CN105277895A - Series battery pack SOP (state of power) on-line estimation method and application thereof - Google Patents
Series battery pack SOP (state of power) on-line estimation method and application thereof Download PDFInfo
- Publication number
- CN105277895A CN105277895A CN201510641657.0A CN201510641657A CN105277895A CN 105277895 A CN105277895 A CN 105277895A CN 201510641657 A CN201510641657 A CN 201510641657A CN 105277895 A CN105277895 A CN 105277895A
- Authority
- CN
- China
- Prior art keywords
- battery
- sop
- max
- moment
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000004364 calculation method Methods 0.000 claims abstract description 17
- 230000000694 effects Effects 0.000 claims abstract description 7
- 230000010287 polarization Effects 0.000 claims description 18
- 238000012546 transfer Methods 0.000 claims description 15
- 238000004088 simulation Methods 0.000 claims description 6
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 230000002269 spontaneous effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 claims 2
- 239000000178 monomer Substances 0.000 claims 2
- 230000006866 deterioration Effects 0.000 claims 1
- 238000007599 discharging Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000009194 climbing Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Secondary Cells (AREA)
Abstract
本发明公开了一种串联电池组功率状态SOP的在线估计方法及其应用,该方法包括如下步骤:电池参数及电池动态效应的递推在线辨识;基于电压限制的下一时刻的电池SOP计算;基于电压限制的下一时刻以后时刻的电池SOP计算;基于电流限制的下一时刻的电池SOP计算;基于电流限制的下一时刻以后时刻的电池SOP计算;基于电压限制和电流限制综合的下一时刻的电池SOP、下一时刻以后时刻的电池SOP的在线估计。本发明考虑了电池电压和电流工作窗口对峰值功率的影响,能同时实现高精度的SOP的单步预测和多步预测,能有效防止电池在实时运行过程中被滥用、帮助其它相关系统实现最优化的能量管理。
The invention discloses an online estimation method of power state SOP of a series battery pack and its application. The method comprises the following steps: recursive online identification of battery parameters and battery dynamic effects; calculation of battery SOP at the next moment based on voltage limitation; The battery SOP calculation based on the next time after the voltage limit; the battery SOP calculation at the next time based on the current limit; the battery SOP calculation based on the next time after the current limit; the next time based on the combination of voltage limit and current limit Online estimation of the battery SOP at the moment and the battery SOP at the moment after the next moment. The present invention considers the impact of the battery voltage and current working window on the peak power, can simultaneously realize high-precision SOP single-step prediction and multi-step prediction, can effectively prevent the battery from being abused during real-time operation, and help other related systems to achieve the best Optimized energy management.
Description
技术领域technical field
本发明涉及的是电池管理系统技术领域,具体地说,是一种串联电池组功率状态SOP的在线估计方法及其应用。The invention relates to the technical field of battery management systems, in particular to an online estimation method and application of the power state SOP of series battery packs.
背景技术Background technique
SOP为描述电池最大充放电能力的参数,用于确定对电池的最大输入和负载的最大输出功率,避免对电池滥用,以及确定如电动汽车的加速爬坡性能和再生制动能力等。SOP is a parameter describing the maximum charge and discharge capacity of the battery. It is used to determine the maximum input to the battery and the maximum output power of the load, to avoid abuse of the battery, and to determine the acceleration and climbing performance and regenerative braking capabilities of electric vehicles.
电池SOP预测是电池管理系统研究中一个新领域。国内外关于电池SOP估计的方法主要已有:美国下一代汽车联盟(PNGV)提出了用脉冲放电(HybridPulsePowerCharacteristics,HPPC)法来估算电池的最大充放电能力;基于电池的动态电化学模型来精确预测下一采样点电池的SOP的方法;采用了扩展卡尔曼滤波来估计电池的SOP的方法等。现有方法,大多只考虑了电池电压阈值对电池SOP的限制,而忽略了电流阈值对电池峰值功率的限制;同时,对电池的单步SOP和多步SOP采用了相同的方法进行预测,没有能够合理利用电池电压、电流的实时采样值,从而限制了电池单步SOP的预测精度。Battery SOP prediction is a new field in battery management system research. There are mainly methods for battery SOP estimation at home and abroad: the United States Next Generation Automobile Alliance (PNGV) proposed the use of pulse discharge (HybridPulsePowerCharacteristics, HPPC) method to estimate the maximum charge and discharge capacity of the battery; based on the dynamic electrochemical model of the battery to accurately predict The method of the SOP of the battery at the next sampling point; the method of estimating the SOP of the battery by using the extended Kalman filter, etc. Most of the existing methods only consider the limitation of the battery voltage threshold on the battery SOP, but ignore the limitation of the current threshold on the battery peak power; at the same time, the same method is used to predict the single-step SOP and multi-step SOP of the battery. Real-time sampling values of battery voltage and current can be reasonably used, thus limiting the prediction accuracy of battery single-step SOP.
发明内容Contents of the invention
针对现有技术的缺陷,本发明提供了提供一种串联电池组功率状态SOP的在线估计方法及其应用。Aiming at the defects of the prior art, the present invention provides an online estimation method of the power state SOP of a series battery pack and its application.
本发明的目的通过以下技术方案来实现:一种串联电池组功率状态SOP的在线估计方法,包括如下步骤:The object of the present invention is achieved through the following technical solutions: an online estimation method of the power state SOP of a series battery pack comprising the steps of:
步骤1、执行基于电池等效电路模型中的电池参数及对电池等效电路模型中未涵盖电池效应进行综合模拟的电池参数的递推在线辨识;Step 1. Perform recursive online identification of battery parameters based on battery parameters in the battery equivalent circuit model and battery parameters that are not included in the battery equivalent circuit model for comprehensive simulation of battery effects;
步骤2、执行基于电压限制和在线辨识出的电池参数的下一时刻的电池SOP计算;Step 2. Execute the battery SOP calculation at the next moment based on the voltage limit and the battery parameters identified online;
步骤3、执行基于电压限制和在线辨识出的电池参数的下一时刻以后时刻的电池SOP计算;Step 3. Execute the battery SOP calculation based on the voltage limit and the battery parameters identified online at the time after the next time;
步骤4、执行基于电流限制和在辨识计出的电池参数的下一时刻的电池SOP计算;Step 4, performing battery SOP calculation based on the current limit and the battery parameters at the next moment identified and calculated;
步骤5、执行基于电流限制和在线辨识出的电池参数的下一时刻以后时刻的电池SOP计算;Step 5. Execute the battery SOP calculation based on the current limit and the battery parameters identified online at the time after the next time;
步骤6、综合步骤2-5计算出的下一时刻的电池SOP以及以后时刻的电池SOP,实现对基于电压限制和电流限制综合的电池SOP的在线估计。Step 6, integrating the battery SOP at the next moment calculated in steps 2-5 and the battery SOP at a later moment to realize online estimation of the battery SOP based on voltage limitation and current limitation synthesis.
所述步骤1中的电池等效电路模型为Thevenin模型,所述电池等效电路模型中的电池参数包括电池的开路电压Voc、电池的直流内阻Rin、用于模拟电池的电荷转移现象的RC回路中的电阻Rp和电容Cp,在时刻k所述电池等效电路模型中未涵盖电池效应进行综合模拟的电池参数为白噪声的滑动平均值所构建的在电池等效电路模型的输出端添加的有色噪声wk。The battery equivalent circuit model in the step 1 is a Thevenin model, and the battery parameters in the battery equivalent circuit model include the open circuit voltage V oc of the battery, the DC internal resistance R in of the battery, and the charge transfer phenomenon used to simulate the battery The resistance R p and capacitance C p in the RC loop, at time k, the battery effect is not covered in the battery equivalent circuit model, and the battery parameters for comprehensive simulation are the sliding average value of white noise in the battery equivalent circuit model The colored noise w k added at the output of .
