention when no external bias is applied, and the material of the cap layer structure is indium gallium nitride.

图2C是本发明实施例一提供的氮化镓二极管无外加偏压,且帽层结构的材料是P型铟镓氮时的能带图。FIG. 2C is an energy band diagram of the gallium nitride diode provided in the first embodiment of the present invention when there is no external bias voltage, and the material of the cap layer structure is P-type indium gallium nitride.

图3是本发明实施例一提供的氮化镓二极管导电沟道恢复时的剖面图。FIG. 3 is a cross-sectional view of the gallium nitride diode according to the first embodiment of the present invention when the conductive channel is recovered.

图4是本发明实施例一提供的氮化镓二极管制作方法的流程图。FIG. 4 is a flowchart of a method for fabricating a gallium nitride diode according to Embodiment 1 of the present invention.

图5A是本发明实施例一提供的氮化镓二极管制作方法中步骤提供衬底至步骤在第一沟道层上形成第一势垒层,第一势垒层与第一沟道层的交界面处形成有第一二维电子气对应的剖面图。5A shows the first barrier layer formed on the first channel layer from the step of providing the substrate to the step of the method for fabricating a gallium nitride diode according to the first embodiment of the present invention, and the intersection of the first barrier layer and the first channel layer A cross-sectional view corresponding to the first two-dimensional electron gas is formed at the interface.

图5B是本发明实施例一提供的氮化镓二极管制作方法中步骤在第一势垒层上形成帽层对应的剖面图。5B is a cross-sectional view corresponding to the steps of forming a cap layer on the first barrier layer in the method for fabricating a gallium nitride diode according to Embodiment 1 of the present invention.

图5C是本发明实施例一提供的氮化镓二极管制作方法中步骤刻蚀帽层,将刻蚀后的帽层两侧的第一势垒层裸露出来对应的剖面图。5C is a cross-sectional view corresponding to the step of etching the cap layer in the method for manufacturing a gallium nitride diode according to Embodiment 1 of the present invention, and exposing the first barrier layers on both sides of the etched cap layer.

图5D是本发明实施例一提供的氮化镓二极管制作方法中步骤在刻蚀后的帽层两侧裸露出来的第一势垒层上同时形成阴极和第一阳极对应的剖面图。5D is a cross-sectional view of simultaneously forming a cathode and a first anode on the first barrier layer exposed on both sides of the etched cap layer in the method for fabricating a gallium nitride diode according to Embodiment 1 of the present invention.

图5E是本发明实施例一提供的氮化镓二极管制作方法中步骤在第一阳极和刻蚀后的帽层上形成第二阳极,第二阳极覆盖部分刻蚀后的帽层上表面对应的剖面图。5E shows the steps of forming a second anode on the first anode and the etched cap layer in the method for fabricating a gallium nitride diode provided in the first embodiment of the present invention, and the second anode covers a portion of the upper surface of the etched cap layer corresponding to Sectional drawing.

图6是本发明实施例二提供的氮化镓二极管导电沟道关闭时的剖面图。FIG. 6 is a cross-sectional view of the gallium nitride diode according to the second embodiment of the present invention when the conduction channel is turned off.

图7是本发明实施例二提供的氮化镓二极管制作方法的流程图。FIG. 7 is a flowchart of a method for fabricating a gallium nitride diode according to Embodiment 2 of the present invention.

图8A是本发明实施例二提供的氮化镓二极管制作方法中步骤在刻蚀后的帽层两侧裸露出来的第一势垒层的表面区域进行掺杂对应的剖面图。8A is a cross-sectional view corresponding to the step of doping the surface area of the first barrier layer exposed on both sides of the etched cap layer in the method for fabricating a gallium nitride diode according to Embodiment 2 of the present invention.

图9是本发明实施例三提供的氮化镓二极管导电沟道关闭时的剖面图。FIG. 9 is a cross-sectional view of the gallium nitride diode according to the third embodiment of the present invention when the conduction channel is turned off.

图10是本发明实施例三提供的氮化镓二极管制作方法的流程图。FIG. 10 is a flowchart of a method for fabricating a gallium nitride diode according to Embodiment 3 of the present invention.

图11A是本发明实施例三提供的氮化镓二极管制作方法中步骤在第一势垒层上形成第二沟道层至步骤在刻蚀部分帽层和其下的第二势垒层和第二沟道层。11A shows the steps of forming the second channel layer on the first barrier layer to the step of etching part of the cap layer and the second barrier layer and the second barrier layer under the gallium nitride diode according to the third embodiment of the present invention. Two channel layers.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,以下将结合本发明实施例中的附图,通过具体实施方式,完整地描述本发明的技术方案。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例,基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动的前提下获得的所有其他实施例,均落入本发明的保护范围之内。In order to make the objectives, technical solutions and advantages of the present invention clearer, the technical solutions of the present invention will be completely described below with reference to the accompanying drawings in the embodiments of the present invention and through specific implementation manners. Obviously, the described embodiments are a part of the embodiments of the present invention, rather than all the embodiments, based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work, All fall within the protection scope of the present invention.

首先对本发明实施例提供的氮化镓二极管的工作原理进行说明:1)无外加电压时(VAC=0),帽层结构(材料可以为InGaN,铟镓氮)和第一势垒层(材料可以为AlGaN,铝稼氮)交界面产生负的极化电荷,使能带上移,耗尽第一势垒层(材料可以为AlGaN)和第一沟道层(材料可以为GaN)交界面处的第一二维电子气(Two-dimensional electron gas,简称2DEG),氮化镓二极管关断。2)当阳极上加正压时(VAC>Vk),帽层结构下方的第一势垒层和第一沟道层交界面处导带底下移,当低于费米能级时,第一二维电子气沟道恢复,氮化镓二极管开启。3)当阳极上加负压时(VAC<0),第一势垒层和第一沟道层交界面处导带底进一步上升,2DEG进一步耗尽,氮化镓二极管关断。该氮化镓二极管开启电压,由帽层结构对2DEG的耗尽情况决定,与肖特基势垒高度无关。此外,采用非掺杂InGaN帽层结构,帽层结构下方的第一势垒层和第一沟道层交界面处能带上移幅度小,氮化镓二极管导通时的开启电压小,流过相同电流的功耗低。该氮化镓二极管的漏电由两部分组成:1)帽层结构一侧的阳极与阴极之间的漏电;2)帽层结构上方的阳极与阴极之间的漏电。随着反向电压的增加,帽层结构下方2DEG耗尽层宽度扩展,漏电降低,该电流远小于肖特基遂穿电流。帽层结构上方的阳极与阴极之间的漏电为异质结二极管的漏电,异质结二极管的势垒高度和宽度比肖特基二极管大,且势垒高度不受镜像力影响。原理上该结构的漏电由耗尽区产生的复合电流决定,远小于普通二极管的遂穿电流。First, the working principle of the gallium nitride diode provided by the embodiment of the present invention is described: 1) When there is no applied voltage (V AC =0), the cap layer structure (the material can be InGaN, indium gallium nitride) and the first barrier layer ( The material can be AlGaN, aluminum gallium nitrogen) interface to generate negative polarization charges, so that the energy band is moved up, depleting the first barrier layer (the material can be AlGaN) and the first channel layer (the material can be GaN) The first two-dimensional electron gas (two-dimensional electron gas, 2DEG for short) at the interface turns off the gallium nitride diode. 2) When a positive voltage is applied to the anode (V AC > Vk), the conduction band at the interface between the first barrier layer and the first channel layer under the cap layer structure moves down, and when it is lower than the Fermi level, the first barrier layer moves downward. The one-dimensional electron gas channel recovers and the GaN diode turns on. 3) When a negative voltage is applied to the anode (V AC <0), the bottom of the conduction band at the interface between the first barrier layer and the first channel layer further rises, the 2DEG is further depleted, and the gallium nitride diode is turned off. The turn-on voltage of the GaN diode is determined by the depletion of the 2DEG by the cap layer structure and has nothing to do with the height of the Schottky barrier. In addition, using the undoped InGaN cap layer structure, the energy band upward shift at the interface between the first barrier layer and the first channel layer under the cap layer structure is small, the turn-on voltage of the GaN diode is small when it is turned on, and the current Low power consumption through the same current. The leakage current of the gallium nitride diode consists of two parts: 1) the leakage current between the anode and the cathode on one side of the cap layer structure; 2) the leakage current between the anode and the cathode above the cap layer structure. As the reverse voltage increases, the width of the 2DEG depletion layer under the cap layer expands and the leakage decreases, which is much smaller than the Schottky tunneling current. The leakage between the anode and the cathode above the cap layer structure is the leakage of the heterojunction diode. The height and width of the barrier of the heterojunction diode are larger than that of the Schottky diode, and the height of the barrier is not affected by the mirror force. In principle, the leakage current of this structure is determined by the recombination current generated in the depletion region, which is much smaller than the tunneling current of ordinary diodes.

实施例一:Example 1:

图1是本发明实施例一提供的氮化镓二极管导电沟道关闭时的剖面图。如图1所示,该氮化镓二极管包括:衬底11,位于衬底11上的第一沟道层131,位于第一沟道层131上的第一势垒层141,第一势垒层141与第一沟道层131的交界面处形成有第一二维电子气151,位于第一势垒层141上的帽层结构16,位于帽层结构16一侧第一势垒层141上和/或延伸至第一势垒层141之内的阴极17,帽层结构16和阴极17之间设置有间隙,位于帽层结构16另一侧第一势垒层141上和/或延伸至第一势垒层141之内的阳极,且阳极覆盖至帽层结构16的上表面。优选地,阳极可以包括第一阳极181和第二阳极182;第一阳极181位于帽层结构16另一侧的第一势垒层141上,且第一阳极181与帽层结构16接触;第二阳极182位于第一阳极181和帽层结构16上。FIG. 1 is a cross-sectional view of the gallium nitride diode according to the first embodiment of the present invention when the conduction channel is turned off. As shown in FIG. 1 , the gallium nitride diode includes: a substrate 11 , a first channel layer 131 located on the substrate 11 , a first barrier layer 141 located on the first channel layer 131 , a first potential barrier A first two-dimensional electron gas 151 is formed at the interface between the layer 141 and the first channel layer 131 , the cap layer structure 16 located on the first barrier layer 141 , and the first barrier layer 141 located on the side of the cap layer structure 16 . On and/or extending to the cathode 17 within the first barrier layer 141 , a gap is provided between the cap layer structure 16 and the cathode 17 , located on and/or extending from the first barrier layer 141 on the other side of the cap layer structure 16 to the anode within the first barrier layer 141 , and the anode covers the upper surface of the cap layer structure 16 . Preferably, the anode may include a first anode 181 and a second anode 182; the first anode 181 is located on the first barrier layer 141 on the other side of the cap layer structure 16, and the first anode 181 is in contact with the cap layer structure 16; Two anodes 182 are located on the first anode 181 and the cap layer structure 16 .

本实施例中,衬底11的材料可以是碳化硅、硅或蓝宝石。第一沟道层131的材料可以是非掺杂的氮化镓。优选的,该氮化镓二极管还可包括位于衬底11和第一沟道层131之间的缓冲层12,缓冲层12能够起到匹配衬底11材料和提高第一沟道层131质量的作用。其中,缓冲层12的材料可以是非掺杂的氮化镓、氮化铝或其它III族氮化物。In this embodiment, the material of the substrate 11 may be silicon carbide, silicon or sapphire. The material of the first channel layer 131 may be undoped gallium nitride. Preferably, the gallium nitride diode may further include a buffer layer 12 between the substrate 11 and the first channel layer 131 . The buffer layer 12 can match the material of the substrate 11 and improve the quality of the first channel layer 131 . effect. The material of the buffer layer 12 may be undoped gallium nitride, aluminum nitride or other group III nitrides.

第一势垒层141与第一沟道层131形成异质结结构,在第一势垒层141与第一沟道层131的交界面处形成有第一二维电子气151。其中,第一势垒层141的材料可以是铝镓氮或其它V族氮化物。The first barrier layer 141 and the first channel layer 131 form a heterojunction structure, and a first two-dimensional electron gas 151 is formed at the interface between the first barrier layer 141 and the first channel layer 131 . The material of the first barrier layer 141 may be aluminum gallium nitride or other group V nitrides.

帽层结构16的材料可以是铟镓氮、铟铝镓氮或P型铟镓氮,其中,P型铟镓氮的掺杂材料可以是镁。P型铟镓氮的掺杂浓度越小对2EDG的耗尽程度越弱,即2EDG形成的沟道处导带(Ec)与费米能级(Ef)的距离越近,该氮化镓二极管的开启电压越低。为实现较的低开启电压,帽层结构16的材料优选为铟镓氮。The material of the cap layer structure 16 can be indium gallium nitride, indium aluminum gallium nitride or p-type indium gallium nitride, wherein the doping material of p-type indium gallium nitride can be magnesium. The smaller the doping concentration of P-type IGaN, the weaker the depletion of 2EDG, that is, the closer the distance between the conduction band (E c ) and the Fermi level (E f ) at the channel formed by 2EDG, the more The lower the turn-on voltage of the gallium diode. In order to achieve a relatively low turn-on voltage, the material of the cap layer structure 16 is preferably indium gallium nitride.

帽层结构16的厚度大于2纳米时,该氮化镓二极管第一沟道层131与第一势垒层141交界面处的导带的最底位置(即导带底)能够上移至费米能级上方,使得帽层结构16下方第一沟道层131与第一势垒层141交界面处的第一二维电子气151被完全耗尽,同时为了保证该氮化镓二极管具有较小的开启电压(小于1V),帽层结构16的厚度应控制在20纳米以内。因此,帽层结构16的厚度可以是2纳米~20纳米。通过调整帽层结构16的厚度能够使开启电压接近+0V,帽层结构16的长度可以根据具体的氮化镓二极管的设计要求而定。When the thickness of the cap layer structure 16 is greater than 2 nm, the bottommost position of the conduction band (ie, the bottom of the conduction band) at the interface between the first channel layer 131 and the first barrier layer 141 of the gallium nitride diode can be moved up to Above the m energy level, the first two-dimensional electron gas 151 at the interface between the first channel layer 131 and the first barrier layer 141 under the cap layer structure 16 is completely depleted, and at the same time, in order to ensure that the gallium nitride diode has a relatively high energy density. For a small turn-on voltage (less than 1V), the thickness of the cap layer structure 16 should be controlled within 20 nanometers. Therefore, the thickness of the cap layer structure 16 may be 2 nanometers to 20 nanometers. The turn-on voltage can be made close to +0V by adjusting the thickness of the cap layer structure 16 , and the length of the cap layer structure 16 can be determined according to the specific design requirements of the gallium nitride diode.

第一阳极181和第二阳极182可以同时形成,共同构成阳极。阴极17和第一阳极181与第一势垒层141和第一沟道层131形成欧姆接触。第二阳极182覆盖至帽层结构16的上表面且与帽层结构16形成肖特基接触。The first anode 181 and the second anode 182 may be formed simultaneously to constitute an anode together. The cathode 17 and the first anode 181 form ohmic contact with the first barrier layer 141 and the first channel layer 131 . The second anode 182 covers the upper surface of the capping structure 16 and forms a Schottky contact with the capping structure 16 .

如图1所示,当该氮化镓二极管无外加偏压时,帽层结构与第一势垒层交界面处产生的极化电荷,使得帽层结构下方的第一沟道层与第一势垒层交界面处的导带底上移,耗尽帽层结构下方第一沟道层与第一势垒层交界面处的第一二维电子气,该氮化镓二极管的导电沟道关闭。As shown in Figure 1, when the gallium nitride diode is not biased, the polarized charges generated at the interface between the cap layer structure and the first barrier layer make the first channel layer under the cap layer structure and the first barrier layer The bottom of the conduction band at the interface of the barrier layer moves up, depleting the first two-dimensional electron gas at the interface between the first channel layer and the first barrier layer under the cap layer structure, and the conductive channel of the gallium nitride diode closure.

图2A是本发明实施例一提供的氮化镓二极管无外加偏压,且没有帽层结构时的能带图。图2B是本发明实施例一提供的氮化镓二极管无外加偏压,且帽层结构的材料是铟镓氮时的能带图。图2C是本发明实施例一提供的氮化镓二极管无外加偏压,且帽层结构的材料是P型铟镓氮时的能带图。其中,EC和EF分别表示导带和费米能级。由图2A、图2B和图2C可知,帽层结构的材料是非掺杂的铟镓氮时,导带底上移,且帽层结构的材料是铟镓氮时的导带底的上移幅度比帽层结构的材料是P型铟镓氮时的导带底的上移幅度小,即离费米能级近。由于,导带底的上移幅度越小,开启电压越低,因此,帽层结构的材料是铟镓氮时,该氮化镓二极管导通时的开启电压较小、开态功耗较低。因此该实施例一中帽层结构的材料优选为铟镓氮。FIG. 2A is an energy band diagram of the gallium nitride diode provided in the first embodiment of the present invention when there is no external bias voltage and no cap layer structure. FIG. 2B is an energy band diagram of the gallium nitride diode provided in the first embodiment of the present invention when no external bias is applied, and the material of the cap layer structure is indium gallium nitride. FIG. 2C is an energy band diagram of the gallium nitride diode provided in the first embodiment of the present invention when there is no external bias voltage, and the material of the cap layer structure is P-type indium gallium nitride. where E C and E F represent the conduction band and Fermi level, respectively. It can be seen from FIGS. 2A , 2B and 2C that when the material of the cap layer structure is undoped indium gallium nitride, the bottom of the conduction band moves upward, and when the material of the cap layer structure is indium gallium nitride, the magnitude of the upward shift of the bottom of the conduction band When the material of the cap layer structure is P-type indium gallium nitride, the upward shift of the conduction band bottom is smaller, that is, it is close to the Fermi level. Because the smaller the upward shift of the conduction band bottom is, the lower the turn-on voltage is. Therefore, when the material of the cap layer structure is indium gallium nitride, the turn-on voltage and the on-state power consumption of the gallium nitride diode are smaller when it is turned on. . Therefore, the material of the cap layer structure in the first embodiment is preferably indium gallium nitride.

图3是本发明实施例一提供的氮化镓二极管导电沟道恢复时的剖面图。如图3所示,当该氮化镓二极管施加正向偏压时,帽层结构下方第一沟道层与第一势垒层交界面处的导带底下移,当低于费米能级时,帽层结构下方第一沟道层与第一势垒层交界面处的第一二维电子气恢复,该氮化镓二极管的导电沟道恢复。FIG. 3 is a cross-sectional view of the gallium nitride diode according to the first embodiment of the present invention when the conductive channel is recovered. As shown in Fig. 3, when the gallium nitride diode is forward biased, the bottom of the conduction band at the interface between the first channel layer and the first barrier layer under the cap layer structure moves down, and when it is lower than the Fermi level At the time, the first two-dimensional electron gas at the interface between the first channel layer and the first barrier layer under the cap layer structure recovers, and the conductive channel of the gallium nitride diode recovers.

当该氮化镓二极管施加反向偏压时,帽层结构下方第一沟道层与第一势垒层交界面处的导带底上移,帽层结构下方的第一沟道层与第一势垒层交界面处的第一二维电子气耗尽。该氮化镓二极管的漏电由两部分组成:1)帽层结构一侧的阳极与阴极之间的漏电;2)帽层结构上方的阳极与阴极之间的漏电。随着反向电压的增加,帽层结构下方2DEG耗尽层宽度扩展,漏电降低,该电流远小于肖特基遂穿电流。帽层结构上方的阳极与阴极之间的漏电为异质结二极管的漏电,异质结二极管的势垒高度和宽度比肖特基二极管大,且势垒高度不受镜像力影响。原理上该结构的漏电由耗尽区产生的复合电流决定,远小于普通二极管的遂穿电流。When a reverse bias is applied to the gallium nitride diode, the bottom of the conduction band at the interface between the first channel layer and the first barrier layer under the cap layer structure moves upward, and the first channel layer under the cap layer structure and the first barrier layer move upward. The first two-dimensional electron gas at the interface of the first barrier layer is depleted. The leakage current of the gallium nitride diode consists of two parts: 1) the leakage current between the anode and the cathode on one side of the cap layer structure; 2) the leakage current between the anode and the cathode above the cap layer structure. As the reverse voltage increases, the width of the 2DEG depletion layer under the cap layer expands and the leakage decreases, which is much smaller than the Schottky tunneling current. The leakage between the anode and the cathode above the cap layer structure is the leakage of the heterojunction diode. The height and width of the barrier of the heterojunction diode are larger than that of the Schottky diode, and the barrier height is not affected by the mirror force. In principle, the leakage current of this structure is determined by the recombination current generated in the depletion region, which is much smaller than the tunneling current of ordinary diodes.

本发明实施例一提供的氮化镓二极管,通过帽层结构上方的阳极控制帽层结构下方第一沟道层与第一势垒层交界面处第一二维电子气的导通和关断,实现该氮化镓二极管的整流特性,反向时通过提高异质结势垒高度和耗尽层宽度,且无反向势垒降低效应。因此该氮化镓二极管同时具有低开启电压、低导通电阻、高正向导通电流、高反向耐压和低反向漏电的特性,且结构简单。The gallium nitride diode provided in the first embodiment of the present invention controls the on and off of the first two-dimensional electron gas at the interface between the first channel layer and the first barrier layer below the cap layer structure through the anode above the cap layer structure , to achieve the rectification characteristics of the gallium nitride diode, by increasing the height of the heterojunction barrier and the width of the depletion layer in the reverse direction, and without the effect of reducing the reverse barrier. Therefore, the gallium nitride diode has the characteristics of low turn-on voltage, low on-resistance, high forward current, high reverse withstand voltage and low reverse leakage at the same time, and has a simple structure.

图4是本发明实施例一提供的氮化镓二极管制作方法的流程图。如图4所示,该方法包括:FIG. 4 is a flowchart of a method for fabricating a gallium nitride diode according to Embodiment 1 of the present invention. As shown in Figure 4, the method includes:

步骤41、提供衬底。Step 41, providing a substrate.

衬底的材料可以是碳化硅、硅或蓝宝石。The material of the substrate can be silicon carbide, silicon or sapphire.

步骤42、在衬底上形成第一沟道层。Step 42, forming a first channel layer on the substrate.

第一沟道层的材料可以是非掺杂的氮化镓。利用金属有机化合物化学气相沉积工艺或分子束外延工艺,在衬底上形成第一沟道层。The material of the first channel layer may be undoped gallium nitride. The first channel layer is formed on the substrate using a metal organic compound chemical vapor deposition process or a molecular beam epitaxy process.

优选的,在步骤41和步骤42之间,所述方法还可以包括:在衬底上形成缓冲层。缓冲层能够起到匹配衬底材料和提高第一沟道层质量的作用。其中,缓冲层的材料可以是非掺杂的氮化镓、氮化铝或其它III族氮化物。Preferably, between step 41 and step 42, the method may further include: forming a buffer layer on the substrate. The buffer layer can play the role of matching the substrate material and improving the quality of the first channel layer. Wherein, the material of the buffer layer may be undoped gallium nitride, aluminum nitride or other group III nitrides.

步骤43、在第一沟道层上形成第一势垒层,第一势垒层与第一沟道层的交界面处形成有第一二维电子气。Step 43 , forming a first potential barrier layer on the first channel layer, and a first two-dimensional electron gas is formed at the interface between the first potential barrier layer and the first channel layer.

利用金属有机化合物化学气相沉积工艺或分子束外延工艺,在第一沟道层上形成第一势垒层。A first barrier layer is formed on the first channel layer by using a metal organic compound chemical vapor deposition process or a molecular beam epitaxy process.

如图5A所示,图5A示出了步骤41至步骤43对应的剖面图。As shown in FIG. 5A , FIG. 5A shows cross-sectional views corresponding to steps 41 to 43 .

步骤44、在第一势垒层上形成帽层。Step 44 , forming a cap layer on the first barrier layer.

如图5B所示,在第一势垒层141上形成帽层161,此时,帽层161下方第一沟道层131与第一势垒层141交界面处的第一二维电子气被耗尽。As shown in FIG. 5B , a cap layer 161 is formed on the first barrier layer 141 . At this time, the first two-dimensional electron gas at the interface between the first channel layer 131 and the first barrier layer 141 under the cap layer 161 is run out.

步骤45、刻蚀帽层,将刻蚀后的帽层两侧的第一势垒层裸露出来。Step 45 , etching the cap layer, and exposing the first barrier layers on both sides of the etched cap layer.

如图5C所示,利用光刻工艺及干法刻蚀工艺,刻蚀帽层,将刻蚀后的帽层162两侧的第一势垒层141裸露出来,此时,刻蚀后的帽层162下方第一沟道层131与第一势垒层141交界面处的第一二维电子气被耗尽,仅在裸露出来的第一势垒层区域与第一沟道层交界面处存在第一二维电子气151。As shown in FIG. 5C , the cap layer is etched using a photolithography process and a dry etching process, and the first barrier layers 141 on both sides of the etched cap layer 162 are exposed. The first two-dimensional electron gas at the interface between the first channel layer 131 and the first barrier layer 141 under the layer 162 is depleted, and only at the interface between the exposed first barrier layer region and the first channel layer A first two-dimensional electron gas 151 exists.

由于帽层的材料和第一势垒层的材料不同,因此,在刻蚀帽层过程中,能够使得帽层的刻蚀能够精确地停留在第一势垒层上。Since the material of the cap layer is different from the material of the first barrier layer, in the process of etching the cap layer, the etching of the cap layer can precisely stay on the first barrier layer.

当帽层的材料为铟镓氮、铝铟镓氮或P型铟镓氮时,采用光刻工艺及选择性刻蚀工艺,使用三氯化硼/六氟化硫(BCl3/SF6)等离子体作为刻蚀气体对帽层进行刻蚀,当刻蚀完帽层后,三氯化硼/六氟化硫等离子体接触到下方的第一势垒层时会形成三氟化铝,而三氟化铝的挥发性很低,会附着在第一势垒层上起到保护第一势垒层不被刻蚀的作用,所以当刻蚀完帽层后会自动停留在第一势垒层上。When the material of the cap layer is indium gallium nitride, aluminum indium gallium nitride or p-type indium gallium nitride, a photolithography process and a selective etching process are used, using boron trichloride/sulfur hexafluoride (BCl 3 /SF 6 ) The plasma is used as an etching gas to etch the cap layer. When the cap layer is etched, the boron trichloride/sulfur hexafluoride plasma will form aluminum trifluoride when it contacts the first barrier layer below, while The volatility of aluminum trifluoride is very low, and it will adhere to the first barrier layer to protect the first barrier layer from being etched, so when the cap layer is etched, it will automatically stay at the first barrier layer. layer.

步骤46、在刻蚀后的帽层两侧裸露出来的第一势垒层上和/或延伸至第一势垒层之内同时形成阴极和第一阳极。Step 46 , simultaneously forming a cathode and a first anode on the exposed first barrier layer on both sides of the etched cap layer and/or extending into the first barrier layer.

如图5D所示,利用金属电子束蒸发工艺或金属溅射工艺,在刻蚀后的帽层162两侧裸露出来的第一势垒层141上和/或延伸至第一势垒层141之内同时形成阴极17和第一阳极181。As shown in FIG. 5D , using a metal electron beam evaporation process or a metal sputtering process, the exposed first barrier layer 141 on both sides of the etched cap layer 162 and/or extends to the first barrier layer 141 The cathode 17 and the first anode 181 are simultaneously formed therein.

步骤47、在第一阳极和刻蚀后的帽层上形成第二阳极,第二阳极覆盖部分刻蚀后的帽层上表面。Step 47 , forming a second anode on the first anode and the etched cap layer, and the second anode covers part of the upper surface of the etched cap layer.

如图5E所示,利用金属电子束蒸发工艺或金属溅射工艺,在第一阳极181和部分刻蚀后的帽层162之上形成第二阳极182,第二阳极182覆盖部分刻蚀后的帽层162上表面。As shown in FIG. 5E, a metal electron beam evaporation process or a metal sputtering process is used to form a second anode 182 on the first anode 181 and the partially etched cap layer 162, and the second anode 182 covers the partially etched cap layer 162. The upper surface of the cap layer 162 .

本步骤中形成的阳极的覆盖帽层结构部分的面积可以根据具体的氮化镓二极管的设计要求而定。The area of the cap layer structure portion of the anode formed in this step may be determined according to the specific design requirements of the gallium nitride diode.

步骤48、将未被第二阳极覆盖的刻蚀后的帽层的剩余部分进行刻蚀,形成帽层结构。Step 48 , etching the remaining part of the etched cap layer that is not covered by the second anode to form a cap layer structure.

本发明实施例一提供的氮化镓二极管,通过引入帽层结构,且阳极的一部分覆盖至帽层结构的上表面,使得帽层结构上方的阳极控制帽层结构下方第一沟道层与第一势垒层交界面处第一二维电子气的导通和关断,实现该氮化镓二极管的整流特性,使得该氮化镓二极管同时具有低开启电压、低导通电阻、高正向导通电流、高反向耐压和低反向漏电的特性,且结构简单。In the gallium nitride diode provided by the first embodiment of the present invention, a cap layer structure is introduced, and a part of the anode covers the upper surface of the cap layer structure, so that the anode above the cap layer structure controls the first channel layer under the cap layer structure and the first channel layer under the cap layer structure. The turn-on and turn-off of the first two-dimensional electron gas at the interface of a potential barrier layer realizes the rectification characteristics of the gallium nitride diode, so that the gallium nitride diode has low turn-on voltage, low on-resistance, and high forward conductance at the same time. It has the characteristics of passing current, high reverse withstand voltage and low reverse leakage current, and has a simple structure.

实施例二:Embodiment 2:

图6是本发明实施例二提供的氮化镓二极管导电沟道关闭时的剖面图。如图6所示,与本发明实施例一提供的氮化镓二极管不同的是,本发明实施例二提供的氮化镓二极管中与阴极17和第一阳极181接触的第一势垒层141的表面区域分别掺杂有杂质,形成掺杂区域19。FIG. 6 is a cross-sectional view of the gallium nitride diode according to the second embodiment of the present invention when the conduction channel is turned off. As shown in FIG. 6 , different from the gallium nitride diode provided by the first embodiment of the present invention, the first barrier layer 141 in contact with the cathode 17 and the first anode 181 in the gallium nitride diode provided by the second embodiment of the present invention The surface regions of the doped regions are respectively doped with impurities to form doped regions 19 .

本实施例中,杂质可以是硅离子。In this embodiment, the impurities may be silicon ions.

掺杂有杂质的第一势垒层形成n型重掺杂区域,此后,在此重掺杂区域蒸镀金属电极时,由于第一势垒层掺杂浓度高,金属电极与第一势垒层的势垒宽度较低、电子隧穿概率较大,所以,第一势垒层与金属电极的电阻较低,能够形成较好的欧姆接触,该金属电极即为阴极和阳极。The first barrier layer doped with impurities forms an n-type heavily doped region. After that, when a metal electrode is evaporated in this heavily doped region, due to the high doping concentration of the first barrier layer, the metal electrode and the first barrier are separated from each other. The barrier width of the layer is lower and the electron tunneling probability is higher, so the resistance between the first barrier layer and the metal electrode is lower, and a better ohmic contact can be formed, and the metal electrode is the cathode and the anode.

图7是本发明实施例二提供的氮化镓二极管的制作方法的流程图,如图7所示,本实施例中,步骤71至步骤75分别与实施例一中的步骤41至步骤45相同,步骤77至步骤79分别与实施例一中的步骤46至步骤48相同。本实施例只描述与实施例一的不同之处。FIG. 7 is a flowchart of a method for fabricating a gallium nitride diode according to Embodiment 2 of the present invention. As shown in FIG. 7 , in this embodiment, Steps 71 to 75 are respectively the same as Steps 41 to 45 in Embodiment 1. , steps 77 to 79 are respectively the same as steps 46 to 48 in the first embodiment. This embodiment only describes the difference from the first embodiment.

步骤76、在刻蚀后的帽层两侧裸露出来的第一势垒层的表面区域进行掺杂。Step 76: Doping the exposed surface regions of the first barrier layer on both sides of the etched cap layer.

如图8A所示,采用离子注入工艺,在刻蚀后的帽层162两侧的第一势垒层141的表面区域进行掺杂,形成掺杂区域19。As shown in FIG. 8A , by using an ion implantation process, the surface regions of the first barrier layer 141 on both sides of the etched cap layer 162 are doped to form a doped region 19 .

与本发明实施例一提供的氮化镓二极管相比,本发明实施例二提供的氮化镓二极管,通过与阴极和阳极接触的第一势垒层的表面区域分别掺杂有杂质,使得该氮化镓二极管的阴极和阳极分别与第一势垒层以及第一沟道层能够形成更好的欧姆接触。Compared with the gallium nitride diode provided by the first embodiment of the present invention, the gallium nitride diode provided by the second embodiment of the present invention is doped with impurities through the surface regions of the first barrier layer in contact with the cathode and the anode, so that the The cathode and the anode of the gallium nitride diode can form better ohmic contact with the first barrier layer and the first channel layer, respectively.

实施例三:Embodiment three:

图9是本发明实施例三提供的氮化镓二极管导电沟道关闭时的剖面图。如图9所示,与本发明实施例一提供的氮化镓二极管不同的是,该氮化镓二极管还包括:位于帽层结构16之下以及帽层结构16和阴极17之间的第一势垒层141上的第二沟道层132,位于帽层结构16和第二沟道层132之间以及帽层结构16和阴极17之间的第二沟道层132上的第二势垒层142,第二势垒层142与第二沟道层132的交界面处形成有第二二维电子气152。FIG. 9 is a cross-sectional view of the gallium nitride diode according to the third embodiment of the present invention when the conduction channel is turned off. As shown in FIG. 9 , different from the gallium nitride diode provided in the first embodiment of the present invention, the gallium nitride diode further includes: a first layer located under the cap layer structure 16 and between the cap layer structure 16 and the cathode 17 . The second channel layer 132 on the barrier layer 141 , the second potential barrier on the second channel layer 132 between the cap layer structure 16 and the second channel layer 132 and between the cap layer structure 16 and the cathode 17 Layer 142, a second two-dimensional electron gas 152 is formed at the interface between the second barrier layer 142 and the second channel layer 132.

第二势垒层142与第二沟道层132形成异质结结构,在第二势垒层142与第二沟道层132的交界面处形成有第二二维电子气152。其中,第二势垒层142的材料可以是铝镓氮或其它V族氮化物。The second barrier layer 142 and the second channel layer 132 form a heterojunction structure, and a second two-dimensional electron gas 152 is formed at the interface between the second barrier layer 142 and the second channel layer 132 . The material of the second barrier layer 142 may be aluminum gallium nitride or other group V nitrides.

帽层结构16的材料可以是铟镓氮、铝铟镓氮或P型铟镓氮,优选为P型铟镓氮。采用P型铟镓氮时,帽层结构较薄,阳极对导电沟道的控制能力更好。The material of the cap layer structure 16 may be indium gallium nitride, aluminum indium gallium nitride or p-type indium gallium nitride, preferably P-type indium gallium nitride. When p-type indium gallium nitride is used, the cap layer structure is thinner, and the anode has better control ability of the conductive channel.

本实施例提供的氮化镓二极管采用多层异质结结构形成多导电沟道二极管。多层异质结包括:位于衬底11上的第一沟道层131;位于第一沟道层131上的第一势垒层141;位于第一势垒层141上的第二沟道层132;位于第二沟道层132上的第二势垒层142。第一沟道层131与第一势垒层141在交界面处形成第一二维电子气151(第一导电沟道),第二沟道层132与第二势垒层142在交界面处形成第二二维电子气152(第二导电沟道)。采用多导电沟道结构能够进一步降低氮化镓二极管的导通电阻及流过相同电流时的功耗。The gallium nitride diode provided in this embodiment adopts a multi-layer heterojunction structure to form a multi-conductive channel diode. The multi-layer heterojunction includes: a first channel layer 131 on the substrate 11 ; a first barrier layer 141 on the first channel layer 131 ; and a second channel layer on the first barrier layer 141 132 ; the second barrier layer 142 on the second channel layer 132 . A first two-dimensional electron gas 151 (a first conductive channel) is formed at the interface between the first channel layer 131 and the first barrier layer 141 , and the second channel layer 132 and the second barrier layer 142 are at the interface A second two-dimensional electron gas 152 (second conductive channel) is formed. Using a multi-conductive channel structure can further reduce the on-resistance of the GaN diode and the power consumption when the same current flows.

图10是本发明实施例三提供的氮化镓二极管的制作方法的流程图。如图10所示,本实施例中,步骤101至步骤103与实施例一中步骤41至步骤43相同,步骤108至步骤1010与实施例一中步骤46至步骤48相同。本实施例只描述与实施例一的不同之处。FIG. 10 is a flowchart of a method for fabricating a gallium nitride diode according to Embodiment 3 of the present invention. As shown in FIG. 10 , in this embodiment, steps 101 to 103 are the same as steps 41 to 43 in the first embodiment, and steps 108 to 1010 are the same as steps 46 to 48 in the first embodiment. This embodiment only describes the difference from the first embodiment.

步骤104、在第一势垒层上形成第二沟道层。Step 104 , forming a second channel layer on the first barrier layer.

第二沟道层的材料可以是非掺杂的氮化镓。利用金属有机化合物化学气相沉积工艺或分子束外延工艺,在衬底上形成第二沟道层。The material of the second channel layer may be undoped gallium nitride. The second channel layer is formed on the substrate using a metal organic compound chemical vapor deposition process or a molecular beam epitaxy process.

步骤105、在第二沟道层上形成第二势垒层,第二势垒层与第二沟道层的交界面处形成有第二二维电子气。Step 105 , forming a second barrier layer on the second channel layer, and a second two-dimensional electron gas is formed at the interface between the second barrier layer and the second channel layer.

利用金属有机化合物化学气相沉积工艺或分子束外延工艺,在第二沟道层上形成第二势垒层。A second barrier layer is formed on the second channel layer by using a metal organic compound chemical vapor deposition process or a molecular beam epitaxy process.

步骤106、在第二势垒层上形成帽层。Step 106 , forming a cap layer on the second barrier layer.

在第二势垒层上形成帽层,此时,帽层下方第二沟道层与第二势垒层交界面处的第二二维电子气和第一沟道层与第一势垒层交界面处的第一二维电子气被耗尽。A cap layer is formed on the second barrier layer. At this time, the second two-dimensional electron gas at the interface between the second channel layer and the second barrier layer under the cap layer and the first channel layer and the first barrier layer The first two-dimensional electron gas at the interface is depleted.

步骤107、刻蚀部分帽层和其下的第二势垒层和第二沟道层。Step 107, etching part of the cap layer and the second barrier layer and the second channel layer thereunder.

利用光刻工艺及干法刻蚀工艺,刻蚀帽层。为了形成很好的欧姆接触,可以采用氯基刻蚀裸露出来的第二势垒层和其下的第二沟道层,此时,刻蚀后的帽层下方第二沟道层与第二势垒层交界面处的第二二维电子气和第一沟道层与第一势垒层交界面处的第一二维电子气被耗尽,仅在裸露出来的第一势垒层区域与第二沟道层交界面处存在第一二维电子气。The cap layer is etched by a photolithography process and a dry etching process. In order to form a good ohmic contact, chlorine-based etching can be used to etch the exposed second barrier layer and the second channel layer thereunder. At this time, the second channel layer and the second channel layer under the etched cap layer The second two-dimensional electron gas at the interface of the barrier layer and the first two-dimensional electron gas at the interface between the first channel layer and the first barrier layer are depleted, and only in the exposed first barrier layer region A first two-dimensional electron gas exists at the interface with the second channel layer.

如图11A所示,图11A示出了步骤104至步骤107对应的剖面图。As shown in FIG. 11A , FIG. 11A shows cross-sectional views corresponding to steps 104 to 107 .

与本发明实施例一提供的氮化镓二极管相比,本实施例三提供的氮化镓二极管,通过引入多导电沟道,能够进一步降低氮化镓二极管的导通电阻及流过相同电流时的功耗。Compared with the gallium nitride diode provided in the first embodiment of the present invention, the gallium nitride diode provided in the third embodiment can further reduce the on-resistance of the gallium nitride diode and when the same current flows, by introducing multiple conductive channels. power consumption.

上述仅为本发明的较佳实施例及所运用的技术原理。本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行的各种明显变化、重新调整及替代均不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由权利要求的范围决定。The above are only the preferred embodiments of the present invention and the applied technical principles. The present invention is not limited to the specific embodiments described herein, and various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention. The scope is determined by the scope of the claims.

Claims (7)

1. A gallium nitride diode, comprising:
a substrate;
a first channel layer on the substrate;
a first barrier layer on the first channel layer, a first two-dimensional electron gas being formed at an interface of the first barrier layer and the first channel layer;
a capping layer structure on the first barrier layer;
the cathode is positioned on the first barrier layer on one side of the capping layer structure and/or extends into the first barrier layer, and a gap is arranged between the capping layer structure and the cathode;
the anode is positioned on the first barrier layer on the other side of the capping layer structure and/or extends into the first barrier layer, and the anode covers the upper surface of the capping layer structure;
wherein the anode comprises a first anode and a second anode;
the first anode is positioned on the first barrier layer on the other side of the capping layer structure and is in contact with the capping layer structure;
the second anode is positioned on the first anode and the capping layer structure; wherein,
the first anode forms ohmic contact with the first barrier layer, and the second anode forms Schottky contact with the capping layer structure;
the capping layer structure is made of indium gallium nitride or aluminum indium gallium nitride.
2. The gallium nitride diode according to claim 1, further comprising:
a second channel layer on the first barrier layer under the capping layer structure and between the capping layer structure and the cathode;
and a second barrier layer on the second channel layer between the capping layer structure and the second channel layer and between the capping layer structure and the cathode, wherein a second two-dimensional electron gas is formed at an interface of the second barrier layer and the second channel layer.
3. Gallium nitride diode according to claim 1 or 2, wherein the thickness of the capping layer structure is between 2 nm and 20 nm.
4. The gallium nitride diode according to claim 1 or 2, wherein surface regions of the first barrier layer in contact with the cathode and the anode are doped with impurities, respectively.
5. The GaN diode of claim 4, wherein the cathode and the anode are fabricated by the same process.
6. A method for manufacturing a gallium nitride diode is characterized by comprising the following steps:
providing a substrate;
forming a first channel layer on the substrate;
forming a first barrier layer on the first channel layer, the first barrier layer having a first two-dimensional electron gas formed at an interface with the first channel layer;
forming a capping layer structure on the first barrier layer, an
Forming a cathode on and/or extending into the first barrier layer on one side of the capping layer structure, a gap being provided between the capping layer structure and the cathode, an
Forming an anode on the first barrier layer on the other side of the capping layer structure and/or extending into the first barrier layer, wherein the anode covers the upper surface of the capping layer structure;
wherein the anode comprises a first anode and a second anode;
wherein the first anode forms an ohmic contact with the first barrier layer and the second anode forms a Schottky contact with the capping layer structure;
the capping layer structure is made of indium gallium nitride or aluminum indium gallium nitride.
7. The method of fabricating a gallium nitride diode according to claim 6, wherein after forming a first barrier layer on the first channel layer, the first barrier layer having a first two-dimensional electron gas formed at an interface with the first channel layer, the method further comprises:
forming a second channel layer on the first barrier layer;
forming a second barrier layer on the second channel layer, a second two-dimensional electron gas being formed at an interface of the second barrier layer and the second channel layer,
the forming a capping layer structure is formed on the second barrier layer.
CN201510185726.1A 2015-04-17 2015-04-17 A kind of gallium nitride diode and its manufacturing method Active CN105280725B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510185726.1A CN105280725B (en) 2015-04-17 2015-04-17 A kind of gallium nitride diode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510185726.1A CN105280725B (en) 2015-04-17 2015-04-17 A kind of gallium nitride diode and its manufacturing method

Publications (2)

Publication Number Publication Date
CN105280725A CN105280725A (en) 2016-01-27
CN105280725B true CN105280725B (en) 2019-03-12

Family

ID=55149411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510185726.1A Active CN105280725B (en) 2015-04-17 2015-04-17 A kind of gallium nitride diode and its manufacturing method

Country Status (1)

Country Link
CN (1) CN105280725B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108598182A (en) * 2018-05-22 2018-09-28 西安电子科技大学 A kind of intrinsic GaN cap RESURF GaN base Schottky-barrier diodes in part
CN110224019B (en) * 2019-04-12 2023-12-01 广东致能科技有限公司 Semiconductor device and manufacturing method thereof
CN112420850B (en) * 2019-08-23 2024-04-12 苏州捷芯威半导体有限公司 Semiconductor device and preparation method thereof
CN111785610A (en) * 2020-05-26 2020-10-16 西安电子科技大学 A kind of heat dissipation enhanced gallium nitride based on diamond material structure and preparation method thereof
WO2024000433A1 (en) * 2022-06-30 2024-01-04 广东致能科技有限公司 Diode and manufacturing method therefor
CN115274865B (en) * 2022-09-26 2023-03-28 晶通半导体(深圳)有限公司 Schottky diode
CN115799069A (en) * 2023-01-17 2023-03-14 北京中博芯半导体科技有限公司 Preparation method of P-GaN enhanced HEMT device
CN117233234B (en) * 2023-11-14 2024-02-13 合肥美镓传感科技有限公司 Biomolecular sensor based on gallium nitride transistor and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117303A (en) * 2013-02-07 2013-05-22 苏州晶湛半导体有限公司 Nitride power device and manufacturing method thereof
CN104362181A (en) * 2014-11-03 2015-02-18 苏州捷芯威半导体有限公司 GaN hetero-junction diode device and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8441030B2 (en) * 2004-09-30 2013-05-14 International Rectifier Corporation III-nitride multi-channel heterojunction interdigitated rectifier
US7915643B2 (en) * 2007-09-17 2011-03-29 Transphorm Inc. Enhancement mode gallium nitride power devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117303A (en) * 2013-02-07 2013-05-22 苏州晶湛半导体有限公司 Nitride power device and manufacturing method thereof
CN104362181A (en) * 2014-11-03 2015-02-18 苏州捷芯威半导体有限公司 GaN hetero-junction diode device and method for manufacturing same

Also Published As

Publication number Publication date
CN105280725A (en) 2016-01-27

Similar Documents

Publication Publication Date Title
CN105280725B (en) A kind of gallium nitride diode and its manufacturing method
JP6474881B2 (en) Schottky diode and manufacturing method thereof
US11121216B2 (en) III-nitride devices including a graded depleting layer
US20170110598A1 (en) Field effect diode and method of manufacturing the same
EP2722890B1 (en) Schottky diode structure and method of fabrication
Matioli et al. Ultralow leakage current AlGaN/GaN Schottky diodes with 3-D anode structure
US8791505B2 (en) Semiconductor device
US9064847B2 (en) Heterojunction semiconductor device with conductive barrier portion and manufacturing method
US9502544B2 (en) Method and system for planar regrowth in GaN electronic devices
US10121886B2 (en) High power semiconductor device
KR101636134B1 (en) Semiconductor device
WO2013020061A1 (en) Method and system for a gan vertical jfet utilizing a regrown gate
JP2008108870A (en) rectifier
CN103503152A (en) Electrode configurations for semiconductor devices
KR20140070663A (en) Semiconductor devices having a recessed electrode structure
TW201421648A (en) Semiconductor device
WO2013020051A1 (en) Method and system for a gan vertical jfet utilizing a regrown channel
US9680001B2 (en) Nitride semiconductor device
CN104882491B (en) A kind of Schottky diode and preparation method thereof
JP2013232578A (en) Schottky barrier diode
US9269793B2 (en) Method and system for a gallium nitride self-aligned vertical MESFET
JP6693142B2 (en) Semiconductor device, electronic component, electronic device, and method for manufacturing semiconductor device
CN112993010A (en) Gallium nitride high electron mobility transistor and method of manufacturing the same
CN220065708U (en) Power device with composite gate structure
JP5701721B2 (en) Semiconductor device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant