CN105261755A - Preparation method for nano-rod iron molybdate electrode material of lithium ion battery - Google Patents
Preparation method for nano-rod iron molybdate electrode material of lithium ion battery Download PDFInfo
- Publication number
- CN105261755A CN105261755A CN201510569458.3A CN201510569458A CN105261755A CN 105261755 A CN105261755 A CN 105261755A CN 201510569458 A CN201510569458 A CN 201510569458A CN 105261755 A CN105261755 A CN 105261755A
- Authority
- CN
- China
- Prior art keywords
- electrode material
- preparation
- iron molybdate
- ion battery
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 239000007772 electrode material Substances 0.000 title claims abstract description 26
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- 239000002073 nanorod Substances 0.000 title abstract description 5
- 229910000754 Wrought iron Inorganic materials 0.000 title abstract description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 49
- 229910052742 iron Inorganic materials 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 6
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims abstract description 5
- 229940010552 ammonium molybdate Drugs 0.000 claims abstract description 5
- 235000018660 ammonium molybdate Nutrition 0.000 claims abstract description 5
- 239000011609 ammonium molybdate Substances 0.000 claims abstract description 5
- 239000006185 dispersion Substances 0.000 claims abstract description 4
- 238000001291 vacuum drying Methods 0.000 claims abstract description 3
- 239000002002 slurry Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 239000008367 deionised water Substances 0.000 claims description 4
- 229910021641 deionized water Inorganic materials 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- PDHXHYRJLUNSDZ-UHFFFAOYSA-N [C].C#C Chemical group [C].C#C PDHXHYRJLUNSDZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000006230 acetylene black Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 claims 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 abstract description 8
- 238000001027 hydrothermal synthesis Methods 0.000 abstract description 8
- 229910052744 lithium Inorganic materials 0.000 abstract description 8
- 239000002994 raw material Substances 0.000 abstract description 6
- 229910021578 Iron(III) chloride Inorganic materials 0.000 abstract description 4
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 abstract description 4
- 230000002378 acidificating effect Effects 0.000 abstract 1
- 239000002003 electrode paste Substances 0.000 abstract 1
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000011056 performance test Methods 0.000 abstract 1
- 239000002904 solvent Substances 0.000 abstract 1
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- -1 polypropylene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910017053 inorganic salt Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种简单的一步水热法合成钼酸铁的锂离子电池电极材料的制备方法,其制备过程包括有水热合成法和机械分散法。具体地说,就是通过水热法合成钼酸铁、机械分散制备电极材料浆液,再通过真空干燥箱干燥得到钼酸铁的电极材料。本发明属于锂离子电池材料制备和应用技术领域。 The invention relates to a simple one-step hydrothermal method for the preparation of iron molybdate lithium ion battery electrode materials. The preparation process includes a hydrothermal synthesis method and a mechanical dispersion method. Specifically, iron molybdate is synthesized by hydrothermal method, electrode material slurry is prepared by mechanical dispersion, and the electrode material of iron molybdate is obtained by drying in a vacuum oven. The invention belongs to the technical field of lithium ion battery material preparation and application.
背景技术 Background technique
二次锂离子电池作为最迅速增长的能源储存系统,已被广泛应用于便携式电子设备和混合动力电动车辆。然而,目前的商用锂离子电池,其性能达不到人们对高能量和功率密度的追求。且随着社会的发展,人们的环保意识越来越强,寻求一种环保无污染、原料廉价易得的锂电池材料具有深刻意义。与商业石墨相比,过渡金属氧化物具有更高的质量和体积比容量,例如,Fe2O3、MoO3的理论比容量分别为1007、1116mAh/g。但几乎所有的过渡金属氧化物在与锂的反应过程中都表现出导电率差和体积变化大的缺陷,这严重影响了电极材料的循环性能和倍率性能。为了限制这一弊端,一般采用与碳材料如碳纳米管或石墨烯结合制备复合电极材料,或者研制纳米级的电极材料。近来,三元金属氧化物表现出比二元氧化物更优异的储锂性能,其把两种不同的金属引入同一基质。正因为其有金属元素和晶体结构多样性的优点,使得三元金属氧化物变得更有发展潜力。 Secondary lithium-ion batteries, as the fastest growing energy storage system, have been widely used in portable electronic devices and hybrid electric vehicles. However, the performance of current commercial lithium-ion batteries falls short of the pursuit of high energy and power densities. And with the development of society, people's awareness of environmental protection is getting stronger and stronger, and it is of profound significance to seek an environmentally friendly and pollution-free lithium battery material with cheap and easy-to-obtain raw materials. Compared with commercial graphite, transition metal oxides have higher mass and volume specific capacities, for example, the theoretical specific capacities of Fe 2 O 3 and MoO 3 are 1007 and 1116 mAh/g, respectively. However, almost all transition metal oxides exhibit defects of poor electrical conductivity and large volume change during the reaction with lithium, which seriously affect the cycle performance and rate capability of electrode materials. In order to limit this disadvantage, it is generally used to combine with carbon materials such as carbon nanotubes or graphene to prepare composite electrode materials, or to develop nanoscale electrode materials. Recently, ternary metal oxides have shown superior lithium storage performance than binary oxides, which incorporate two different metals into the same matrix. Because of its advantages in the diversity of metal elements and crystal structures, ternary metal oxides have more potential for development.
关于三元金属氧化物作为锂离子电池负极材料的研究较多。ChristieT.Cherian等通过热解金属前驱体溶液的聚合物集体制备了CoMoO4亚微米结构,该单体在100mA/g电流密度下可逆容量达到990mAh/g(ACSAppl.Mater.Interfaces2013,5,918-923.)。类似地,Yao等用水热法制备了颗粒尺寸为3-5nm的CoMoO4颗粒生长在还原氧化石墨烯片上的复合结构,在电流密度为74mA/g的下,能够有920mAh/g的高比容量(ACSAppl.Mater.Interfaces2014,6,20414?20422.)。JanHaetge等通过利用无机盐前体聚合物模板制备带有均匀直径19nm的介孔β-MgMoO4薄膜电极材料,100圈后可逆容量仍然稳定在162mAh/g(Small.2013,10.1002.)。另外,我国钼资源产量居世界第二位,利用资源优势,开发研究新型的钼酸盐材料,推动其在各产业领域中的应用,将具有重要的经济价值和社会价值。水热法由于能耗低、原料易得、污染少等优点,一直被人们认为是合成无机粉体材料的有效方法。总之,利用一种操作简易的方法寻求一种相对比容量高、储锂性能好的电极材料是设计锂离子电池的关键。 There are many studies on ternary metal oxides as anode materials for lithium-ion batteries. ChristieT.Cherian et al prepared a CoMoO 4 submicron structure by pyrolyzing the polymer of the metal precursor solution collectively, and the monomer reached a reversible capacity of 990mAh/g at a current density of 100mA/g (ACS Appl. ). Similarly, Yao et al. prepared a composite structure in which CoMoO 4 particles with a particle size of 3-5 nm were grown on reduced graphene oxide sheets by a hydrothermal method, and a high specific capacity of 920 mAh/g could be obtained at a current density of 74 mA/g. (ACS Appl. Mater. Interfaces 2014, 6, 20414? 20422.). JanHaetge et al. prepared mesoporous β-MgMoO 4 thin film electrode materials with a uniform diameter of 19nm by using inorganic salt precursor polymer templates, and the reversible capacity was still stable at 162mAh/g after 100 cycles (Small.2013, 10.1002.). In addition, the output of molybdenum resources in my country ranks second in the world. Taking advantage of resources, developing and researching new molybdate materials and promoting their application in various industrial fields will have important economic and social values. Due to the advantages of low energy consumption, easy availability of raw materials, and less pollution, the hydrothermal method has been considered as an effective method for the synthesis of inorganic powder materials. In conclusion, finding an electrode material with a relatively high specific capacity and good lithium storage performance using an easy-to-operate method is the key to designing a lithium-ion battery.
发明内容 Contents of the invention
本发明的目的是提供一种纳米棒状钼酸铁的锂离子电池电极材料的制备方法。 The object of the present invention is to provide a preparation method of a lithium ion battery electrode material of nano-rod iron molybdate.
本发明是以氯化铁、钼酸铵为原料,通过水热法合成纳米棒状钼酸铁晶体;机械分散制备电极浆液;最后真空干燥后获得锂离子电池电极材料。经过电化学测试可知该新型钼酸铁电极材料,比容量相对较高,储锂性能良好。另外,该钼酸铁材料具有合成原料廉价易得、制备方法简单、环保无污染、材料独特新颖,具有一定商业化实际应用的潜力。 The invention uses ferric chloride and ammonium molybdate as raw materials, synthesizes nanorod-shaped iron molybdate crystals through a hydrothermal method; mechanically disperses to prepare electrode slurry; and finally obtains lithium ion battery electrode materials after vacuum drying. Electrochemical tests show that the new iron molybdate electrode material has a relatively high specific capacity and good lithium storage performance. In addition, the iron molybdate material has the advantages of cheap and easy-to-obtain synthetic raw materials, simple preparation method, environmental protection and pollution-free, unique and novel material, and has a certain potential for commercial practical application.
本发明是通过以下技术方案实现的。 The present invention is achieved through the following technical solutions.
本发明一种纳米棒状钼酸铁的锂离子电池电极材料的制备方法,其特征在于具有如下的过程和步骤: A kind of preparation method of the lithium ion battery electrode material of the present invention is characterized in that having following process and step:
a.水热法合成纳米棒状钼酸铁晶体:称取0.05-0.1g氯化铁固体于12.5-25mL去离子水中,搅拌0.5-1h;再加入0.05-0.1g钼酸铵继续搅拌0.5-1h;滴加入10-20滴稀盐酸调节pH至酸性;将混合物转移至水热釜中,于150-180℃下反应6-12h;离心水洗至中性,干燥过夜得到产物; a. Synthesis of nanorod-shaped ferric molybdate crystals by hydrothermal method: Weigh 0.05-0.1g ferric chloride solid into 12.5-25mL deionized water, stir for 0.5-1h; then add 0.05-0.1g ammonium molybdate and continue stirring for 0.5-1h ; Add 10-20 drops of dilute hydrochloric acid dropwise to adjust the pH to acidity; transfer the mixture to a hydrothermal kettle, and react at 150-180°C for 6-12h; centrifuge, wash with water until neutral, and dry overnight to obtain the product;
b.钼酸铁/导电碳浆料的制备:分别称取0.01g的上述钼酸铁产物、0.00125g导电碳乙炔黑至塑料离心管中;加入0.05g的胶黏剂聚偏氟乙烯,用高速内旋式打浆机分散浆液,每次一分钟重复5-10次,得到均一的钼酸铁/导电碳的黑色胶状浆料;其中电极材料与胶黏剂的比例为8:1-9:1; b. Preparation of ferric molybdate/conductive carbon slurry: Weigh 0.01g of the above-mentioned ferric molybdate product and 0.00125g conductive carbon acetylene black into plastic centrifuge tubes respectively; add 0.05g of adhesive polyvinylidene fluoride, and use A high-speed internal rotary beater disperses the slurry, repeating 5-10 times per minute to obtain a uniform black colloidal slurry of iron molybdate/conductive carbon; the ratio of electrode material to adhesive is 8:1-9 :1;
c.钼酸铁锂离子电池电极材料的制备:将上述浆料均匀的涂布在事先处理好的金属铜集流体上,置于真空烘箱中干燥,温度设置范围是60-80℃,干燥时间20-24h;最终得到钼酸铁的锂离子电池电极材料。 c. Preparation of electrode materials for lithium iron molybdate batteries: evenly coat the above slurry on the pre-treated metal copper current collector, and dry in a vacuum oven. The temperature setting range is 60-80°C, and the drying time is 20-24h; the lithium ion battery electrode material of iron molybdate is finally obtained.
附图说明 Description of drawings
图1为本发明的钼酸铁晶体的X射线衍射(XRD)图谱。 Fig. 1 is the X-ray diffraction (XRD) pattern of the iron molybdate crystal of the present invention.
图2为本发明的钼酸铁晶体的扫描电镜(SEM)照片。 Fig. 2 is a scanning electron microscope (SEM) photo of the iron molybdate crystal of the present invention.
图3为本发明的钼酸铁晶体的小电流(0.1C)充放电的循环性能图。 Fig. 3 is a cycle performance diagram of the charge and discharge of the iron molybdate crystal at a low current (0.1C) of the present invention.
具体实施方式 detailed description
现将本发明的具体实施例叙述于后。 Specific embodiments of the present invention are described below.
实施例1Example 1
称取0.05g氯化铁固体分散在12.5mL去离子水中,搅拌0.5h;再加入0.05g钼酸铵继续搅拌0.5h;滴加入10滴稀盐酸调节pH至1.5;将混合物转移至水热釜中,于180℃下反应6h;自然冷却至室温后,用去离子水离心洗涤至中性,干燥过夜得到产物。 Weigh 0.05g ferric chloride solid and disperse in 12.5mL deionized water, stir for 0.5h; then add 0.05g ammonium molybdate and continue stirring for 0.5h; add 10 drops of dilute hydrochloric acid to adjust the pH to 1.5; transfer the mixture to a hydrothermal kettle in 180°C for 6 h; naturally cooled to room temperature, washed with deionized water to neutrality, and dried overnight to obtain the product.
分别称取0.01g的上述钼酸铁产物、0.00125g导电碳乙炔黑至塑料离心管中;加入0.05g的胶黏剂聚偏氟乙烯,用高速内旋式打浆机分散浆液,每次一分钟重复6次,得到均一的钼酸铁/导电碳的黑色胶状浆料。 Weigh 0.01g of the above-mentioned ferric molybdate product and 0.00125g of conductive carbon acetylene black into plastic centrifuge tubes; add 0.05g of adhesive polyvinylidene fluoride, and disperse the slurry with a high-speed internal rotary beater for one minute each time Repeat 6 times to obtain uniform black colloidal slurry of iron molybdate/conductive carbon.
将上述浆料均匀的涂布在事先处理好的金属铜集流体上,置于真空烘箱中干燥,温度设置为80℃,干燥时间为20h;最终得到钼酸铁的锂离子电池电极材料。 The above slurry is uniformly coated on the pre-treated metal copper current collector, and dried in a vacuum oven with the temperature set at 80°C and the drying time is 20 hours; finally, the lithium ion battery electrode material of iron molybdate is obtained.
电池的组装及其测试Battery assembly and testing
把上述制备好的待测电极放入自制不锈钢电池模具中测试。以高纯锂片作为正极,以本发明电极材料作为负极,聚丙烯多孔膜(Celgard2400)为隔膜,电解液为1mol/L六氟磷酸锂LiPF6与碳酸亚乙酯(EC)/碳酸二甲酯(DMC)(重量比为1:1)的混合溶液。电池的组装在充满高纯氩气的手套箱中进行。测试电流密度为0.1C,其中1C等于1000mA/g,测试电压范围为0.005-3V。 Put the prepared electrode to be tested above into a self-made stainless steel battery mold for testing. With the high-purity lithium sheet as the positive electrode, the electrode material of the present invention as the negative electrode, the polypropylene porous membrane (Celgard2400) as the diaphragm, the electrolyte solution is 1mol/L lithium hexafluorophosphate LiPF 6 and ethylene carbonate (EC)/dimethyl carbonate (DMC ) (weight ratio 1:1) mixed solution. Cell assembly was performed in a glove box filled with high-purity argon. The test current density is 0.1C, where 1C is equal to 1000mA/g, and the test voltage range is 0.005-3V.
附图1所示:经分析得知产物是结晶度较高的钼酸铁材料,所得衍射峰与钼酸铁(PDF31-0642)相匹配。附图2为其SEM照片:可以看出钼酸铁呈现均匀分布的纳米棒状。从图3可看出,电池在小电流充放循环50圈内比容量在~400-1200mAh/g范围内。可见该材料具有很高的储锂容量,如果循环性能通过碳负载等改善,具有一定商业化的潜力。 Shown in accompanying drawing 1: after analysis, it is known that the product is an iron molybdate material with higher crystallinity, and the obtained diffraction peak matches iron molybdate (PDF31-0642). Accompanying drawing 2 is its SEM picture: It can be seen that iron molybdate presents the shape of uniformly distributed nanorods. It can be seen from Figure 3 that the specific capacity of the battery is in the range of ~400-1200mAh/g within 50 cycles of low current charge and discharge. It can be seen that this material has a high lithium storage capacity, and if the cycle performance is improved by carbon loading, it has a certain potential for commercialization.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510569458.3A CN105261755A (en) | 2015-09-09 | 2015-09-09 | Preparation method for nano-rod iron molybdate electrode material of lithium ion battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510569458.3A CN105261755A (en) | 2015-09-09 | 2015-09-09 | Preparation method for nano-rod iron molybdate electrode material of lithium ion battery |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105261755A true CN105261755A (en) | 2016-01-20 |
Family
ID=55101332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510569458.3A Pending CN105261755A (en) | 2015-09-09 | 2015-09-09 | Preparation method for nano-rod iron molybdate electrode material of lithium ion battery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105261755A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106198647A (en) * | 2016-07-22 | 2016-12-07 | 武汉工程大学 | A kind of dimethylbenzene gas sensitive, dimethylbenzene gas sensitive device and preparation method thereof |
CN108821345A (en) * | 2018-09-12 | 2018-11-16 | 华中农业大学 | Fe2(MoO4)3Hollow micron ball and its controllable method for preparing and application |
CN109574082A (en) * | 2018-11-28 | 2019-04-05 | 武汉科技大学 | A kind of original position core-shell structure molybdic acid iron powder body and preparation method thereof |
CN109574081A (en) * | 2018-11-28 | 2019-04-05 | 武汉科技大学 | One kind having Nanocrystaline spherical molybdic acid iron powder body and preparation method thereof |
CN110416505A (en) * | 2019-07-10 | 2019-11-05 | 新乡学院 | A kind of amorphous Fe-Mo-O wrapped Fe2(MoO4)3 lithium ion battery negative electrode material and preparation method thereof |
CN110492070A (en) * | 2019-08-16 | 2019-11-22 | 陕西科技大学 | A kind of molybdic acid ferro-carbon composite nano ball, preparation method and its application as electrode material |
CN112850788A (en) * | 2021-01-25 | 2021-05-28 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | Monoclinic structure Fe2(MoO4)3Nanowire and preparation method and application thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103754954A (en) * | 2014-02-14 | 2014-04-30 | 中国矿业大学 | Preparation method of iron molybdenum oxide (II) nanocube |
CN103943833A (en) * | 2014-03-24 | 2014-07-23 | 上海大学 | Microwave preparation method of sulfur loaded graphene as electrode material of lithium battery |
-
2015
- 2015-09-09 CN CN201510569458.3A patent/CN105261755A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103754954A (en) * | 2014-02-14 | 2014-04-30 | 中国矿业大学 | Preparation method of iron molybdenum oxide (II) nanocube |
CN103943833A (en) * | 2014-03-24 | 2014-07-23 | 上海大学 | Microwave preparation method of sulfur loaded graphene as electrode material of lithium battery |
Non-Patent Citations (1)
Title |
---|
ZHIYI ZHANG等: "Synthesis and magnetic property of FeMoO4 nanorods", 《MATERIALS SCIENCE AND ENGINEERING B》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106198647A (en) * | 2016-07-22 | 2016-12-07 | 武汉工程大学 | A kind of dimethylbenzene gas sensitive, dimethylbenzene gas sensitive device and preparation method thereof |
CN108821345A (en) * | 2018-09-12 | 2018-11-16 | 华中农业大学 | Fe2(MoO4)3Hollow micron ball and its controllable method for preparing and application |
CN108821345B (en) * | 2018-09-12 | 2020-04-21 | 华中农业大学 | Fe2(MoO4)3 hollow microspheres and controllable preparation method and application thereof |
CN109574082A (en) * | 2018-11-28 | 2019-04-05 | 武汉科技大学 | A kind of original position core-shell structure molybdic acid iron powder body and preparation method thereof |
CN109574081A (en) * | 2018-11-28 | 2019-04-05 | 武汉科技大学 | One kind having Nanocrystaline spherical molybdic acid iron powder body and preparation method thereof |
CN109574082B (en) * | 2018-11-28 | 2021-05-04 | 武汉科技大学 | In-situ core-shell structure iron molybdate powder and preparation method thereof |
CN110416505A (en) * | 2019-07-10 | 2019-11-05 | 新乡学院 | A kind of amorphous Fe-Mo-O wrapped Fe2(MoO4)3 lithium ion battery negative electrode material and preparation method thereof |
CN110416505B (en) * | 2019-07-10 | 2021-01-29 | 新乡学院 | A kind of amorphous Fe-Mo-O wrapped Fe2(MoO4)3 lithium ion battery anode material and preparation method thereof |
CN110492070A (en) * | 2019-08-16 | 2019-11-22 | 陕西科技大学 | A kind of molybdic acid ferro-carbon composite nano ball, preparation method and its application as electrode material |
CN112850788A (en) * | 2021-01-25 | 2021-05-28 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | Monoclinic structure Fe2(MoO4)3Nanowire and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109742360B (en) | Preparation method of high-capacity molybdenum selenide-chlorella derived carbon-less-layer composite battery anode material | |
CN105261755A (en) | Preparation method for nano-rod iron molybdate electrode material of lithium ion battery | |
Sen et al. | Synthesis of molybdenum oxides and their electrochemical properties against Li | |
CN111129475B (en) | Preparation method of molybdenum dioxide/carbon/silicon dioxide nanospheres and negative electrode material of lithium ion battery | |
CN107902633B (en) | A kind of selenide pyrite material and its prepared battery | |
CN112018344B (en) | Carbon-coated nickel sulfide electrode material, preparation method and application thereof | |
CN104201363A (en) | A kind of carbon-coated Li3VO4 lithium-ion battery negative electrode material and preparation method thereof | |
CN100505391C (en) | Preparation method of spherical LiFePO4/C composite material with honeycomb structure | |
CN106374101A (en) | Preparation method and application of a Co3O4@Co@carbon nanocage | |
CN103531789A (en) | Iron oxide-carbon nanotube ternary composite material and preparation method thereof | |
CN103413918B (en) | A kind of synthetic method of anode material for lithium ion battery cobalt phosphate lithium | |
CN104868118A (en) | A kind of preparation method of sodium ion battery cathode FePO4/Graphene composite material | |
CN113410459B (en) | Embedded MoS x Three-dimensional ordered macroporous graphene carbon material of nanosheet, preparation and application | |
CN103943833B (en) | A kind of preparation method of lithium battery electrode material that microwave prepares graphene loaded sulfur | |
CN114725375A (en) | One-step solvothermal method for preparing VS2Method for preparing negative electrode material of sodium ion battery | |
CN108963245A (en) | A kind of mesoporous cobaltosic oxide electrode material of lamellar and preparation method thereof | |
CN102544483B (en) | A kind of anode composite material of lithium ion battery and preparation method thereof | |
CN110197902B (en) | Porous structure open walnut shell-shaped sodium ion battery positive electrode material and preparation method thereof | |
Wang et al. | Synthesis and characterization of GaNb11O29@ C for high-performance lithium-ion battery | |
CN106784750A (en) | A kind of TiO/C negative materials and its preparation method and application | |
CN106025343A (en) | Method for preparing porous tin oxide material of negative electrode of lithium ion battery | |
CN107039637A (en) | A kind of high-performance negative material Li3VO4/ C preparation method and the application on sodium-ion battery | |
CN112331812B (en) | MoO (MoO) 2 Preparation method of nanorod anode material | |
CN114242982A (en) | Graphene-coated two-dimensional metal compound electrode material, preparation method and application thereof | |
CN104124445B (en) | A kind of NiV3O8 lithium-ion battery negative electrode material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160120 |
|
WD01 | Invention patent application deemed withdrawn after publication |