所述步骤1中的递推在线辨识的方法为基于递推扩展最小二乘法的在线辨识方法,具体包括如下步骤:The recursive online identification method in the step 1 is an online identification method based on the recursive extended least squares method, which specifically includes the following steps:
步骤101、按公式ΓT k=[1Ik(Ik-Ik-1)/Δt(Vt,k-Vt,k-1)/Δtnk-1…nk-nc]计算时刻k输入向量的递推值Γ,其中,ΓT 1=ΓT 2=…=ΓT nc=Γ0,Γ0为给定的初始值,I、Vt为通过传感器采样的电池的电流(充电时为负,放电时为正)、端电压,下标k代表第k时刻、k-1代表第k-1时刻,Δt为第k时刻和第k-1时刻间的时间,nk-1、…、nk-nc分别为前一时刻k-1、前nc时刻k-nc的随机误差;Step 101. Calculate time k according to the formula Γ T k =[1I k (I k -I k-1 )/Δt(V t, k -V t, k-1 )/Δtn k-1 ...n k-nc ] The recursive value Γ of the input vector, wherein, Γ T 1 =Γ T 2 =...=Γ T nc =Γ 0 , Γ 0 is a given initial value, I, V t are the current of the battery sampled by the sensor (charging Negative during discharge, positive during discharge), terminal voltage, subscript k represents the kth moment, k-1 represents the k-1st moment, Δt is the time between the kth moment and the k-1th moment, n k-1 , ..., n k-nc are the random errors of k-1 at the previous moment and k-nc at the previous nc moment;
步骤102、按公式Pk=[Pk-1-Pk-1ΓkΓT kPk-1/(λ+ΓT kPk-1Γk)]/λ更新第k时刻的增益因子Pk,其中,下标k、k-1分别代表第k时刻和k-1时刻,λ为遗忘因子(通常取值区间为0.95~1);Step 102: Update the gain at the kth moment according to the formula P k =[P k-1 -P k-1 Γ k Γ T k P k-1 /(λ+Γ T k P k-1 Γ k )]/λ Factor P k , where the subscripts k and k-1 represent the kth moment and k-1 moment respectively, and λ is the forgetting factor (usually the value range is 0.95 to 1);
步骤103、按公式0k=0k-1+PkΓk[Vt,k-ΓT k0k-1]计算第k时刻的待辨识参数向量0k;Step 103. According to the formula 0 k =0 k-1 +P k Γ k [V t, k -Γ T k 0 k-1 ], calculate the parameter vector 0 k to be identified at the kth moment;
步骤104、在k+1时刻电池的电流I和端电压Vt采样值更新后,按公式nk+1-i=Vt,k+1-i-ΓT k+1-i0k+1-i(i=1,2,3,…,nc)更新当前时刻以前的nc个时刻的随机误差,将k用k+1代替,返回步骤101,实现递推。Step 104: After updating the sampling values of battery current I and terminal voltage V t at time k+1, according to the formula n k+1-i = V t, k+1-i -Γ T k+1-i 0 k+ 1-i (i=1, 2, 3, ..., nc) update the random error of nc times before the current time, replace k with k+1, return to step 101, and realize recursion.
步骤105、利用在步骤101~104递推计算中获得待辨识参数向量0k中的元素01,k、02,k、03,k、04,k,分别按公式Voc=01,k、Rin=03,k/04,k、Rp=-02,k-03,k/04,k、Cp=04,k 2/(02,k04,k+03,k)计算出电池等效电路模型中的电池开路电压Voc、直流内阻Rin、RC电路中的Rp和Cp。Step 105, using elements 0 1, k , 0 2, k , 0 3, k , 0 4, k in the parameter vector 0 k to be identified obtained in the recursive calculation in steps 101-104, according to the formula V oc =0 respectively 1, k , R in =0 3, k /0 4, k , R p =-0 2, k -0 3, k /0 4, k , C p =0 4, k 2 /(0 2, k 0 4, k +0 3, k ) Calculate the battery open circuit voltage V oc , DC internal resistance R in , R p and C p in the RC circuit in the battery equivalent circuit model.
所述步骤2具体包括如下步骤:The step 2 specifically includes the following steps:
步骤201、按公式Vp,k=Vpc-Vt,k-IkRin+wk计算当前时刻k的电池极化电压Vp,k,其中,Voc、Rin和wk分别为在所述步骤1中在线辨识的电池开路电压、直流内阻、有色噪声,Vt,k和Ik为由传感器测量得到的电池端电压和通过电池的电流;Step 201. Calculate the battery polarization voltage V p,k at the current moment k according to the formula V p,k =V pc -V t,k -I k R in +w k , where V oc , R in and w k are respectively For the battery open circuit voltage, DC internal resistance, and colored noise identified online in the step 1, V t, k and I k are the battery terminal voltage and the current through the battery measured by the sensor;
步骤202、按公式Vp,k+1=e-Δt/Rp/CpVp,k+(1-e-Δt/Rp/Cp)RpIk估计下一时刻k+1的电池极化电压Vp,k+1,其中,Rp、Cp分别为所述步骤1中在线识别的用于模拟电池的电荷转移现象的RC回路中的电阻、电容,Δt为下一时刻k+1与当前时刻k之间的时间;Step 202, according to the formula V p,k+1 =e -Δt/Rp/Cp V p,k +(1-e -Δt/Rp/Cp )R p I k to estimate the battery polarization at the next moment k+1 Voltage V p, k+1 , where R p and C p are the resistance and capacitance in the RC circuit identified online in step 1 to simulate the charge transfer phenomenon of the battery respectively, and Δt is k+1 at the next moment The time between and the current moment k;
步骤203、按wk+1=ΓT k0k估计下一时刻的有色噪声wk+1,其中,ΓT k、0k分别为所述步骤1中计算出的时刻k输入向量的递推值、待辨识参数向量;Step 203: Estimate the colored noise w k+1 at the next moment according to w k+1 = Γ T k 0 k , where Γ T k and 0 k are respectively the iterations of the input vector at time k calculated in step 1 Inferred value, parameter vector to be identified;
步骤204、分别按公式Ichrg,max k+1=(Voc-Vp,k+1-Vmax+wk+1)/Rin、Idischrg,max k+1=(Voc-Vp,k+1-Vmin+wk+1)/Rin计算下一时刻k+1不超过电池允许最高电压Vmax的最大充电电流Ichrg,max k+1、不超过电池允许最低电压Vmin的最大放电电流Idischrg,max k+1;Step 204, according to the formula I chrg, max k+1 = (V oc -V p, k+1 -V max +w k+1 )/R in , I dischrg, max k+1 = (V oc -V p, k+1 -V min +w k+1 )/R in Calculate the maximum charging current I chrg at the next moment k+1 that does not exceed the maximum allowable voltage V max of the battery, max k+1 does not exceed the minimum allowable voltage of the battery The maximum discharge current Idischrg of V min , max k+1 ;
步骤205、按下式计算出基于电压限制的下一时刻k+1的电池SOP:Step 205, calculate the battery SOP at the next time k+1 based on the voltage limit according to the following formula:
SOPV,short chargg,k+1=VmaxIchrg,max k+1;SOP V, short chargg, k+1 = V max I chrg, max k+1 ;
SOPV,short discharge,k+1=VminIdischrg,max k+1。SOP V, short discharge, k+1 = V min Idischrg, max k+1 .
所述步骤3具体包括如下步骤:Described step 3 specifically comprises the following steps:
步骤301、按公式Vp,k+1=e-Δt/Rp/CpVp,k+(1-e-Δt/Rp/Cp)RpIk估计下一时刻k+1的电池极化电压Vp,k+1,其中,Rp、Cp分别为所述步骤1中在线识别的用于模拟电池的电荷转移现象的RC回路中的电阻、电容,Δt为下一时刻k+1与当前时刻k之间的时间;Step 301, according to the formula V p,k+1 =e -Δt/Rp/Cp V p,k +(1-e -Δt/Rp/Cp )R p I k to estimate the battery polarization at the next moment k+1 Voltage V p, k+1 , where R p and C p are the resistance and capacitance in the RC circuit identified online in step 1 to simulate the charge transfer phenomenon of the battery respectively, and Δt is k+1 at the next moment The time between and the current moment k;
步骤302、分别按公式Ichrg,max k+1=(Voc-Vp,k+1-Vmax)/Rin、Idischrg,max k+1=(Voc-Vp,k+1-Vmin)/Rin计算下一时刻k+1不超过电池允许最高电压Vmax的最大充电电流Ichrg,max k+1、不超过电池允许最低电压Vmin的最大放电电流Idischrg,max k+1;Step 302, according to the formula I chrg, max k+1 = (V oc -V p, k+1 -V max )/R in , I dischrg, max k+1 = (V oc -V p, k+1 -V min )/Rin Calculate the maximum charging current I chrg, max k+1 that does not exceed the maximum allowable voltage V max of the battery at the next moment k+1, and the maximum discharge current I dischrg, max k that does not exceed the minimum allowable voltage V min of the battery +1 ;
步骤303、令k=k+1,重复步骤301和步骤302,则可在没有其他输入的情况下计算出当前时刻以后n个时刻的不超过电池允许最高电压Vmax的最大充电电流Ichrg,max k+i、不超过电池允许最低电压Vmin的最大放电电流Idischrg,max k+i,其中,i=1~n;进而按下式计算出基于电压限制的下一时刻以后时刻的电池SOP:Step 303, set k=k+1, repeat step 301 and step 302, then the maximum charging current Ichrg that does not exceed the maximum allowable voltage V max of the battery at n times after the current moment can be calculated without other input, max k+i , the maximum discharge current Idischrg that does not exceed the minimum allowable voltage V min of the battery, max k+i , where i=1~n; and then calculate the battery at the next moment based on the voltage limit according to the following formula SOP:
SOPV,long charge,k+j=VmaxIchrg,max k+j;SOP V, long charge, k+j = V max I chrg, max k+j ;
SOPV,long discharge,k+j=VminIdischrg,max k+j;SOP V, long discharge, k+j = V min I discharge, max k+j ;
其中,下标中的k代表当前时刻、k+j代表当前时刻以后的j(j=1,2,…,n)。Wherein, k in the subscript represents the current time, and k+j represents j (j=1, 2, . . . , n) after the current time.
所述步骤4具体包括如下步骤:The step 4 specifically includes the following steps:
步骤401、按公式Vp,k=Voc-Vt,k-IkRin+wk计算当前时刻k的电池极化电压Vp,k,其中,Voc、Rin和wk分别为在所述步骤1中在线辨识的电池开路电压、直流内阻、有色噪声,Vt,k和Ik为由传感器测量得到的电池端电压和通过电池的电流;Step 401. Calculate the battery polarization voltage V p,k at the current moment k according to the formula V p,k =V oc -V t,k -I k R in +w k , where V oc , R in and w k are respectively For the battery open circuit voltage, DC internal resistance, and colored noise identified online in the step 1, V t, k and I k are the battery terminal voltage and the current through the battery measured by the sensor;
步骤402、按公式Vp,k+1=e-Δt/Rp/CpVp,k+(1-e-Δt/Rp/Cp)RpIk估计下一时刻k+1的电池极化电压Vp,k+1,其中,Rp、Cp分别为所述步骤1中在线识别的用于模拟电池的电荷转移现象的RC回路中的电阻、电容,Δt为下一时刻k+1与当前时刻k之间的时间;Step 402, according to the formula V p,k+1 =e -Δt/Rp/Cp V p,k +(1-e -Δt/Rp/Cp )R p I k to estimate the battery polarization at the next moment k+1 Voltage V p, k+1 , where R p and C p are the resistance and capacitance in the RC circuit identified online in step 1 to simulate the charge transfer phenomenon of the battery respectively, and Δt is k+1 at the next moment The time between and the current moment k;
步骤403、按wk+1=ΓT k0k估计下一时刻的有色噪声wk+1,其中,ΓT k、0k分别为所述步骤1中计算出的时刻k输入向量的递推值、待辨识参数向量;Step 403: Estimate the colored noise w k+1 at the next moment according to w k+1 = Γ T k 0 k , where Γ T k and 0 k are respectively the iterations of the input vector at time k calculated in step 1 Inferred value, parameter vector to be identified;
步骤404、分别按公式Vchrg,max k+1=Voc-Vp,k+1-IminRin+wk+1、Vdischrg,min k+1=Voc-Vp,k+1-ImaxRin+wk+1计算下一时刻k+1不超过电池允许最大充电电流Imin的最高电压Vchrg,max k+1、不超过电池允许最大放电电流Imax的最低电压Vdischrg,min k+1;Step 404, according to the formulas V chrg, max k+1 = V oc - V p, k+1 - I min R in + w k+1 , V dischrg, min k+1 = V oc - V p, k+ respectively 1 -I max R in +w k+1 Calculate the highest voltage V chrg at the next moment k+1 that does not exceed the maximum allowable charging current I min of the battery, max k+1 , and the minimum voltage that does not exceed the maximum allowable discharge current I max of the battery Vdischrg, min k+1 ;
步骤405、按下式计算出基于电流限制的下一时刻k+1的电池SOP:Step 405, calculate the battery SOP at the next time k+1 based on the current limit according to the following formula:
SOPI,short charge,k+1=IminVchrg,max k+1;SOP I, short charge, k+1 = I min V chrg, max k+1 ;
SOPI,short discharge,k+1=ImaxVdischrg,min k+1。SOP I, short discharge, k+1 = I max Vdischrg, min k+1 .
所述步骤5具体包括如下步骤:Described step 5 specifically comprises the following steps:
步骤501、按公式Vp,k+1=e-Δt/Rp/CpVp,k+(1-e-Δt/Rp/Cp)RpIk估计下一时刻k+1的电池极化电压Vp,k+1,其中,Rp、Cp分别为所述步骤1中在线识别的用于模拟电池的电荷转移现象的RC回路中的电阻、电容,Δt为下一时刻k+1与当前时刻k之间的时间;Step 501, according to the formula V p,k+1 =e -Δt/Rp/Cp V p,k +(1-e -Δt/Rp/Cp )R p I k to estimate the battery polarization at the next moment k+1 Voltage V p, k+1 , where R p and C p are the resistance and capacitance in the RC circuit identified online in step 1 to simulate the charge transfer phenomenon of the battery respectively, and Δt is k+1 at the next moment The time between and the current moment k;
步骤502、分别按公式Vchrg,max k+1=Voc-Vp,k+1-IminRin、Vdischrg,min k+1=Voc-Vp,k+1-ImaxRin计算下一时刻k+1不超过电池允许最大充电电流Imin的最高电压Vchrg,max k+1、不超过电池允许最大放电电流Imax的最低电压Vdischrg,min k+1;Step 502, according to the formulas V chrg, max k+1 = V oc -V p, k+1 -I min R in , V dischrg, min k+1 = V oc -V p, k+1 -I max R in calculates the highest voltage V chrg,max k+1 that does not exceed the maximum allowable charging current I min of the battery at the next moment k+1, and the minimum voltage V dischrg,min k+ 1 that does not exceed the maximum allowable discharge current I max of the battery;
步骤503、令k=k+1,重复所述步骤501和步骤502,则可在没有其他输入的情况下计算出当前时刻以后n个时刻的不超过电池允许最大充电电流Imin的最高电压Vchrg,max k+i、不超过电池允许最大放电电流Imax的最低电压Vdischrg,min k+i,其中,i=1~n;进而按下式计算出基于电流限制的下一时刻以后时刻的电池SOP:Step 503, let k=k+1, repeat the steps 501 and 502, then can calculate the maximum voltage V that does not exceed the maximum battery charging current Imin at n moments after the current moment without other input chrg, max k+i , the minimum voltage V dischrg, min k+ i that does not exceed the maximum allowable discharge current I max of the battery, where i=1~n; and then calculate the time after the next time based on the current limit according to the following formula Battery SOP:
SOPI,long charge,k+j=IminVchrg,max k+j;SOP I, long charge, k+j = I min V chrg, max k+j ;
SOPI,long discharge,k+j=ImaxVdischrg,min k+j;SOP I, long discharge, k+j = I max Vdischrg, min k+j ;
其中,下标中的k代表当前时刻、k+j代表当前时刻以后的j(j=1,2,…,n)。Wherein, k in the subscript represents the current time, and k+j represents j (j=1, 2, . . . , n) after the current time.
所述步骤6具体包括如下步骤:Described step 6 specifically comprises the following steps:
步骤601、按如下公式计算下一时刻的电池SOP:Step 601, calculate the battery SOP at the next moment according to the following formula:
SOPshort charge.k+1=max[SOPV,short charge,k+1,SOPI,short charge,k+1];SOP short charge.k+1 = max[SOP V, short charge, k+1 , SOP I, short charge, k+1 ];
SOPshort discharge.k+1=max[SOPV,short discharge,k+1,SOPI,short discharge,k+1];SOP short discharge.k+1 = max[SOP V, short discharge, k+1 , SOP I, short discharge, k+1 ];
其中,下标中的k代表当前时刻、k+1代表下一时刻,SOPshort charge.k+1、SOPshort didcharge.k+1分别为充电过程和放电过程中下一时刻的电池SOP;Among them, k in the subscript represents the current moment, k+1 represents the next moment, SOP short charge.k+1 and SOP short didcharge.k+1 are the battery SOP at the next moment during the charging process and discharging process respectively;
步骤602、按如下公式下一时刻以后时刻的电池SOPStep 602, according to the following formula, the battery SOP at the time after the next time
SOPlong charge.k+j=max[SOPV,long charge,k+j,SOPI,long charge,k+j];SOP long charge.k+j = max[SOP V, long charge, k+j , SOP I, long charge, k+j ];
SOPlong discharge.k+j=max[SOPV,long discharge,k+j,SOPI,long discharge,k+j];SOP long discharge.k+j = max[SOP V, long discharge, k+j , SOP I, long discharge, k+j ];
其中,下标中的k代表当前时刻、k+j代表当前时刻以后的j(j=1,2,…,n)时刻,SOPlong charge.k+j、SOPlong discharge.k+j分别为充电过程和放电过程中下一时刻以后时刻的电池SOP。Among them, k in the subscript represents the current moment, k+j represents the j (j=1, 2,...,n) moment after the current moment, SOP long charge.k+j and SOP long discharge.k+j are respectively The SOP of the battery at the time after the next time during the charging process and the discharging process.
串联电池组放电过程中的电池SOP为串联电池组中的单体电压最低的电池SOP,串联电池组充电过程中的电池SOP为串联电池组中的单体电压最高的电池SOP。The battery SOP during the discharge process of the series battery pack is the battery SOP with the lowest cell voltage in the series battery pack, and the battery SOP during the charging process of the series battery pack is the battery SOP with the highest cell voltage in the series battery pack.
通过上述方法可以计算出电池SOP,用于防止电池加速老化甚至自燃爆炸的电池温度限制。The battery SOP can be calculated by the above method, which is the battery temperature limit used to prevent accelerated aging of the battery or even spontaneous combustion and explosion.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
1)本发明同时考虑了电池电压和电流工作窗口对峰值功率的影响,从而提高了SOP计算的可靠性,确保电池能够高效、持久地工作。1) The present invention simultaneously considers the impact of the battery voltage and current working window on the peak power, thereby improving the reliability of SOP calculation and ensuring that the battery can work efficiently and for a long time.
2)本发明根据不同的输入条件,能够同时实现SOP的单步预测和多步预测。其中,SOP单步预测能够有效防止电池在实时运行过程中被滥用,而SOP多步预测则能够帮助其它相关系统实现最优化的能量管理。2) The present invention can simultaneously realize single-step prediction and multi-step prediction of SOP according to different input conditions. Among them, SOP single-step prediction can effectively prevent the battery from being abused during real-time operation, while SOP multi-step prediction can help other related systems to achieve optimal energy management.
3)经由实验验证,本发明具有SOP单步预测值与实际值几乎完全一致、多步预测在15s内的最大误差为-3.27%的高精度。3) Through experimental verification, the present invention has the high precision of SOP single-step prediction value and the actual value are almost completely consistent, and the maximum error of multi-step prediction within 15s is -3.27%.
附图说明Description of drawings
图1为本发明实施例一种串联电池组功率状态SOP的在线估计方法的流程示意图。FIG. 1 is a schematic flowchart of an online estimation method for the power state SOP of a series battery pack according to an embodiment of the present invention.
具体实施方式detailed description
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。The present invention will be described in detail below in conjunction with specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that those skilled in the art can make several modifications and improvements without departing from the concept of the present invention. These all belong to the protection scope of the present invention.
如图1所示,本发明实施例提供了一种串联电池组功率状态SOP的在线估计方法,包括如下步骤:As shown in FIG. 1 , an embodiment of the present invention provides an online estimation method for the power state SOP of a series battery pack, including the following steps:
步骤1、执行基于电池等效电路模型中的电池参数及对电池等效电路模型中未涵盖电池效应进行综合模拟的电池参数的递推在线辨识;Step 1. Perform recursive online identification of battery parameters based on battery parameters in the battery equivalent circuit model and battery parameters that are not included in the battery equivalent circuit model for comprehensive simulation of battery effects;
步骤2、执行基于电压限制和在线辨识出的电池参数的下一时刻的电池SOP计算;Step 2. Execute the battery SOP calculation at the next moment based on the voltage limit and the battery parameters identified online;
步骤3、执行基于电压限制和在线辨识出的电池参数的下一时刻以后时刻的电池SOP计算;Step 3. Execute the battery SOP calculation based on the voltage limit and the battery parameters identified online at the time after the next time;
步骤4、执行基于电流限制和在辨识计出的电池参数的下一时刻的电池SOP计算;Step 4, performing battery SOP calculation based on the current limit and the battery parameters at the next moment identified and calculated;
步骤5、执行基于电流限制和在线辨识出的电池参数的下一时刻以后时刻的电池SOP计算;Step 5. Execute the battery SOP calculation based on the current limit and the battery parameters identified online at the time after the next time;
步骤6、综合步骤2-5计算出的下一时刻的电池SOP以及以后时刻的电池SOP,实现对基于电压限制和电流限制综合的电池SOP的在线估计。Step 6, integrating the battery SOP at the next moment calculated in steps 2-5 and the battery SOP at a later moment to realize online estimation of the battery SOP based on voltage limitation and current limitation synthesis.
所述步骤1中的电池等效电路模型为Thevenin模型,所述电池等效电路模型中的电池参数包括电池的开路电压Voc、电池的直流内阻Rin、用于模拟电池的电荷转移现象的RC回路中的电阻Rp和电容Cp,在时刻k所述电池等效电路模型中未涵盖电池效应进行综合模拟的电池参数为白噪声的滑动平均值所构建的在电池等效电路模型的输出端添加的有色噪声wk。The battery equivalent circuit model in the step 1 is a Thevenin model, and the battery parameters in the battery equivalent circuit model include the open circuit voltage V oc of the battery, the DC internal resistance R in of the battery, and the charge transfer phenomenon used to simulate the battery The resistance R p and capacitance C p in the RC loop, at time k, the battery effect is not covered in the battery equivalent circuit model, and the battery parameters for comprehensive simulation are the sliding average value of white noise in the battery equivalent circuit model The colored noise w k added at the output of .
所述步骤1中的递推在线辨识的方法为基于递推扩展最小二乘法的在线辨识方法,具体包括如下步骤:The recursive online identification method in the step 1 is an online identification method based on the recursive extended least squares method, which specifically includes the following steps:
步骤101、按公式ΓT k=[1Ik(Ik-Ik-1)/Δt(Vt,k-Vt,k-1)/Δtnk-1…nk-nc]计算时刻k输入向量的递推值Γ,其中,ΓT 1=ΓT 2=…=ΓT nc=Γ0,Γ0为给定的初始值,I、Vt为通过传感器采样的电池的电流(充电时为负,放电时为正)、端电压,下标k代表第k时刻、k-1代表第k-1时刻,Δt为第k时刻和第k-1时刻间的时间,nk-1、…、nk-nc分别为前一时刻k-1、前nc时刻k-nc的随机误差;Step 101. Calculate time k according to the formula Γ T k =[1I k (I k -I k-1 )/Δt(V t, k -V t, k-1 )/Δtn k-1 ...n k-nc ] The recursive value Γ of the input vector, wherein, Γ T 1 =Γ T 2 =...=Γ T nc =Γ 0 , Γ 0 is a given initial value, I, V t are the current of the battery sampled by the sensor (charging Negative during discharge, positive during discharge), terminal voltage, subscript k represents the kth moment, k-1 represents the k-1st moment, Δt is the time between the kth moment and the k-1th moment, n k-1 , ..., n k-nc are the random errors of k-1 at the previous moment and k-nc at the previous nc moment;
步骤102、按公式Pk=[Pk-1-Pk-1ΓkΓT kPk-1/(λ+ΓT kPk-1Γk)]/λ更新第k时刻的增益因子Pk,其中,下标k、k-1分别代表第k时刻和k-1时刻,λ为遗忘因子(通常取值区间为0.95~1);Step 102: Update the gain at the kth moment according to the formula P k =[P k-1 -P k-1 Γ k Γ T k P k-1 /(λ+Γ T k P k-1 Γ k )]/λ Factor P k , where the subscripts k and k-1 represent the kth moment and k-1 moment respectively, and λ is the forgetting factor (usually the value range is 0.95 to 1);
步骤103、按公式0k=0k-1+PkΓk[Vt,k-ΓT k0k-1]计算第k时刻的待辨识参数向量0k;Step 103. According to the formula 0 k =0 k-1 +P k Γ k [V t, k -Γ T k 0 k-1 ], calculate the parameter vector 0 k to be identified at the kth moment;
步骤104、在k+1时刻电池的电流I和端电压Vt采样值更新后,按公式nk+1-i=Vt,k+1-i-ΓT k+1-i0k+1-i(i=1,2,3,…,nc)更新当前时刻以前的nc个时刻的随机误差,将k用k+1代替,返回步骤101,实现递推。Step 104: After updating the sampling values of battery current I and terminal voltage V t at time k+1, according to the formula n k+1-i = V t, k+1-i -Γ T k+1-i 0 k+ 1-i (i=1, 2, 3, ..., nc) update the random error of nc times before the current time, replace k with k+1, return to step 101, and realize recursion.
步骤105、利用在步骤101~104递推计算中获得待辨识参数向量0k中的元素01,k、02,k、03,k、04,k,分别按公式Voc=01,k、Rin=03,k/04,k、Rp=-02,k-03,k/04,k、Cp=04,k 2/(02,k04,k+03,k)计算出电池等效电路模型中的电池开路电压Voc、直流内阻Rin、RC电路中的Rp和Cp。Step 105, using elements 0 1, k , 0 2, k , 0 3, k , 0 4, k in the parameter vector 0 k to be identified obtained in the recursive calculation in steps 101-104, according to the formula V oc =0 respectively 1, k , R in =0 3, k /0 4, k , R p =-0 2, k -0 3, k /0 4, k , C p =0 4, k 2 /(0 2, k 0 4, k +0 3, k ) Calculate the battery open circuit voltage V oc , DC internal resistance R in , R p and C p in the RC circuit in the battery equivalent circuit model.
所述步骤2具体包括如下步骤:The step 2 specifically includes the following steps:
步骤201、按公式Vp,k=Voc-Vt,k-IkRin+wk计算当前时刻k的电池极化电压Vp,k,其中,Voc、Rin和wk分别为在所述步骤1中在线辨识的电池开路电压、直流内阻、有色噪声,Vt,k和Ik为由传感器测量得到的电池端电压和通过电池的电流;Step 201. Calculate the battery polarization voltage V p,k at the current moment k according to the formula V p,k =V oc -V t,k -I k R in +w k , where V oc , R in and w k are respectively For the battery open circuit voltage, DC internal resistance, and colored noise identified online in the step 1, V t, k and I k are the battery terminal voltage and the current through the battery measured by the sensor;
步骤202、按公式Vp,k+1=e-Δt/Rp/CpVp,k+(1-e-Δt/Rp/Cp)RpIk估计下一时刻k+1的电池极化电压Vp,k+1,其中,Rp、Cp分别为所述步骤1中在线识别的用于模拟电池的电荷转移现象的RC回路中的电阻、电容,Δt为下一时刻k+1与当前时刻k之间的时间;Step 202, according to the formula V p,k+1 =e -Δt/Rp/Cp V p,k +(1-e -Δt/Rp/Cp )R p I k to estimate the battery polarization at the next moment k+1 Voltage V p, k+1 , where R p and C p are the resistance and capacitance in the RC circuit identified online in step 1 to simulate the charge transfer phenomenon of the battery respectively, and Δt is k+1 at the next moment The time between and the current moment k;
步骤203、按wk+1=ΓT k0k估计下一时刻的有色噪声wk+1,其中,ΓT k、0k分别为所述步骤1中计算出的时刻k输入向量的递推值、待辨识参数向量;Step 203: Estimate the colored noise w k+1 at the next moment according to w k+1 = Γ T k 0 k , where Γ T k and 0 k are respectively the iterations of the input vector at time k calculated in step 1 Inferred value, parameter vector to be identified;
步骤204、分别按公式Ichrg,max k+1=(Voc-Vp,k+1-Vmax+wk+1)/Rin、Idischrg,max k+1=(Voc-Vp,k+1-Vmin+wk+1)/Rin计算下一时刻k+1不超过电池允许最高电压Vmax的最大充电电流Ichrg,max k+1、不超过电池允许最低电压Vmin的最大放电电流Idischrg,max k+1;Step 204, according to the formula I chrg, max k+1 = (V oc -V p, k+1 -V max +w k+1 )/R in , I dischrg, max k+1 = (V oc -V p, k+1 -V min +w k+1 )/R in Calculate the maximum charging current I chrg at the next moment k+1 that does not exceed the maximum allowable voltage V max of the battery, max k+1 does not exceed the minimum allowable voltage of the battery The maximum discharge current Idischrg of V min , max k+1 ;
步骤205、按下式计算出基于电压限制的下一时刻k+1的电池SOP:Step 205, calculate the battery SOP at the next time k+1 based on the voltage limit according to the following formula:
SOPV,short charge,k+1=VmaxIchrg,max k+1;SOP V, short charge, k+1 = V max I chrg, max k+1 ;
SOPV,short discharge,k+1=VminIdischrg,max k+1。SOP V, short discharge, k+1 = V min Idischrg, max k+1 .
所述步骤3具体包括如下步骤:Described step 3 specifically comprises the following steps:
步骤301、按公式Vp,k+1=e-Δt/Rp/CpVp,k+(1-e-Δt/Rp/Cp)RpIk估计下一时刻k+1的电池极化电压Vp,k+1,其中,Rp、Cp分别为所述步骤1中在线识别的用于模拟电池的电荷转移现象的RC回路中的电阻、电容,Δt为下一时刻k+1与当前时刻k之间的时间;Step 301, according to the formula V p,k+1 =e -Δt/Rp/Cp V p,k +(1-e -Δt/Rp/Cp )R p I k to estimate the battery polarization at the next moment k+1 Voltage V p, k+1 , where R p and C p are the resistance and capacitance in the RC circuit identified online in step 1 to simulate the charge transfer phenomenon of the battery respectively, and Δt is k+1 at the next moment The time between and the current moment k;
步骤302、分别按公式Ichrg,max k+1=(Voc-Vp,k+1-Vmax)/Rin、Idischrg,max k+1=(Voc-Vp,k+1-Vmin)/Rin计算下一时刻k+1不超过电池允许最高电压Vmax的最大充电电流Ichrg,max k+1、不超过电池允许最低电压Vmin的最大放电电流Idischrg,max k+1;Step 302, according to the formula I chrg, max k+1 = (V oc -V p, k+1 -V max )/R in , I dischrg, max k+1 = (V oc -V p, k+1 -V min )/Rin Calculate the maximum charging current I chrg, max k+1 that does not exceed the maximum allowable voltage V max of the battery at the next moment k+1, and the maximum discharge current I dischrg, max k that does not exceed the minimum allowable voltage V min of the battery +1 ;
步骤303、令k=k+1,重复步骤301和步骤302,则可在没有其他输入的情况下计算出当前时刻以后n个时刻的不超过电池允许最高电压Vmax的最大充电电流Ichrg,max k+i、不超过电池允许最低电压Vmin的最大放电电流Idischrg,max k+i,其中,i=1~n;进而按下式计算出基于电压限制的下一时刻以后时刻的电池SOP:Step 303, set k=k+1, repeat step 301 and step 302, then the maximum charging current Ichrg that does not exceed the maximum allowable voltage V max of the battery at n times after the current moment can be calculated without other input, max k+i , the maximum discharge current Idischrg that does not exceed the minimum allowable voltage V min of the battery, max k+i , where i=1~n; and then calculate the battery at the next moment based on the voltage limit according to the following formula SOP:
SOPV,long charge,k+j=VmaxIchrg,max k+j;SOP V, long charge, k+j = V max I chrg, max k+j ;
SOPV,long discharge,k+j=VminIdischrg,max k+j;SOP V, long discharge, k+j = V min I discharge, max k+j ;
其中,下标中的k代表当前时刻、k+j代表当前时刻以后的j(j=1,2,…,n)。Wherein, k in the subscript represents the current time, and k+j represents j (j=1, 2, . . . , n) after the current time.
所述步骤4具体包括如下步骤:The step 4 specifically includes the following steps:
步骤401、按公式Vp,k=Voc-Vt,k-IkRin+wk计算当前时刻k的电池极化电压Vp,k,其中,Voc、Rin和wk分别为在所述步骤1中在线辨识的电池开路电压、直流内阻、有色噪声,Vt,k和Ik为由传感器测量得到的电池端电压和通过电池的电流;Step 401. Calculate the battery polarization voltage V p,k at the current moment k according to the formula V p,k =V oc -V t,k -I k R in +w k , where V oc , R in and w k are respectively For the battery open circuit voltage, DC internal resistance, and colored noise identified online in the step 1, V t, k and I k are the battery terminal voltage and the current through the battery measured by the sensor;
步骤402、按公式Vp,k+1=e-Δt/Rp/CpVp,k+(1-e-Δt/Rp/Cp)RpIk估计下一时刻k+1的电池极化电压Vp,k+1,其中,Rp、Cp分别为所述步骤1中在线识别的用于模拟电池的电荷转移现象的RC回路中的电阻、电容,Δt为下一时刻k+1与当前时刻k之间的时间;Step 402, according to the formula V p,k+1 =e -Δt/Rp/Cp V p,k +(1-e -Δt/Rp/Cp )R p I k to estimate the battery polarization at the next moment k+1 Voltage V p, k+1 , where R p and C p are the resistance and capacitance in the RC circuit identified online in step 1 to simulate the charge transfer phenomenon of the battery respectively, and Δt is k+1 at the next moment The time between and the current moment k;
步骤403、按wk+1=ΓT k0k估计下一时刻的有色噪声wk+1,其中,ΓT k、0k分别为所述步骤1中计算出的时刻k输入向量的递推值、待辨识参数向量;Step 403: Estimate the colored noise w k+1 at the next moment according to w k+1 = Γ T k 0 k , where Γ T k and 0 k are respectively the iterations of the input vector at time k calculated in step 1 Inferred value, parameter vector to be identified;
步骤404、分别按公式Vchrg,max k+1=Voc-Vp,k+1-IminRin+wk+1、Vdischrg,min k+1=Voc-Vp,k+1-ImaxRin+wk+1计算下一时刻k+1不超过电池允许最大充电电流Imin的最高电压Vchrg,max k+1、不超过电池允许最大放电电流Imax的最低电压Vdischrg,min k+1;Step 404, according to the formulas V chrg, max k+1 = V oc - V p, k+1 - I min R in + w k+1 , V dischrg, min k+1 = V oc - V p, k+ respectively 1 -I max R in +w k+1 Calculate the highest voltage V chrg at the next moment k+1 that does not exceed the maximum allowable charging current I min of the battery, max k+1 , and the minimum voltage that does not exceed the maximum allowable discharge current I max of the battery Vdischrg, min k+1 ;
步骤405、按下式计算出基于电流限制的下一时刻k+1的电池SOP:Step 405, calculate the battery SOP at the next time k+1 based on the current limit according to the following formula:
SOPI,short charge,k+1=IminVchrg,max k+1;SOP I, short charge, k+1 = I min V chrg, max k+1 ;
SOPI,short discharge,k+1=ImaxVdischrg,min k+1。SOP I, short discharge, k+1 = I max Vdischrg, min k+1 .
所述步骤5具体包括如下步骤:Described step 5 specifically comprises the following steps:
步骤501、按公式Vp,k+1=e-Δt/Rp/CpVp,k+(1-e-Δt/Rp/Cp)RpIk估计下一时刻k+1的电池极化电压Vp,k+1,其中,Rp、Cp分别为所述步骤1中在线识别的用于模拟电池的电荷转移现象的RC回路中的电阻、电容,Δt为下一时刻k+1与当前时刻k之间的时间;Step 501, according to the formula V p,k+1 =e -Δt/Rp/Cp V p,k +(1-e -Δt/Rp/Cp )R p I k to estimate the battery polarization at the next moment k+1 Voltage V p, k+1 , where R p and C p are the resistance and capacitance in the RC circuit identified online in step 1 to simulate the charge transfer phenomenon of the battery respectively, and Δt is k+1 at the next moment The time between and the current moment k;
步骤502、分别按公式Vchrg,max k+1=Voc-Vp,k+1-IminRin、Vdischrg,min k+1=Voc-Vp,k+1-ImaxRin计算下一时刻k+1不超过电池允许最大充电电流Imin的最高电压Vchrg,max k+1、不超过电池允许最大放电电流Imax的最低电压Vdischrg,min k+1;Step 502, according to the formulas V chrg, max k+1 = V oc -V p, k+1 -I min R in , V dischrg, min k+1 = V oc -V p, k+1 -I max R in calculates the highest voltage V chrg,max k+1 that does not exceed the maximum allowable charging current I min of the battery at the next moment k+1, and the minimum voltage V dischrg,min k+ 1 that does not exceed the maximum allowable discharge current I max of the battery;
步骤503、令k=k+1,重复所述步骤501和步骤502,则可在没有其他输入的情况下计算出当前时刻以后n个时刻的不超过电池允许最大充电电流Imin的最高电压Vchrg,max k+i、不超过电池允许最大放电电流Imax的最低电压Vdischrg,min k+i,其中,i=1~n;进而按下式计算出基于电流限制的下一时刻以后时刻的电池SOP:Step 503, let k=k+1, repeat the steps 501 and 502, then can calculate the maximum voltage V that does not exceed the maximum battery charging current Imin at n moments after the current moment without other input chrg, max k+i , the minimum voltage V dischrg, min k+ i that does not exceed the maximum allowable discharge current I max of the battery, where i=1~n; and then calculate the time after the next time based on the current limit according to the following formula Battery SOP:
SOPI,long charge,k+j=IminVchrg,max k+j;SOP I, long charge, k+j = I min V chrg, max k+j ;
SOPI,long discharge,k+j=ImaxVdischrg,min k+j;SOP I, long discharge, k+j = I max Vdischrg, min k+j ;
其中,下标中的k代表当前时刻、k+j代表当前时刻以后的j(j=1,2,…,n)。Wherein, k in the subscript represents the current time, and k+j represents j (j=1, 2, . . . , n) after the current time.
所述步骤6具体包括如下步骤:Described step 6 specifically comprises the following steps:
步骤601、按如下公式计算下一时刻的电池SOP:Step 601, calculate the battery SOP at the next moment according to the following formula:
SOPshort charge.k+1=max[SOPV,short charge,k+1,SOPI,short charge,k+1];SOP short charge.k+1 = max[SOP V, short charge, k+1 , SOP I, short charge, k+1 ];
SOPshort discharge.k+1=max[SOPV,short discharge,k+1,SOPI,short discharge,k+1];SOP short discharge.k+1 = max[SOP V, short discharge, k+1 , SOP I, short discharge, k+1 ];
其中,下标中的k代表当前时刻、k+1代表下一时刻,SOPshort charge.k+1、SOPshort discharge.k+1分别为充电过程和放电过程中下一时刻的电池SOP;Among them, k in the subscript represents the current moment, k+1 represents the next moment, and SOP short charge.k+1 and SOP short discharge.k+1 are the battery SOP at the next moment during the charging process and discharging process, respectively;
步骤602、按如下公式下一时刻以后时刻的电池SOPStep 602, according to the following formula, the battery SOP at the time after the next time
SOPlong charge.k+j=max[SOPV,long charge,k+j,SOPI,long charge,k+j];SOP long charge.k+j = max[SOP V, long charge, k+j , SOP I, long charge, k+j ];
SOPlong discharge.k+j=max[SOPV,long discharge,k+j,SOPI,long discharge,k+j];SOP long discharge.k+j = max[SOP V, long discharge, k+j , SOP I, long discharge, k+j ];
其中,下标中的k代表当前时刻、k+j代表当前时刻以后的j(j=1,2,…,n)时刻,SOPlong charge.k+j、SOPlong discharge.k+j分别为充电过程和放电过程中下一时刻以后时刻的电池SOP。Among them, k in the subscript represents the current moment, k+j represents the j (j=1, 2,...,n) moment after the current moment, SOP long charge.k+j and SOP long discharge.k+j are respectively The SOP of the battery at the time after the next time during the charging process and the discharging process.
串联电池组放电过程中的电池SOP为串联电池组中的单体电压最低的电池SOP,串联电池组充电过程中的电池SOP为串联电池组中的单体电压最高的电池SOP。The battery SOP during the discharge process of the series battery pack is the battery SOP with the lowest cell voltage in the series battery pack, and the battery SOP during the charging process of the series battery pack is the battery SOP with the highest cell voltage in the series battery pack.
本具体实施同时考虑了电池电压和电流工作窗口对峰值功率的影响,从而提高了SOP计算的可靠性,确保电池能够高效、持久地工作;根据不同的输入条件,能够同时实现SOP的单步预测和多步预测。其中,SOP单步预测能够有效防止电池在实时运行过程中被滥用,而SOP多步预测则能够帮助其它相关系统实现最优化的能量管理。经由实验验证,本发明具有SOP单步预测值与实际值几乎完全一致、多步预测在15s内的最大误差为-3.27%的高精度。This specific implementation also considers the influence of the battery voltage and current working window on the peak power, thereby improving the reliability of SOP calculation and ensuring that the battery can work efficiently and continuously; according to different input conditions, the single-step prediction of SOP can be realized at the same time and multi-step forecasting. Among them, SOP single-step prediction can effectively prevent the battery from being abused during real-time operation, while SOP multi-step prediction can help other related systems to achieve optimal energy management. Through experimental verification, the present invention has the high precision that the SOP single-step prediction value is almost completely consistent with the actual value, and the maximum error of multi-step prediction within 15s is -3.27%.
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。Specific embodiments of the present invention have been described above. It should be understood that the present invention is not limited to the specific embodiments described above, and those skilled in the art may make various changes or modifications within the scope of the claims, which do not affect the essence of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510641657.0A CN105277895B (en) | 2015-09-30 | 2015-09-30 | An Online Estimation Method for Power State SOP of Series Battery Pack and Its Application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510641657.0A CN105277895B (en) | 2015-09-30 | 2015-09-30 | An Online Estimation Method for Power State SOP of Series Battery Pack and Its Application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105277895A true CN105277895A (en) | 2016-01-27 |
CN105277895B CN105277895B (en) | 2018-01-26 |
Family
ID=55147242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510641657.0A Active CN105277895B (en) | 2015-09-30 | 2015-09-30 | An Online Estimation Method for Power State SOP of Series Battery Pack and Its Application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105277895B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106249170A (en) * | 2016-08-31 | 2016-12-21 | 简式国际汽车设计(北京)有限公司 | A kind of electrokinetic cell system power rating method of estimation and device |
CN108226797A (en) * | 2018-01-02 | 2018-06-29 | 国机智骏(北京)汽车科技有限公司 | The evaluation method of power battery SOP, device and with its vehicle |
CN108845273A (en) * | 2018-08-30 | 2018-11-20 | 北京经纬恒润科技有限公司 | A kind of power battery power rating estimation function test method and device |
CN109116254A (en) * | 2018-08-30 | 2019-01-01 | 北京经纬恒润科技有限公司 | A kind of power battery power rating estimation function test method and device |
CN109633455A (en) * | 2019-01-17 | 2019-04-16 | 安徽优旦科技有限公司 | A method for estimating the available discharge and regenerate power of a battery |
CN110333460A (en) * | 2018-03-30 | 2019-10-15 | 比亚迪股份有限公司 | RC network parameter acquiring method, device and the electric car of power battery pack |
CN110470994A (en) * | 2019-09-26 | 2019-11-19 | 重庆长安新能源汽车科技有限公司 | A kind of prediction technique of power battery peak power |
CN111044909A (en) * | 2019-12-31 | 2020-04-21 | 北京理工大学 | Battery state prediction method and device |
CN111257770A (en) * | 2020-02-18 | 2020-06-09 | 宁波吉利汽车研究开发有限公司 | Battery pack power estimation method |
CN111426968A (en) * | 2020-05-28 | 2020-07-17 | 山东交通学院 | A method and system for estimating SOP of electric vehicle power battery |
CN111913109A (en) * | 2019-05-09 | 2020-11-10 | 上海汽车集团股份有限公司 | Method and device for predicting battery peak power |
CN112034354A (en) * | 2020-08-31 | 2020-12-04 | 蜂巢能源科技有限公司 | A battery power switching method, device, computer equipment and storage medium |
CN112684347A (en) * | 2020-12-15 | 2021-04-20 | 华北电力大学(保定) | Method and system for predicting available power of lithium battery under multiple constraint conditions |
CN112964997A (en) * | 2021-01-21 | 2021-06-15 | 西南科技大学 | Unmanned aerial vehicle lithium ion battery peak power self-adaptive estimation method |
CN113109716A (en) * | 2021-04-06 | 2021-07-13 | 江苏大学 | An Electrochemical Model-Based Method for Estimating SOP for Lithium Batteries |
CN114167289A (en) * | 2021-12-01 | 2022-03-11 | 中国第一汽车股份有限公司 | Method and device for determining output power of battery and vehicle |
CN117930044A (en) * | 2024-01-19 | 2024-04-26 | 雅安市卓安新能源科技发展有限责任公司 | A SOP estimation method for series lithium battery pack |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1607397A (en) * | 2003-10-13 | 2005-04-20 | 上海燃料电池汽车动力系统有限公司 | Method for on line identifying parameters of power accumulator model |
CN1883097A (en) * | 2003-11-20 | 2006-12-20 | 株式会社Lg化学 | Method for calculating power capacity of battery packs using advanced battery model prediction techniques |
US8315829B2 (en) * | 2008-04-22 | 2012-11-20 | GM Global Technology Operations LLC | Battery state-of-health monitoring system and method |
CN102930173A (en) * | 2012-11-16 | 2013-02-13 | 重庆长安汽车股份有限公司 | SOC(state of charge) online estimation method for lithium ion battery |
CN103645377A (en) * | 2013-12-24 | 2014-03-19 | 山东大学 | Battery allowable power prediction method based on dynamic matrix control algorithm |
US20140372054A1 (en) * | 2013-06-14 | 2014-12-18 | Hrl Laboratories, Llc | Double-pulse technique for on-line diagnostics of electrochemical systems |
CN104267354A (en) * | 2014-10-29 | 2015-01-07 | 哈尔滨工业大学 | Peak power prediction method for power battery |
-
2015
- 2015-09-30 CN CN201510641657.0A patent/CN105277895B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1607397A (en) * | 2003-10-13 | 2005-04-20 | 上海燃料电池汽车动力系统有限公司 | Method for on line identifying parameters of power accumulator model |
CN1883097A (en) * | 2003-11-20 | 2006-12-20 | 株式会社Lg化学 | Method for calculating power capacity of battery packs using advanced battery model prediction techniques |
US8315829B2 (en) * | 2008-04-22 | 2012-11-20 | GM Global Technology Operations LLC | Battery state-of-health monitoring system and method |
CN102930173A (en) * | 2012-11-16 | 2013-02-13 | 重庆长安汽车股份有限公司 | SOC(state of charge) online estimation method for lithium ion battery |
US20140372054A1 (en) * | 2013-06-14 | 2014-12-18 | Hrl Laboratories, Llc | Double-pulse technique for on-line diagnostics of electrochemical systems |
CN103645377A (en) * | 2013-12-24 | 2014-03-19 | 山东大学 | Battery allowable power prediction method based on dynamic matrix control algorithm |
CN104267354A (en) * | 2014-10-29 | 2015-01-07 | 哈尔滨工业大学 | Peak power prediction method for power battery |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106249170A (en) * | 2016-08-31 | 2016-12-21 | 简式国际汽车设计(北京)有限公司 | A kind of electrokinetic cell system power rating method of estimation and device |
CN106249170B (en) * | 2016-08-31 | 2018-11-23 | 简式国际汽车设计(北京)有限公司 | A kind of electrokinetic cell system power rating estimation method and device |
CN108226797A (en) * | 2018-01-02 | 2018-06-29 | 国机智骏(北京)汽车科技有限公司 | The evaluation method of power battery SOP, device and with its vehicle |
CN108226797B (en) * | 2018-01-02 | 2020-08-07 | 国机智骏(北京)汽车科技有限公司 | Power battery SOP estimation method and device and vehicle with same |
CN110333460A (en) * | 2018-03-30 | 2019-10-15 | 比亚迪股份有限公司 | RC network parameter acquiring method, device and the electric car of power battery pack |
CN109116254B (en) * | 2018-08-30 | 2020-11-03 | 北京经纬恒润科技有限公司 | Power battery power state estimation function test method and device |
CN109116254A (en) * | 2018-08-30 | 2019-01-01 | 北京经纬恒润科技有限公司 | A kind of power battery power rating estimation function test method and device |
CN108845273A (en) * | 2018-08-30 | 2018-11-20 | 北京经纬恒润科技有限公司 | A kind of power battery power rating estimation function test method and device |
CN109633455B (en) * | 2019-01-17 | 2021-03-23 | 安徽优旦科技有限公司 | Method for estimating available discharge and feedback power of battery |
CN109633455A (en) * | 2019-01-17 | 2019-04-16 | 安徽优旦科技有限公司 | A method for estimating the available discharge and regenerate power of a battery |
CN111913109B (en) * | 2019-05-09 | 2023-04-25 | 上海汽车集团股份有限公司 | Method and device for predicting peak power of battery |
CN111913109A (en) * | 2019-05-09 | 2020-11-10 | 上海汽车集团股份有限公司 | Method and device for predicting battery peak power |
CN110470994A (en) * | 2019-09-26 | 2019-11-19 | 重庆长安新能源汽车科技有限公司 | A kind of prediction technique of power battery peak power |
CN111044909A (en) * | 2019-12-31 | 2020-04-21 | 北京理工大学 | Battery state prediction method and device |
CN111044909B (en) * | 2019-12-31 | 2022-02-08 | 北京理工大学 | Battery state prediction method and device |
CN111257770B (en) * | 2020-02-18 | 2022-07-08 | 宁波吉利汽车研究开发有限公司 | Battery pack power estimation method |
CN111257770A (en) * | 2020-02-18 | 2020-06-09 | 宁波吉利汽车研究开发有限公司 | Battery pack power estimation method |
CN111426968A (en) * | 2020-05-28 | 2020-07-17 | 山东交通学院 | A method and system for estimating SOP of electric vehicle power battery |
CN112034354A (en) * | 2020-08-31 | 2020-12-04 | 蜂巢能源科技有限公司 | A battery power switching method, device, computer equipment and storage medium |
CN112684347A (en) * | 2020-12-15 | 2021-04-20 | 华北电力大学(保定) | Method and system for predicting available power of lithium battery under multiple constraint conditions |
CN112684347B (en) * | 2020-12-15 | 2022-08-02 | 华北电力大学(保定) | Method and system for predicting available power of lithium battery under multiple constraint conditions |
CN112964997A (en) * | 2021-01-21 | 2021-06-15 | 西南科技大学 | Unmanned aerial vehicle lithium ion battery peak power self-adaptive estimation method |
CN113109716A (en) * | 2021-04-06 | 2021-07-13 | 江苏大学 | An Electrochemical Model-Based Method for Estimating SOP for Lithium Batteries |
CN114167289A (en) * | 2021-12-01 | 2022-03-11 | 中国第一汽车股份有限公司 | Method and device for determining output power of battery and vehicle |
CN114167289B (en) * | 2021-12-01 | 2024-01-16 | 中国第一汽车股份有限公司 | Battery output power determining method and device and vehicle |
CN117930044A (en) * | 2024-01-19 | 2024-04-26 | 雅安市卓安新能源科技发展有限责任公司 | A SOP estimation method for series lithium battery pack |
Also Published As
Publication number | Publication date |
---|---|
CN105277895B (en) | 2018-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105277895B (en) | An Online Estimation Method for Power State SOP of Series Battery Pack and Its Application | |
CN110596593B (en) | Lithium ion battery SOC estimation method based on intelligent adaptive extended Kalman filtering | |
Duong et al. | Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares | |
CN104181470B (en) | Battery state-of-charge (SOC) estimation method based on nonlinear prediction extended Kalman filtering | |
Chen et al. | Battery state of charge estimation based on a combined model of Extended Kalman Filter and neural networks | |
CN106909716B (en) | Lithium iron phosphate battery modeling and SOC estimation method considering capacity loss | |
Chen et al. | Adaptive gain sliding mode observer for state of charge estimation based on combined battery equivalent circuit model | |
CN113777510A (en) | Method and device for estimating state of charge of lithium battery | |
EP2963434B1 (en) | Battery state estimation method and system using dual extended kalman filter, and recording medium for performing the method | |
Huria et al. | Simplified extended kalman filter observer for soc estimation of commercial power-oriented lfp lithium battery cells | |
CN110795851B (en) | Lithium ion battery modeling method considering environmental temperature influence | |
CN110261778B (en) | SOC estimation algorithm of lithium ion battery | |
CN103439668B (en) | The charge state evaluation method of power lithium-ion battery and system | |
CN109358293B (en) | SOC estimation method of lithium-ion battery based on IPF | |
CN105510829B (en) | A kind of Novel lithium ion power battery SOC methods of estimation | |
CN108594135A (en) | A kind of SOC estimation method for the control of lithium battery balance charge/discharge | |
CN107576919A (en) | Power battery charged state estimating system and method based on ARMAX models | |
CN106585422B (en) | SOH estimation method for power battery | |
Jiani et al. | Li-ion battery SOC estimation using particle filter based on an equivalent circuit model | |
CN105449739B (en) | State of charge of series-connected batteries SOC On-line Estimation method based on single battery | |
CN107817448B (en) | Method for online real-time monitoring of battery electric quantity suitable for complex working conditions | |
CN110515011A (en) | An accurate estimation method of SOC of lithium-ion power battery | |
CN103185865A (en) | Real-time estimation method of SOC (stress optical coefficient) closed loop of electric automobile lithium ion battery by EKF (extended kalman filter) | |
Enache et al. | Comparative study for generic battery models used for electric vehicles | |
CN114740385A (en) | Self-adaptive lithium ion battery state of charge estimation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |