CN105259302A - Method for directly measuring content of trivalent vanadium in vanadium slag - Google Patents
Method for directly measuring content of trivalent vanadium in vanadium slag Download PDFInfo
- Publication number
- CN105259302A CN105259302A CN201510779514.6A CN201510779514A CN105259302A CN 105259302 A CN105259302 A CN 105259302A CN 201510779514 A CN201510779514 A CN 201510779514A CN 105259302 A CN105259302 A CN 105259302A
- Authority
- CN
- China
- Prior art keywords
- vanadium
- content
- trivalent
- solution
- vanadium slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052720 vanadium Inorganic materials 0.000 title claims abstract description 176
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 title claims abstract description 176
- 239000002893 slag Substances 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 53
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 44
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 claims abstract description 38
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 34
- 238000004448 titration Methods 0.000 claims abstract description 24
- 235000010265 sodium sulphite Nutrition 0.000 claims abstract description 19
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 150000004673 fluoride salts Chemical class 0.000 claims abstract description 10
- SOIFLUNRINLCBN-UHFFFAOYSA-N ammonium thiocyanate Chemical compound [NH4+].[S-]C#N SOIFLUNRINLCBN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 9
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 35
- FPFSGDXIBUDDKZ-UHFFFAOYSA-N 3-decyl-2-hydroxycyclopent-2-en-1-one Chemical compound CCCCCCCCCCC1=C(O)C(=O)CC1 FPFSGDXIBUDDKZ-UHFFFAOYSA-N 0.000 claims description 24
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 16
- YONPGGFAJWQGJC-UHFFFAOYSA-K titanium(iii) chloride Chemical compound Cl[Ti](Cl)Cl YONPGGFAJWQGJC-UHFFFAOYSA-K 0.000 claims description 16
- 239000012086 standard solution Substances 0.000 claims description 15
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 14
- 238000009835 boiling Methods 0.000 claims description 11
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 claims description 8
- 235000013024 sodium fluoride Nutrition 0.000 claims description 8
- 239000011775 sodium fluoride Substances 0.000 claims description 8
- 235000017557 sodium bicarbonate Nutrition 0.000 claims description 7
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims description 7
- 235000003270 potassium fluoride Nutrition 0.000 claims description 4
- 239000011698 potassium fluoride Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims 1
- 235000011130 ammonium sulphate Nutrition 0.000 claims 1
- 238000003556 assay Methods 0.000 claims 1
- 238000012216 screening Methods 0.000 claims 1
- 238000004458 analytical method Methods 0.000 abstract description 12
- XGGLLRJQCZROSE-UHFFFAOYSA-K ammonium iron(iii) sulfate Chemical compound [NH4+].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O XGGLLRJQCZROSE-UHFFFAOYSA-K 0.000 abstract description 6
- 230000000873 masking effect Effects 0.000 abstract description 3
- 238000009614 chemical analysis method Methods 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 238000001816 cooling Methods 0.000 abstract 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 abstract 1
- 239000000523 sample Substances 0.000 description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 8
- 229910052573 porcelain Inorganic materials 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 5
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 229910001935 vanadium oxide Inorganic materials 0.000 description 3
- 241000143437 Aciculosporium take Species 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 2
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012286 potassium permanganate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- CFVBFMMHFBHNPZ-UHFFFAOYSA-N [Na].[V] Chemical compound [Na].[V] CFVBFMMHFBHNPZ-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000006184 cosolvent Substances 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于化学分析方法,具体涉及一种直接测定钒渣中三价钒含量的分析方法。The invention belongs to chemical analysis methods, in particular to an analysis method for directly measuring the content of trivalent vanadium in vanadium slag.
背景技术Background technique
钒渣是含钒原料经过冶炼使得钒得到充分富集而成的工艺矿石,是提钒(V2O5)的主要原料,具有很大的经济价值。了解钒渣的价态及含量对确定提钒工艺中钒的生产工艺条件,提高生产转化率有着重要意义。针对钒渣中钒的价态研究,国内已有较多研究,其中《X射线光电能谱分析钒渣熟料中钒的价态》与《钒渣中钒的价态分析》均为定性分析;《钠化钒渣中钒的价态分析》为定量分析,方法为以硫酸亚铁铵滴定法测定四价钒及五价钒含量,由总钒减去五价钒及四价钒含量得三价钒含量,方法较为复杂繁冗,三价钒为间接测定,准确度不高。Vanadium slag is a process ore made of vanadium-containing raw materials through smelting to fully enrich vanadium. It is the main raw material for vanadium extraction (V 2 O 5 ) and has great economic value. Understanding the valence state and content of vanadium slag is of great significance to determine the production process conditions of vanadium in the vanadium extraction process and improve the production conversion rate. Aiming at the research on the valence state of vanadium in vanadium slag, there have been many domestic studies, among which "X-ray photoelectric spectroscopy analysis of the valence state of vanadium in vanadium slag clinker" and "Valence state analysis of vanadium in vanadium slag" are qualitative analysis "Valence State Analysis of Vanadium in Sodium Vanadium Slag" is a quantitative analysis, the method is to measure tetravalent vanadium and pentavalent vanadium content by ferrous ammonium sulfate titration method, subtract pentavalent vanadium and tetravalent vanadium content from total vanadium to get The method of trivalent vanadium content is relatively complicated and cumbersome, and trivalent vanadium is measured indirectly, and the accuracy is not high.
还例如,申请号为“201210572028.3”,发明名称为“测定钒含量的方法”,公开了一种包括以下步骤:用盐酸消解含钒样品,得到含钒溶液;通过电感耦合等离子体原子发射光谱仪测定含钒溶液中的钒含量。该专利采用ICP测定分析含钒液中钒的含量,检测费用和检测设备较贵,还存在较大的试验误差。Also for example, the application number is "201210572028.3", and the title of the invention is "method for measuring vanadium content", which discloses a method comprising the following steps: digesting a vanadium-containing sample with hydrochloric acid to obtain a vanadium-containing solution; Vanadium content in vanadium-containing solutions. This patent uses ICP to measure and analyze the content of vanadium in the vanadium-containing liquid, and the detection cost and detection equipment are relatively expensive, and there are still large experimental errors.
申请号为“201310030450.0”,发明名称为“氧化钒中四价钒含量的测定方法”,公开了一种测定步骤为:(1)测定氧化钒试样中的全钒含量;(2)采用碱溶法溶解相同的氧化钒试样,将不溶物过滤分离,得到滤液和不溶的三价钒沉淀;(3)在滤液加入硫酸,滴加钒指示剂后用硫酸亚铁铵标液滴定五价钒含量;(4)在三价钒沉淀中加入硫酸和硝酸后加热溶解,然后加入硫酸亚铁铵将钒还原成低价态,再滴加高锰酸钾将钒氧化成五价;然后加入尿素,用亚硝酸钠溶液还原过量的高锰酸钾,滴加钒指示剂后用硫酸亚铁铵标液滴定三价钒含量;(5)以全钒含量减去三价钒和五价钒的含量即为四价钒含量。该专利方法也是三价钒间接测定方法,测定过程复杂,准确度不高。The application number is "201310030450.0", and the title of the invention is "Method for Determination of Tetravalent Vanadium Content in Vanadium Oxide", which discloses a measurement procedure as follows: (1) Determination of the total vanadium content in the vanadium oxide sample; (2) Using alkali Dissolve the same vanadium oxide sample by dissolution method, filter and separate the insoluble matter, and obtain the filtrate and insoluble trivalent vanadium precipitate; (3) add sulfuric acid to the filtrate, drop the vanadium indicator, and titrate the pentavalent vanadium with ferrous ammonium sulfate standard solution vanadium content; (4) Add sulfuric acid and nitric acid to the trivalent vanadium precipitation and heat to dissolve, then add ferrous ammonium sulfate to reduce vanadium to a low-valence state, then add dropwise potassium permanganate to oxidize vanadium to pentavalent; then add Urea, reduce excess potassium permanganate with sodium nitrite solution, and titrate the trivalent vanadium content with ferrous ammonium sulfate standard solution after adding vanadium indicator dropwise; (5) subtract trivalent vanadium and pentavalent vanadium from the total vanadium content The content is the tetravalent vanadium content. This patented method is also an indirect determination method of trivalent vanadium, the determination process is complicated and the accuracy is not high.
由文献查,国内外学者认为钒渣中钒主要以三价存在,形成含钒尖晶石,五价钒及四价钒含量极少,发明人认为可直接测定钒渣中三价钒含量,提高三价钒测定的准确度及分析速率。According to literature review, scholars at home and abroad believe that vanadium in vanadium slag mainly exists in trivalent, forming vanadium-containing spinel, and the content of pentavalent vanadium and tetravalent vanadium is very small. The inventor believes that the content of trivalent vanadium in vanadium slag can be directly measured. Improve the accuracy and analysis rate of trivalent vanadium determination.
钒渣中含有大量的锰、硅、钙、镁、铁等元素,这些元素经焙烧形成不同的物相。要解决三价钒的测定难题,首先解决样品分解难题,分解样品时尽可能将含钒物相全部打开;其次,消除高价锰、高价铁、以及高价钒的干扰,并保证钒渣中四价钒不被还原,高价锰、高价铁、高价钒等与三价钒反应活性较强,在一定酸性介质中,不能共存,会将三价钒氧化成四价钒,对三价钒测定产生干扰,需选择合适的还原剂能优先还原高价物且保证不还原四价钒;最后因三价钒有较强的还原性,需保证在整个分析过程中三价钒不被氧化。Vanadium slag contains a large amount of manganese, silicon, calcium, magnesium, iron and other elements, which form different phases after roasting. To solve the problem of trivalent vanadium determination, first solve the problem of sample decomposition, try to open the vanadium-containing phase as much as possible when decomposing the sample; secondly, eliminate the interference of high-valent manganese, high-valent iron, and high-valent vanadium, and ensure that the tetravalent vanadium in the vanadium slag Vanadium is not reduced, and high-valent manganese, high-valent iron, high-valent vanadium, etc. have strong reactivity with trivalent vanadium, and cannot coexist in a certain acidic medium, and will oxidize trivalent vanadium to tetravalent vanadium, which will interfere with the determination of trivalent vanadium , it is necessary to select a suitable reducing agent that can preferentially reduce high-valent substances and ensure that tetravalent vanadium is not reduced; finally, because trivalent vanadium has strong reducing properties, it is necessary to ensure that trivalent vanadium is not oxidized during the entire analysis process.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种方法简单,准确度高,可以直接测定钒渣中三价钒的方法。The technical problem to be solved by the present invention is to provide a method with simple method and high accuracy, which can directly measure trivalent vanadium in vanadium slag.
本发明一种直接测定钒渣中三价钒含量的方法,包括以下步骤:A method for directly measuring trivalent vanadium content in vanadium slag of the present invention comprises the following steps:
A、取粒径≤0.125mm的待测样品X/g于反应容器中;A. Take X/g of the sample to be tested with a particle size ≤ 0.125mm in the reaction vessel;
B、向反应容器中加入盐酸和氟化盐溶解待测样品,加入三氯化钛为掩蔽剂,加入碳酸氢钠以产生二氧化碳保护气,对反应容器加盖隔绝空气,加热至溶液微沸;B. Add hydrochloric acid and fluoride salt to the reaction vessel to dissolve the sample to be tested, add titanium trichloride as a masking agent, add sodium bicarbonate to generate carbon dioxide protective gas, cover the reaction vessel to isolate the air, and heat until the solution boils slightly;
其中,按照0.1~0.2g待测样品计,盐酸加入量为20~40mL,氟化盐的加入量为0.5g~1.0g;Among them, based on 0.1-0.2g of the sample to be tested, the amount of hydrochloric acid added is 20-40mL, and the amount of fluoride salt added is 0.5g-1.0g;
C、待待测样品完全溶解后,加入亚硫酸钠,微沸状态下继续反应5~10min,停止加热,冷却至60~70℃;C. After the sample to be tested is completely dissolved, add sodium sulfite, continue to react for 5-10 minutes in a slightly boiling state, stop heating, and cool to 60-70°C;
D、将C步骤冷却后的溶液中加入硫酸,调节溶液酸度为6~8mol·L-1,再滴加硫氰酸铵为指示剂,以摩尔浓度为c/mol·L-1的硫酸高铁铵标准液为滴定液,进行滴定,直至反应溶液变成暗红色,停止滴定,记录消耗的硫酸高铁铵溶液体积V/mL,按照公式Ⅰ测定钒渣中三价钒的含量:D. Add sulfuric acid to the cooled solution in step C to adjust the acidity of the solution to 6-8mol·L -1 , then add ammonium thiocyanate dropwise as an indicator, and use ferric sulfate with a molar concentration of c/mol·L -1 The ammonium standard solution is a titration solution, and titration is performed until the reaction solution becomes dark red, and the titration is stopped, and the volume V/mL of the ferric ammonium sulfate solution consumed is recorded, and the content of trivalent vanadium in the vanadium slag is determined according to formula I:
其中,V0——空白实验消耗硫酸高铁铵标准溶液体积,单位为mL;Among them, V 0 ——the volume of ammonium ferric sulfate standard solution consumed by the blank experiment, the unit is mL;
50.94——钒的相对原子质量,单位为g/mol。50.94——The relative atomic mass of vanadium, in g/mol.
上述所述直接测定钒渣中三价钒含量的方法,步骤B中使用的盐酸为盐酸(1+1),即浓盐酸与水体积比为1:1,其摩尔浓度为6mol·L-1。The method for directly measuring the content of trivalent vanadium in the above-mentioned vanadium slag, the hydrochloric acid used in the step B is hydrochloric acid (1+1), that is, the volume ratio of concentrated hydrochloric acid and water is 1:1, and its molar concentration is 6mol L -1 .
上述所述直接测定钒渣中三价钒含量的方法,其中步骤B中三氯化钛的浓度为5~15wt%。The method for directly measuring the content of trivalent vanadium in vanadium slag described above, wherein the concentration of titanium trichloride in step B is 5-15 wt%.
进一步,作为更优选的技术方案,上述所述直接测定钒渣中三价钒含量的方法,步骤B中三氯化钛的浓度优选为10wt%。Further, as a more preferred technical solution, in the above-mentioned method for directly measuring the content of trivalent vanadium in vanadium slag, the concentration of titanium trichloride in step B is preferably 10 wt%.
上述所述直接测定钒渣中三价钒含量的方法,其中所述氟化盐为氟化钠或者氟化钾中的至少一种。The above-mentioned method for directly measuring the content of trivalent vanadium in vanadium slag, wherein the fluoride salt is at least one of sodium fluoride or potassium fluoride.
上述所述直接测定钒渣中三价钒含量的方法,其中步骤C中加入亚硫酸钠后需要补加碳酸氢钠以产生二氧化碳保护气体。The method for directly measuring the content of trivalent vanadium in vanadium slag described above, wherein sodium bicarbonate needs to be added after adding sodium sulfite in step C to generate carbon dioxide protective gas.
上述所述直接测定钒渣中三价钒含量的方法,其中步骤D中滴定温度控制为60~70℃。The method for directly measuring the content of trivalent vanadium in vanadium slag described above, wherein the titration temperature in step D is controlled at 60-70°C.
上述所述直接测定钒渣中三价钒含量的方法,其中步骤D中硫酸高铁铵摩尔摩尔浓度c为0.01~0.03mol·L-1。The method for directly measuring the content of trivalent vanadium in vanadium slag described above, wherein the molar concentration c of ferric ammonium sulfate in step D is 0.01-0.03 mol·L -1 .
进一步,作为更优选的技术方案,上述所述直接测定钒渣中三价钒含量的方法,步骤D中硫酸高铁铵摩尔浓度c优选为0.02mol·L-1。Further, as a more preferred technical solution, in the above-mentioned method for directly measuring the content of trivalent vanadium in vanadium slag, the molar concentration c of ferric ammonium sulfate in step D is preferably 0.02 mol·L -1 .
上述所述直接测定钒渣中三价钒含量的方法,其中步骤D中使用的硫酸为硫酸(1+1),即1体积98wt%浓硫酸,加1体积水配制而成,其浓度为9~9.5mol·L-1,优选为9.2mol·L-1。The method for directly measuring the content of trivalent vanadium in the above-mentioned vanadium slag, wherein the sulfuric acid used in the step D is sulfuric acid (1+1), that is, 1 volume of 98wt% concentrated sulfuric acid is prepared by adding 1 volume of water, and its concentration is 9 ~9.5 mol·L -1 , preferably 9.2 mol·L -1 .
本发明一种直接测定钒渣中三价钒含量的方法,与现有技术相比,具有测定准确性高,精密度好,测定方法简单,具有广泛的推广应用前景。由于钒渣中含有大量的锰、硅、钙、镁、铁等元素,这些元素经焙烧形成不同的物相,本发明方法在解决样品分解难题的基础上,又消除了高价锰、高价铁、以及高价钒的干扰,并保证钒渣中四价钒不被还原,减少了对三价钒测定的干扰,最后保证在整个分析过程中三价钒不被氧化,减少了三价钒测定误差。Compared with the prior art, the method for directly measuring the trivalent vanadium content in the vanadium slag of the invention has the advantages of high measurement accuracy, good precision, simple measurement method and wide application prospects. Because the vanadium slag contains a large amount of elements such as manganese, silicon, calcium, magnesium, iron, etc., these elements form different phases after roasting, the method of the present invention eliminates high-valent manganese, high-valent iron, And the interference of high-valent vanadium, and ensure that the tetravalent vanadium in the vanadium slag is not reduced, reducing the interference on the determination of trivalent vanadium, and finally ensuring that the trivalent vanadium is not oxidized during the entire analysis process, reducing the measurement error of trivalent vanadium.
具体实施方式detailed description
本发明一种直接测定钒渣中三价钒含量的方法,包括以下步骤:A method for directly measuring trivalent vanadium content in vanadium slag of the present invention comprises the following steps:
A、取粒径≤0.125mm的待测样品X/g于反应容器中;其中分析用试样应按YB/T008进行取样和制备,试样应通过0.125mm的筛孔;A. Take X/g of the sample to be tested with a particle size of ≤0.125mm in the reaction container; the sample for analysis should be sampled and prepared according to YB/T008, and the sample should pass through a sieve of 0.125mm;
B、向反应容器中加入盐酸和氟化盐溶解待测样品,加入三氯化钛为掩蔽剂,加入碳酸氢钠以产生二氧化碳保护气,对反应容器加盖隔绝空气,加热至溶液微沸;B. Add hydrochloric acid and fluoride salt to the reaction vessel to dissolve the sample to be tested, add titanium trichloride as a masking agent, add sodium bicarbonate to generate carbon dioxide protective gas, cover the reaction vessel to isolate the air, and heat until the solution boils slightly;
其中,按照0.1~0.2g待测样品计,盐酸加入量为20~40mL,氟化盐的加入量为0.5g~1.0g;Among them, based on 0.1-0.2g of the sample to be tested, the amount of hydrochloric acid added is 20-40mL, and the amount of fluoride salt added is 0.5g-1.0g;
C、待待测样品完全溶解后,加入亚硫酸钠,微沸状态下继续反应5~10min,停止加热,冷却至60~70℃;C. After the sample to be tested is completely dissolved, add sodium sulfite, continue to react for 5-10 minutes in a slightly boiling state, stop heating, and cool to 60-70°C;
D、将C步骤冷却后的溶液中加入硫酸,调节溶液酸度为6~8mol·L-1,再滴加硫氰酸铵为指示剂,以摩尔浓度为c/mol·L-1的硫酸高铁铵标准液为滴定液,进行滴定,直至反应溶液变成暗红色,停止滴定,记录消耗的硫酸高铁铵溶液体积V/mL,按照公式Ⅰ测定钒渣中三价钒的含量:D. Add sulfuric acid to the cooled solution in step C to adjust the acidity of the solution to 6-8mol·L -1 , then add ammonium thiocyanate dropwise as an indicator, and use ferric sulfate with a molar concentration of c/mol·L -1 The ammonium standard solution is a titration solution, and titration is performed until the reaction solution becomes dark red, and the titration is stopped, and the volume V/mL of the ferric ammonium sulfate solution consumed is recorded, and the content of trivalent vanadium in the vanadium slag is determined according to formula I:
其中,V0——空白实验消耗硫酸高铁铵标准溶液体积,单位为mL;Among them, V 0 ——the volume of ammonium ferric sulfate standard solution consumed by the blank experiment, the unit is mL;
50.94——钒的相对原子质量,单位为g/mol。50.94——The relative atomic mass of vanadium, in g/mol.
上述所述直接测定钒渣中三价钒含量的方法,步骤B中使用的盐酸为盐酸(1+1),即浓盐酸与水体积比为1:1,其摩尔浓度为6mol·L-1,盐酸的加入是为了溶解钒渣中的金属氧化物和碳酸盐类。The above-mentioned method for directly measuring the content of trivalent vanadium in vanadium slag, the hydrochloric acid used in the step B is hydrochloric acid (1+1), that is, the concentrated hydrochloric acid and water volume ratio is 1:1, and its molar concentration is 6mol L -1 , the addition of hydrochloric acid is to dissolve the metal oxides and carbonates in the vanadium slag.
上述所述直接测定钒渣中三价钒含量的方法,其中所述氟化盐为氟化钠或者氟化钾中的至少一种,氟化钠或氟化钾为助溶剂,加入其为溶解样品中二氧化硅及硅酸盐。The method for directly measuring the content of trivalent vanadium in vanadium slag as described above, wherein the fluoride salt is at least one of sodium fluoride or potassium fluoride, sodium fluoride or potassium fluoride is a cosolvent, and adding it is used for dissolving Silica and silicate in the sample.
上述所述直接测定钒渣中三价钒含量的方法,其中步骤B中三氯化钛的浓度为5~15wt%。The method for directly measuring the content of trivalent vanadium in vanadium slag described above, wherein the concentration of titanium trichloride in step B is 5-15 wt%.
进一步,作为更优选的技术方案,上述所述直接测定钒渣中三价钒含量的方法,步骤B中三氯化钛的浓度优选为10wt%。Further, as a more preferred technical solution, in the above-mentioned method for directly measuring the content of trivalent vanadium in vanadium slag, the concentration of titanium trichloride in step B is preferably 10 wt%.
上述所述直接测定钒渣中三价钒含量的方法,其中步骤C中加入亚硫酸钠后需要补加碳酸氢钠以产生二氧化碳保护气体。The method for directly measuring the content of trivalent vanadium in vanadium slag described above, wherein sodium bicarbonate needs to be added after adding sodium sulfite in step C to generate carbon dioxide protective gas.
上述所述直接测定钒渣中三价钒含量的方法,其中步骤D中滴定温度控制为60~70℃。The method for directly measuring the content of trivalent vanadium in vanadium slag described above, wherein the titration temperature in step D is controlled at 60-70°C.
上述所述直接测定钒渣中三价钒含量的方法,其中步骤D中硫酸高铁铵摩尔浓度c为0.01~0.03mol·L-1。The method for directly measuring the content of trivalent vanadium in vanadium slag described above, wherein the molar concentration c of ferric ammonium sulfate in step D is 0.01-0.03 mol·L -1 .
进一步,作为更优选的技术方案,上述所述直接测定钒渣中三价钒含量的方法,步骤D中硫酸高铁铵摩尔浓度c优选为0.02mol·L-1。Further, as a more preferred technical solution, in the above-mentioned method for directly measuring the content of trivalent vanadium in vanadium slag, the molar concentration c of ferric ammonium sulfate in step D is preferably 0.02 mol·L -1 .
上述所述直接测定钒渣中三价钒含量的方法,其中步骤D中使用的硫酸为硫酸(1+1),即1体积98wt%浓硫酸,加1体积水配制而成,其浓度为9~9.5mol·L-1,优选为9.2mol·L-1。The method for directly measuring the content of trivalent vanadium in the above-mentioned vanadium slag, wherein the sulfuric acid used in the step D is sulfuric acid (1+1), that is, 1 volume of 98wt% concentrated sulfuric acid is prepared by adding 1 volume of water, and its concentration is 9 ~9.5 mol·L -1 , preferably 9.2 mol·L -1 .
本发明步骤B中,加入过量三氯化钛,使样品中高价物优先和三氯化钛反应,保证三价钒不被氧化;加入碳酸氢钠与盐酸反应生成二氧化碳气体或者直接通入二氧化碳气体,隔绝空气,保证三价钒不被空气氧化。In the step B of the present invention, excessive titanium trichloride is added to make the high-valent substances in the sample react with titanium trichloride first, so as to ensure that the trivalent vanadium is not oxidized; add sodium bicarbonate to react with hydrochloric acid to generate carbon dioxide gas or directly pass in carbon dioxide gas , isolate the air, and ensure that the trivalent vanadium is not oxidized by the air.
本发明步骤C中,加入亚硫酸钠,可以氧化过量的三氯化钛,过量的亚硫酸钠在微沸状态下分解。In step C of the present invention, sodium sulfite is added to oxidize excess titanium trichloride, and excess sodium sulfite decomposes in a slightly boiling state.
本发明步骤D中,为了提高滴定时反应速率,设置滴定温度为60~70℃,采用硫酸高铁铵标准滴定溶液滴定溶液中三价钒,最后以硫酸高铁铵标准滴定溶液测定溶液中三价钒含量。In the step D of the present invention, in order to improve the reaction rate during titration, the titration temperature is set to be 60 to 70° C., the ferric ammonium sulfate standard titration solution is used to titrate the trivalent vanadium in the solution, and finally the ferric ammonium sulfate standard titration solution is used to measure the trivalent vanadium in the solution content.
在下文中将详细描述根据本发明测定钒渣中三价钒含量的方法。The method for determining the content of trivalent vanadium in vanadium slag according to the present invention will be described in detail below.
根据本发明,测定三价钒含量的方法,具体为包括以下步骤:According to the present invention, the method for measuring trivalent vanadium content specifically comprises the following steps:
A、称取0.1g~0.2g待测样品于锥形瓶中;A. Weigh 0.1g ~ 0.2g of the sample to be tested in the conical flask;
B、加入0.5g~1g氟化钠、1g碳酸氢钠,20mL~40mL盐酸、1.0mL~2.0mL三氯化钛,冲入少量水,加盖瓷坩埚盖,将样品置于高温炉快速煮沸,将样品移入低温加热盘保持样品微沸;B. Add 0.5g~1g sodium fluoride, 1g sodium bicarbonate, 20mL~40mL hydrochloric acid, 1.0mL~2.0mL titanium trichloride, pour a small amount of water, cover the porcelain crucible, and place the sample in a high temperature furnace to boil quickly , move the sample into a low-temperature heating plate to keep the sample slightly boiling;
C、样品分解完全后补加亚硫酸钠2.0mL~4.0mL,补加碳酸氢钠0.5g,加盖瓷坩埚盖并继续保持微沸5min~10min,分解剩余亚硫酸钠;亚硫酸钠分解完全后取下,稍冷却至60℃~70℃;C. After the sample is completely decomposed, add 2.0mL~4.0mL of sodium sulfite, add 0.5g of sodium bicarbonate, cover the porcelain crucible and keep boiling for 5min~10min to decompose the remaining sodium sulfite; remove it after the decomposition of sodium sulfite is complete, and let it cool slightly To 60 ℃ ~ 70 ℃;
D、加入30mL~50mL硫酸调节酸度,加水50mL,加入硫氰酸铵指示剂,以硫酸高铁铵标准滴定溶液滴定至溶液为暗红色为终点。D. Add 30mL-50mL sulfuric acid to adjust the acidity, add 50mL water, add ammonium thiocyanate indicator, and titrate with ferric ammonium sulfate standard titration solution until the solution is dark red as the end point.
本发明的三价钒含量测定方法中,所述样品适宜的试样量在0.1g~0.2g;三氯化钛为分析纯及其以上,质量浓度为10%,加入量1.0mL~2.0mL;亚硫酸钠为分析纯及其以上,质量浓度5%,加入量为2.0mL~4.0mL。盐酸、硫酸为分析纯及其以上,浓度均为(1+1)(体积比);硫氰酸铵为分析纯及其以上,质量浓度40%,加入量为5mL;硫酸高铁铵为分析纯及其以上,浓度为0.01~0.03mol·L-1;分析中用水质量符合GB/T6682-1992的三级及其以上蒸馏水。In the trivalent vanadium content determination method of the present invention, the suitable sample size of the sample is 0.1g~0.2g; titanium trichloride is analytically pure or above, the mass concentration is 10%, and the addition amount is 1.0mL~2.0mL ; Sodium sulfite is analytically pure or above, with a mass concentration of 5%, and the addition amount is 2.0mL to 4.0mL. Hydrochloric acid and sulfuric acid are analytically pure and above, the concentration is (1+1) (volume ratio); ammonium thiocyanate is analytically pure and above, the mass concentration is 40%, and the addition is 5mL; ferric ammonium sulfate is analytically pure And above, the concentration is 0.01~0.03mol·L -1 ; the quality of water used in the analysis complies with GB/T6682-1992 grade 3 and above distilled water.
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。The specific implementation of the present invention will be further described below in conjunction with the examples, and the present invention is not limited to the scope of the examples.
实施例1钒渣中三价钒的测定The mensuration of trivalent vanadium in the vanadium slag of embodiment 1
称取5份样品,每份0.15g于锥形瓶中,称取0.1~0.2g待测样品于锥形瓶中,加入1g氟化钠、1g碳酸氢钠,30mL盐酸、1.0mL三氯化钛,冲入少量水,加盖瓷坩埚盖,将样品置于高温炉快速煮沸,随即将样品移入低温加热盘保持样品微沸。样品分解完全后补加亚硫酸钠2.0mL,补加碳酸氢钠0.5g,加盖瓷坩埚盖并继续保持微沸5min分解剩余亚硫酸钠。取下,冷至60~70℃,加水50mL,加硫酸40mL,加入5mL硫氰酸铵指示剂,以硫酸高铁铵标准滴定溶液滴定至溶液为暗红色为终点,硫酸高铁铵的配制与标定按照YB/T4392.1-2014中4.11进行;Weigh 5 samples, 0.15g each in a conical flask, weigh 0.1-0.2g of the sample to be tested in a conical flask, add 1g sodium fluoride, 1g sodium bicarbonate, 30mL hydrochloric acid, 1.0mL trichloride Titanium, pour a small amount of water, cover the porcelain crucible lid, place the sample in a high-temperature furnace to boil quickly, then move the sample to a low-temperature heating plate to keep the sample slightly boiling. After the sample is completely decomposed, add 2.0 mL of sodium sulfite and 0.5 g of sodium bicarbonate, cover the porcelain crucible and continue to boil for 5 minutes to decompose the remaining sodium sulfite. Take it off, cool to 60-70°C, add 50mL of water, 40mL of sulfuric acid, add 5mL of ammonium thiocyanate indicator, titrate with ferric ammonium sulfate standard titration solution until the solution is dark red as the end point, the preparation and calibration of ferric ammonium sulfate are according to 4.11 in YB/T4392.1-2014;
空白实验设置:另取1个锥形瓶,不加入待测样品,直接加入1g氟化钠、1g碳酸氢钠,30mL盐酸、1.0mL三氯化钛,冲入少量水,加盖瓷坩埚盖,将混合物料置于高温炉快速煮沸,随即将样品移入低温加热盘保持样品微沸,再补加亚硫酸钠2.0mL,补加碳酸氢钠0.5g,加盖瓷坩埚盖并继续保持微沸5min分解剩余亚硫酸钠。取下,冷至60~70℃,加水50mL,加硫酸40mL,加入5mL硫氰酸铵指示剂,以硫酸高铁铵标准滴定溶液滴定至溶液为暗红色为终点,硫酸高铁铵的配制与标定按照YB/T4392.1-2014中4.11进行;Blank experiment setup: take another Erlenmeyer flask, without adding the sample to be tested, directly add 1g sodium fluoride, 1g sodium bicarbonate, 30mL hydrochloric acid, 1.0mL titanium trichloride, pour a small amount of water, cover the porcelain crucible , put the mixed material in a high-temperature furnace to boil quickly, then move the sample into a low-temperature heating plate to keep the sample slightly boiling, then add 2.0 mL of sodium sulfite, add 0.5 g of sodium bicarbonate, cover the porcelain crucible and continue to keep boiling for 5 minutes to decompose Sodium sulfite remaining. Take it off, cool to 60-70°C, add 50mL of water, 40mL of sulfuric acid, add 5mL of ammonium thiocyanate indicator, titrate with ferric ammonium sulfate standard titration solution until the solution is dark red as the end point, the preparation and calibration of ferric ammonium sulfate are according to 4.11 in YB/T4392.1-2014;
分析结果按下式计算:The analysis result is calculated according to the following formula:
式中:In the formula:
c——硫酸高铁铵标准溶液的物质的量浓度,单位为摩尔每升(mol/L);c——the molar concentration of the ammonium ferric sulfate standard solution, in moles per liter (mol/L);
V——滴定试料溶液消耗硫酸高铁铵标准溶液体积,单位为毫升(mL);V——The titration sample solution consumes the volume of ferric ammonium sulfate standard solution, in milliliters (mL);
V0——空白实验消耗硫酸高铁铵标准溶液体积,单位为毫升(mL);V 0 ——the volume of ferric ammonium sulfate standard solution consumed by the blank experiment, in milliliters (mL);
m——试料量,单位为克(g);m - the amount of sample, in grams (g);
50.94——钒的相对原子质量,单位为克每摩尔(g/mol)。50.94——The relative atomic mass of vanadium, in grams per mole (g/mol).
表1V3+含量的测定结果The measurement result of table 1V 3+ content
表1中RSD为相对标准偏差。RSD in Table 1 is the relative standard deviation.
实施例2钒渣中三价钒的测定回收率The determination rate of recovery of trivalent vanadium in the vanadium slag of embodiment 2
称取4份样品,每份0.15g于锥形瓶中,称取0.1~0.2g待测样品于锥形瓶中,加入1g氟化钠、1g碳酸氢钠,30mL盐酸、1.0mL三氯化钛,冲入少量水,加入三价钒标准溶液(三价钒标准溶液浓度4.48mg/mL)3.0mL、4.0mL、5.0mL加盖瓷坩埚盖,将样品置于高温炉快速煮沸,随即将样品移入低温加热盘保持样品微沸。样品分解完全后补加亚硫酸钠2.0mL,碳酸氢钠0.5g,加盖瓷坩埚盖并继续保持微沸5min分解剩余亚硫酸钠。取下,冷却至60~70℃,加水50mL,加硫酸40mL,加入5mL硫氰酸铵指示剂,以硫酸高铁铵标准滴定溶液滴定至溶液为暗红色为终点,空白实验设置同实施例1,硫酸高铁铵的配制与标定按照YB/T4392.1-2014中4.11进行,分析结果按下式计算:Weigh 4 samples, each 0.15g in a conical flask, weigh 0.1-0.2g of the sample to be tested in a conical flask, add 1g sodium fluoride, 1g sodium bicarbonate, 30mL hydrochloric acid, 1.0mL trichloride Titanium, into a small amount of water, add trivalent vanadium standard solution (concentration of trivalent vanadium standard solution 4.48mg/mL) 3.0mL, 4.0mL, 5.0mL cover porcelain crucible lid, put the sample in a high-temperature furnace to boil quickly, and immediately The sample is moved into a low temperature heating plate to keep the sample slightly boiling. After the sample is completely decomposed, add 2.0 mL of sodium sulfite and 0.5 g of sodium bicarbonate, cover the porcelain crucible and keep boiling for 5 minutes to decompose the remaining sodium sulfite. Take it off, cool it to 60-70°C, add 50mL of water, add 40mL of sulfuric acid, add 5mL of ammonium thiocyanate indicator, and titrate with ferric ammonium sulfate standard titration solution until the solution is dark red as the end point. The blank experiment settings are the same as in Example 1. The preparation and calibration of ferric ammonium sulfate are carried out according to 4.11 in YB/T4392.1-2014, and the analysis results are calculated according to the following formula:
式中:In the formula:
c——硫酸高铁铵标准溶液的物质的量浓度,单位为摩尔每升(mol/L);c——the molar concentration of the ammonium ferric sulfate standard solution, in moles per liter (mol/L);
V——滴定试料溶液消耗硫酸高铁铵标准溶液体积,单位为毫升(mL);V——The titration sample solution consumes the volume of ferric ammonium sulfate standard solution, in milliliters (mL);
V0——空白实验消耗硫酸高铁铵标准溶液体积,单位为毫升(mL);V 0 ——the volume of ferric ammonium sulfate standard solution consumed by the blank experiment, in milliliters (mL);
m——试料量,单位为克(g);m - the amount of sample, in grams (g);
50.94——钒的相对原子质量,单位为克每摩尔(g/mol)。50.94——The relative atomic mass of vanadium, in grams per mole (g/mol).
表2V3+量回收率实验设计及其结果Table 2V 3+ amount recovery experimental design and its results
由以上实施例1~2可以看出,根据本发明的测定钒渣中三价钒,准确性高,精密度好,具有广泛的推广应用前景。It can be seen from the above Examples 1-2 that the method for determining trivalent vanadium in vanadium slag according to the present invention has high accuracy and good precision, and has wide application prospects.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510779514.6A CN105259302B (en) | 2015-11-13 | 2015-11-13 | Method for direct determination of trivalent vanadium content in vanadium slag |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510779514.6A CN105259302B (en) | 2015-11-13 | 2015-11-13 | Method for direct determination of trivalent vanadium content in vanadium slag |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105259302A true CN105259302A (en) | 2016-01-20 |
CN105259302B CN105259302B (en) | 2016-11-02 |
Family
ID=55099069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510779514.6A Active CN105259302B (en) | 2015-11-13 | 2015-11-13 | Method for direct determination of trivalent vanadium content in vanadium slag |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105259302B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111413458A (en) * | 2020-04-27 | 2020-07-14 | 广东韶钢松山股份有限公司 | Method for detecting nitrogen content in steelmaking auxiliary material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590444A (en) * | 2012-03-15 | 2012-07-18 | 河北钢铁股份有限公司承德分公司 | Determination method for vanadium valence state in vanadium-containing slag |
CN102879391A (en) * | 2012-09-24 | 2013-01-16 | 攀钢集团攀枝花钢铁研究院有限公司 | Device and method for measuring content of trivalent vanadium in vanadyl sulfate |
CN102928372A (en) * | 2012-11-11 | 2013-02-13 | 山东师范大学 | Measurement method for whole vanadium in soil |
CN102928427A (en) * | 2012-10-26 | 2013-02-13 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for determining pentavalent vanadium in vanadyl sulfate |
CN104181272A (en) * | 2014-07-30 | 2014-12-03 | 武汉钢铁(集团)公司 | Method for rapidly determining content of total iron in vanadium titano-magnetite |
-
2015
- 2015-11-13 CN CN201510779514.6A patent/CN105259302B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102590444A (en) * | 2012-03-15 | 2012-07-18 | 河北钢铁股份有限公司承德分公司 | Determination method for vanadium valence state in vanadium-containing slag |
CN102879391A (en) * | 2012-09-24 | 2013-01-16 | 攀钢集团攀枝花钢铁研究院有限公司 | Device and method for measuring content of trivalent vanadium in vanadyl sulfate |
CN102928427A (en) * | 2012-10-26 | 2013-02-13 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for determining pentavalent vanadium in vanadyl sulfate |
CN102928372A (en) * | 2012-11-11 | 2013-02-13 | 山东师范大学 | Measurement method for whole vanadium in soil |
CN104181272A (en) * | 2014-07-30 | 2014-12-03 | 武汉钢铁(集团)公司 | Method for rapidly determining content of total iron in vanadium titano-magnetite |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111413458A (en) * | 2020-04-27 | 2020-07-14 | 广东韶钢松山股份有限公司 | Method for detecting nitrogen content in steelmaking auxiliary material |
Also Published As
Publication number | Publication date |
---|---|
CN105259302B (en) | 2016-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102213704B (en) | Method for measuring contents of silicon-calcium elements in silicon-calcium alloy | |
CN103529016B (en) | The rapid assay methods of polycomponent content in continuous casting covering slag | |
CN101545866B (en) | Method for measuring content of inorganic nitrogen in soil | |
KR20120085296A (en) | Method for analyzing and detecting calcium element in ore | |
Yoe et al. | The colorimetric determination of palladium with p-nitrosodiphenylamine | |
CN105136975A (en) | Method for determining content of calcium fluoride in fluorite | |
CN104819908A (en) | Continuous measuring method of calcium and barium content in silicon-calcium-barium and silicon-aluminum-calcium-barium alloy | |
CN104422672A (en) | Method for determining content of selenium in soil by adopting microwave digestion-atomic fluorescence technology | |
CN102288514B (en) | Method for analyzing free carbon | |
CN102798644B (en) | Separating method and detection method for free carbon in vanadium carbide | |
CN102269708A (en) | Method for measuring metal aluminum in aluminum slagging material | |
CN103712933B (en) | Method and system for determining content of calcium element in tungsten product | |
CN105823821A (en) | Determination method for contents of impurity elements in thorium tetrafluoride powder | |
CN105842182A (en) | Method for measuring content of free carbon in covering agent | |
CN105259302B (en) | Method for direct determination of trivalent vanadium content in vanadium slag | |
CN111257503A (en) | Method for detecting chromium content of high-chromium-content aluminum alloy based on titration analysis method | |
CN103698317A (en) | Method for measuring contents of silicon, magnesium and aluminum in coal combustion-supporting agent | |
CN104133036B (en) | The analysis determining method of alundum (Al2O3) in a kind of bauxite | |
CN114062186A (en) | A kind of determination method of calcium sulfate content in sintered desulfurization and denitrification ash | |
CN107192708A (en) | A method for determining potassium and sodium in vanadium-titanium iron ore concentrate | |
CN103196783B (en) | The assay method of the content of carborundum in temperature raising agent | |
CN102495174B (en) | Method for determining pentavalent vanadium in calcification clinker, and method for evaluating calcified roasting effect | |
CN103823017A (en) | Method for accurate measurement on nitric acid content of chemical corrosion solution for titanium alloy | |
CN103308468A (en) | Method for analyzing chemical phases of vanadium in stone coal | |
CN103940944A (en) | Method for detecting content of calcium oxide in limestone by using DBC (Dibromochloro)-arsenazo indicator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |