CN105254184A - A kind of rare earth ion doped Li3YCl6 glass-ceramics and its preparation method - Google Patents
A kind of rare earth ion doped Li3YCl6 glass-ceramics and its preparation method Download PDFInfo
- Publication number
- CN105254184A CN105254184A CN201510852817.6A CN201510852817A CN105254184A CN 105254184 A CN105254184 A CN 105254184A CN 201510852817 A CN201510852817 A CN 201510852817A CN 105254184 A CN105254184 A CN 105254184A
- Authority
- CN
- China
- Prior art keywords
- mol
- glass
- acetate
- ycl
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Glass Compositions (AREA)
Abstract
本发明公开了一种稀土离子掺杂的Li3YCl6微晶玻璃,其摩尔百分比组成为:SiO2:87.8~94mol%、Li3YCl6:5.5~10mol%、LnCl3:0.5~3mol%,其中LnCl3为YbCl3、ErCl3、TmCl3和HoCl3中的至少一种;优点是本发明所制得的稀土离子掺杂Li3YCl6微晶玻璃透明、抗潮解、机械性能好、蓝紫光透过率较高,具有声子能量低、上转换效率高等性能,可使上转换激光器效率大大提高,而且该微晶玻璃的制备方法简单,生产成本较低。
The invention discloses a Li 3 YCl 6 glass-ceramic doped with rare earth ions, the mole percentage composition of which is: SiO 2 : 87.8-94 mol%, Li 3 YCl 6 : 5.5-10 mol%, LnCl 3 : 0.5-3 mol% , wherein LnCl 3 is at least one of YbCl 3 , ErCl 3 , TmCl 3 and HoCl 3 ; the advantage is that the rare earth ion-doped Li 3 YCl 6 glass-ceramic prepared by the present invention is transparent, deliquescence resistance, good mechanical properties, The blue-violet light has high transmittance, low phonon energy and high up-conversion efficiency, which can greatly improve the efficiency of up-conversion lasers. Moreover, the preparation method of the glass-ceramic is simple and the production cost is low.
Description
技术领域technical field
本发明涉及一种稀土离子掺杂的微晶玻璃,尤其是涉及一种用作上转换发光材料的稀土离子掺杂的Li3YCl6微晶玻璃及其制备方法。The invention relates to a rare earth ion-doped glass-ceramic, in particular to a rare-earth ion-doped Li3YCl6 glass - ceramic used as an up-conversion luminescent material and a preparation method thereof.
背景技术Background technique
稀土离子的上转换发光是指当采用波长较长的激发光照射掺杂稀土离子的样品时,发射出波长小于激发光波长的光的现象。利用稀土离子的上转换特性,可获得廉价的、可在室温下工作的和连续输出紫蓝绿光光纤激光器。上转换激光可应用于彩色显示器、数据储存、信息技术、激光印刷以及医疗等各个领域。要提高上转换发光的效率需降低基质材料的声子能量,这主要是因为较低的声子能量可降低无辐射驰豫几率的发生,提高稀土离子中间亚稳态能级的荧光寿命,可有效的提高上转换发光的效率。Li3YCl6晶体具有比氟化物更低的声子能量,更适合作为稀土掺杂的上转换发光基质,稀土离子掺杂的Li3YCl6晶体具有比稀土离子掺杂的氟化物晶体更高的上转换效率,但Li3YCl6晶体易吸湿、需要特殊处理和储存、难以制备、化学稳定性和机械强度较差等缺点影响了其实际应用。The up-conversion luminescence of rare earth ions refers to the phenomenon that when a sample doped with rare earth ions is irradiated with excitation light with a longer wavelength, light with a wavelength shorter than that of the excitation light is emitted. Utilizing the up-conversion properties of rare earth ions, an inexpensive fiber laser that can work at room temperature and continuously output violet-blue-green light can be obtained. Up-conversion lasers can be used in various fields such as color displays, data storage, information technology, laser printing, and medical treatment. To improve the efficiency of upconversion luminescence, it is necessary to reduce the phonon energy of the host material, mainly because the lower phonon energy can reduce the probability of non-radiative relaxation, improve the fluorescence lifetime of the metastable state energy level in the middle of rare earth ions, and can Effectively improve the efficiency of up-conversion luminescence. Li 3 YCl 6 crystal has lower phonon energy than fluoride, which is more suitable as a rare earth-doped up-conversion luminescent host. Rare-earth ion-doped Li 3 YCl 6 crystal has a higher However, Li 3 YCl 6 crystals are easy to absorb moisture, require special handling and storage, are difficult to prepare, and have poor chemical stability and mechanical strength, which affect their practical applications.
透明微晶玻璃是一种兼有晶体和玻璃优点的新型光电子材料。目前氯化物透明微晶玻璃主要用作闪烁发光和上转换发光材料,如公开号为CN103382089,名称为“含Cs3LaCl6纳米晶的透明硫卤玻璃陶瓷及其制备”的发明专利申请公开了掺杂Nd3+或Er3+离子,以Cs3LaCl6为微晶相、玻璃相为硫化物的微晶玻璃,但硫化物的物化性能比氧化物要差,且在可见光短波长处不透,影响了上转换发光输出;如公开号为CN103951243,名称为“稀土离子掺杂的Cs2LiYCl6微晶玻璃及其制备方法”的发明专利申请也公开了一种微晶相为Cs2LiYCl6、玻璃相为GeO2为主的微晶玻璃,掺杂的稀土离子为Ce3+、Eu3+、Tb3+、Pr3+和Nd3+中的一种,采用熔体急冷法和后续热处理制备,具有较好的闪烁性能,主要用作闪烁材料。但是目前还没有稀土离子Yb3+、Er3+、Tm3+和Ho3+掺杂的Li3YCl6微晶玻璃用于上转换发光材料的公开报道。Transparent glass-ceramics is a new type of optoelectronic material that combines the advantages of both crystal and glass. At present, chloride transparent glass-ceramic is mainly used as scintillation and up-conversion luminescent material. For example, the publication number is CN103382089, and the invention patent application titled "transparent sulfur halide glass ceramics containing Cs 3 LaCl 6 nanocrystals and its preparation" has been published Glass-ceramics doped with Nd 3+ or Er 3+ ions, with Cs 3 LaCl 6 as the microcrystalline phase and the glass phase as sulfide, but the physical and chemical properties of sulfide are worse than those of oxides, and they are opaque at short wavelengths of visible light , affecting the up-conversion luminescence output; for example, the invention patent application with the publication number CN103951243 and the name "Cs 2 LiYCl 6 glass-ceramics doped with rare earth ions and its preparation method" also discloses that a crystallite phase is Cs 2 LiYCl 6. Glass-ceramics whose glass phase is mainly GeO 2 , doped rare earth ions are one of Ce 3+ , Eu 3+ , Tb 3+ , Pr 3+ and Nd 3+ . Prepared by subsequent heat treatment, it has good scintillation performance and is mainly used as scintillation material. However, there is no public report on Li 3 YCl 6 glass-ceramics doped with rare earth ions Yb 3+ , Er 3+ , Tm 3+ and Ho 3+ for up-conversion luminescent materials.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种声子能量低、无辐射跃迁几率小、上转换量子效率高、抗潮解、机械性能好、上转换发光很强的稀土离子掺杂Li3YCl6微晶玻璃及其制备方法。The technical problem to be solved by the present invention is to provide a rare earth ion-doped Li 3 YCl 6 microparticle with low phonon energy, low probability of non-radiative transition, high up-conversion quantum efficiency, deliquescence resistance, good mechanical properties, and strong up-conversion luminescence. Crystal glass and its preparation method.
本发明解决上述技术问题所采用的技术方案为:一种稀土离子掺杂的Li3YCl6微晶玻璃,其摩尔百分比组成如下:SiO287.8~94mol%、Li3YCl65.5~10mol%、LnCl30.5~3mol%,其中LnCl3为YbCl3、ErCl3、TmCl3和HoCl3中的至少一种。The technical solution adopted by the present invention to solve the above-mentioned technical problems is: a rare earth ion-doped Li 3 YCl 6 glass-ceramics, the molar percentage composition of which is as follows: SiO 2 87.8-94 mol%, Li 3 YCl 6 5.5-10 mol%, LnCl 3 0.5-3mol%, wherein LnCl 3 is at least one of YbCl 3 , ErCl 3 , TmCl 3 and HoCl 3 .
该微晶玻璃摩尔百分比组成为:SiO287.8mol%、Li3YCl610mol%、TmCl30.2mol%、YbCl32mol%。The molar percentage composition of the glass-ceramic is: SiO 2 87.8 mol%, Li 3 YCl 6 10 mol%, TmCl 3 0.2 mol%, YbCl 3 2 mol%.
该微晶玻璃摩尔百分比组成为:SiO289mol%、Li3YCl68mol%、ErCl30.5mol%、YbCl32.5mol%。The molar percentage composition of the glass-ceramic is: SiO 2 89 mol%, Li 3 YCl 6 8 mol%, ErCl 3 0.5 mol%, YbCl 3 2.5 mol%.
该微晶玻璃摩尔百分比组成为:SiO288mol%、Li3YCl69mol%、ErCl30.1mol%、TmCl30.1mol%、YbCl32.8mol%。The molar percentage composition of the glass-ceramic is: SiO 2 88 mol%, Li 3 YCl 6 9 mol%, ErCl 3 0.1 mol%, TmCl 3 0.1 mol%, YbCl 3 2.8 mol%.
所述的稀土离子掺杂的Li3YCl6微晶玻璃的制备方法,包括以下步骤:The preparation method of the Li3YCl6 glass ceramics doped with rare earth ions comprises the following steps:
(1)按摩尔百分比组成SiO287.8~94mol%、Li3YCl65.5~10mol%、LnCl30.5~3mol%,其中LnCl3为YbCl3、ErCl3、TmCl3和HoCl3中的至少一种;称取醋酸钇、醋酸锂及醋酸镱、醋酸铒、醋酸铥和醋酸钬中的至少一种,其中醋酸钇、醋酸锂的份量分别按摩尔百分比组成中Li3YCl6的摩尔百分含量称取,醋酸镱、醋酸铒、醋酸铥和醋酸钬中的至少一种的份量分别按上述相同的摩尔百分比组成中LnCl3的摩尔百分含量称取,并将上述醋酸盐溶于去离子水中形成醋酸盐溶液,在醋酸盐溶液中加入三氯乙酸得到透明的混合溶液,其中三氯乙酸与醋酸盐溶液中金属离子总和的摩尔比为3∶1;(1) SiO 2 87.8-94 mol%, Li 3 YCl 6 5.5-10 mol%, LnCl 3 0.5-3 mol% by mole percentage, wherein LnCl 3 is at least one of YbCl 3 , ErCl 3 , TmCl 3 and HoCl 3 Take at least one of yttrium acetate, lithium acetate and ytterbium acetate, erbium acetate, thulium acetate and holmium acetate, wherein the parts of yttrium acetate and lithium acetate are respectively weighed by the mole percentage of Li3YCl6 in the mole percentage composition Get, the part of at least one in ytterbium acetate, erbium acetate, thulium acetate and holmium acetate is weighed according to the mole percentage content of LnCl3 in the above-mentioned same mole percentage composition respectively, and above-mentioned acetate is dissolved in deionized water Form acetate solution, add trichloroacetic acid to obtain transparent mixed solution in acetate solution, wherein the mol ratio of trichloroacetic acid and metal ion summation in the acetate solution is 3: 1;
(2)按与步骤(1)相同的摩尔百分比组成中SiO2的摩尔百分含量称取正硅酸乙酯溶于乙醇中,得到正硅酸乙酯溶液,然后将步骤(1)制得的混合溶液与正硅酸乙酯溶液混合后搅拌1小时,再用稀硝酸调节其PH值至5,得到前驱液;( 2 ) by weighing SiO in the same molar percentage composition as step (1) The molar percentage content is taken tetraethyl orthosilicate and is dissolved in ethanol, obtains tetraethyl orthosilicate solution, then step (1) is prepared The mixed solution was mixed with tetraethyl orthosilicate solution and stirred for 1 hour, and then adjusted to pH 5 with dilute nitric acid to obtain a precursor solution;
(3)将步骤(2)得到的前驱液室温陈化2周后置于烘箱,升温至142℃干燥9天,得到透明的干凝胶;(3) Aging the precursor solution obtained in step (2) at room temperature for 2 weeks, then placing it in an oven, raising the temperature to 142°C and drying it for 9 days to obtain a transparent xerogel;
(4)将步骤(3)得到的干凝胶置于氮气精密退火炉中,在560~590℃的温度下热处理10小时,然后再以10℃/小时的速率降温至50℃,关闭精密退火炉电源,自动降温至室温,得到透明的稀土离子掺杂的Li3YCl6微晶玻璃。(4) Place the xerogel obtained in step (3) in a nitrogen precision annealing furnace, heat-treat at a temperature of 560-590°C for 10 hours, then cool down to 50°C at a rate of 10°C/hour, and turn off the precision annealing furnace. Furnace power supply, automatic cooling to room temperature, to obtain transparent rare earth ion doped Li 3 YCl 6 glass ceramics.
与现有技术相比,本发明的优点在于:该微晶玻璃具有Li3YCl6晶体基质材料的优异上转换性能和二氧化硅玻璃的机械强度、稳定性和易于加工的特点;经实验证明:通过本发明的制备方法所制得的稀土离子掺杂Li3YCl6微晶玻璃透明、抗潮解、机械性能好、蓝紫光透过率较高,具有声子能量低、上转换效率高等性能,可使上转换激光器效率大大提高;此外,该微晶玻璃的制备方法简单且具有良好的可重复性,生产成本较低。Compared with the prior art, the present invention has the advantages that: the glass-ceramics has the excellent up-conversion performance of Li 3 YCl 6 crystal matrix material and the characteristics of mechanical strength, stability and easy processing of silica glass; it is proved by experiments : The rare earth ion doped Li 3 YCl 6 glass-ceramics prepared by the preparation method of the present invention is transparent, deliquescence resistance, good mechanical properties, high blue-violet light transmittance, low phonon energy, high up-conversion efficiency and other properties , can greatly improve the efficiency of the up-conversion laser; in addition, the preparation method of the glass-ceramics is simple and has good repeatability, and the production cost is low.
附图说明Description of drawings
图1为实施例1得到的微晶玻璃的X射线衍射(XRD)图;Fig. 1 is the X-ray diffraction (XRD) figure of the crystallized glass that embodiment 1 obtains;
图2为实施例1得到的Tm3+、Yb3+掺杂的Li3YCl6微晶玻璃的970nm激光器激发上转换发光光谱;Fig. 2 is the 970nm laser excitation upconversion luminescent spectrum of Tm 3+ , Yb 3+ doped Li 3 YCl 6 glass ceramics obtained in Example 1;
图3为对比例1得到的Tm3+、Yb3+掺杂的Li3YF6微晶玻璃的970nm激光器激发上转换发光光谱。3 is the 970nm laser excitation upconversion luminescence spectrum of Tm 3+ , Yb 3+ doped Li 3 YF 6 glass ceramics obtained in Comparative Example 1.
具体实施方式detailed description
以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
实施例1Example 1
Tm3+、Yb3+掺杂Li3YCl6微晶玻璃的摩尔百分比组成为:SiO287.8mol%、Li3YCl610mol%、TmCl30.2mol%、YbCl32mol%,以上组成的制备微晶玻璃的工艺如下:The mole percentage composition of Tm 3+ and Yb 3+ doped Li 3 YCl 6 glass ceramics is: SiO 2 87.8mol%, Li 3 YCl 6 10mol%, TmCl 3 0.2mol%, YbCl 3 2mol%, the preparation of the above composition The glass-ceramic process is as follows:
(1)称取醋酸钇、醋酸锂、醋酸镱、醋酸铥,其中醋酸钇、醋酸锂的份量分别按摩尔百分比组成中Li3YCl6的摩尔百分含量称取,醋酸镱、醋酸铥的份量分别按上述相同的摩尔百分比组成中YbCl3、TmCl3的摩尔百分含量称取,将上述醋酸盐溶于去离子水中形成醋酸盐溶液,在醋酸盐溶液中加入三氯乙酸得到透明的混合溶液,其中三氯乙酸与醋酸盐溶液中金属离子总和的摩尔比为3∶1;( 1 ) Weigh yttrium acetate, lithium acetate, ytterbium acetate, and thulium acetate, wherein the parts of yttrium acetate and lithium acetate are weighed according to the molar percentage of Li3YCl6 in the molar percentage composition, and the parts of ytterbium acetate and thulium acetate Weigh the molar percentages of YbCl 3 and TmCl 3 in the same molar percentage composition as above, dissolve the above-mentioned acetate in deionized water to form an acetate solution, add trichloroacetic acid to the acetate solution to obtain a transparent A mixed solution, wherein the molar ratio of trichloroacetic acid to the sum of metal ions in the acetate solution is 3:1;
(2)按与步骤(1)相同的摩尔百分比组成中SiO2的摩尔百分含量称取正硅酸乙酯溶于乙醇中,得到正硅酸乙酯溶液,然后将步骤(1)制得的混合溶液与正硅酸乙酯溶液混合后搅拌1小时,再用稀硝酸调节其PH值至5,得到前驱液;( 2 ) by weighing SiO in the same molar percentage composition as step (1) The molar percentage content is taken tetraethyl orthosilicate and is dissolved in ethanol, obtains tetraethyl orthosilicate solution, then step (1) is prepared The mixed solution was mixed with tetraethyl orthosilicate solution and stirred for 1 hour, and then adjusted to pH 5 with dilute nitric acid to obtain a precursor solution;
(3)将步骤(2)得到的前驱液室温陈化2周后置于烘箱,升温至142℃干燥9天,得到透明的干凝胶;(3) Aging the precursor solution obtained in step (2) at room temperature for 2 weeks, then placing it in an oven, raising the temperature to 142°C and drying it for 9 days to obtain a transparent xerogel;
(4)将步骤(3)得到的干凝胶置于氮气精密退火炉中,在560~590℃热处理10小时,然后再以10℃/小时的速率降温至50℃,关闭精密退火炉电源,自动降温至室温,得到透明的稀土离子Tm3+、Yb3+掺杂的Li3YCl6微晶玻璃。(4) Place the xerogel obtained in step (3) in a nitrogen precision annealing furnace, heat-treat at 560-590°C for 10 hours, then cool down to 50°C at a rate of 10°C/hour, and turn off the power of the precision annealing furnace, The temperature is automatically lowered to room temperature, and transparent rare earth ion Tm 3+ , Yb 3+ doped Li 3 YCl 6 glass-ceramic is obtained.
对制得的Li3YCl6微晶玻璃进行X射线衍射测试,得到该微晶玻璃的XRD图如图1所示,其结果如下:经过热处理得到的样品的XRD衍射峰与Li3YCl6晶相的标准XRD图的主要衍射峰都相符,因此得到的材料是Li3YCl6析晶相的微晶玻璃。用TRIAX550荧光光谱仪测量,在970nm激光器激发条件下,测得的该微晶玻璃的上转换发光光谱如图2所示,蓝光(476nm)、红光(679nm)的积分发光强度分别约4.43×105、7.34×105,蓝色、红色上转换发光很强。X-ray diffraction test was carried out on the prepared Li 3 YCl 6 glass-ceramics, and the XRD pattern of the glass-ceramics obtained is shown in Figure 1, and the results are as follows: The main diffraction peaks of the standard XRD patterns of the phases are consistent, so the obtained material is a glass-ceramic of Li 3 YCl 6 devitrification phase. Measured with a TRIAX550 fluorescence spectrometer, under the excitation condition of a 970nm laser, the measured up-conversion luminescence spectrum of the glass-ceramics is shown in Figure 2, and the integrated luminescence intensities of blue light (476nm) and red light (679nm) are respectively about 4.43×10 5. 7.34×10 5 , the blue and red up-conversion luminescence is very strong.
实施例2Example 2
Er3+、Yb3+掺杂Li3YCl6微晶玻璃的摩尔百分比组成为:SiO289mol%、Li3YCl68mol%、ErCl30.5mol%、YbCl32.5mol%,经过与实施例1相同的制备和热处理过程后,得到透明的稀土离子Er3+、Yb3+掺杂的Li3YCl6微晶玻璃。对该微晶玻璃用TRIAX550荧光光谱仪测量,在970nm激光器激发条件下,观察到强的绿色和红色上转换发光。Er 3+ , Yb 3+ doped Li 3 YCl 6 glass-ceramic mole percent composition: SiO 2 89mol%, Li 3 YCl 6 8mol%, ErCl 3 0.5mol%, YbCl 3 2.5mol%, after and the embodiment 1 After the same preparation and heat treatment process, a transparent rare earth ion Er 3+ , Yb 3+ doped Li 3 YCl 6 glass-ceramic was obtained. The glass-ceramic was measured with a TRIAX550 fluorescence spectrometer, under the excitation condition of a 970nm laser, strong green and red upconversion luminescence were observed.
实施例3Example 3
Er3+、Tm3+、Yb3+掺杂Li3YCl6微晶玻璃的摩尔百分比组成为:SiO288mol%、Li3YCl69mol%、ErCl30.1mol%、TmCl30.1mol%、YbCl32.8mol%,经过与实施例1相同的制备和热处理过程后,得到透明的稀土离子Er3+、Tm3+、Yb3+掺杂的Li3YCl6微晶玻璃。对该微晶玻璃用TRIAX550荧光光谱仪测量,在970nm激光器激发条件下,观察到强的蓝色、绿色和红色上转换发光。The mole percentage composition of Er 3+ , Tm 3+ , Yb 3+ doped Li 3 YCl 6 glass ceramics is: SiO 2 88mol%, Li 3 YCl 6 9mol%, ErCl 3 0.1mol%, TmCl 3 0.1mol%, YbCl 3 2.8mol%, after the same preparation and heat treatment process as in Example 1, a transparent Li 3 YCl 6 glass-ceramics doped with rare earth ions Er 3+ , Tm 3+ , and Yb 3+ was obtained. The glass-ceramic was measured with a TRIAX550 fluorescence spectrometer, under the excitation condition of a 970nm laser, strong blue, green and red upconversion luminescence were observed.
实施例4Example 4
Ho3+掺杂Li3YCl6微晶玻璃的摩尔百分比组成为:SiO294mol%、Li3YCl65.5mol%、HoCl30.5mol%,经过与实施例1相同的制备和热处理过程后,得到透明的稀土离子Ho3+掺杂的Li3YCl6微晶玻璃。该微晶玻璃用TRIAX550荧光光谱仪测量,在970nm激光器激发条件下,观察到强的绿色和红色上转换发光。The mole percentage composition of Ho 3+ doped Li 3 YCl 6 glass ceramics is: SiO 2 94mol%, Li 3 YCl 6 5.5mol%, HoCl 3 0.5mol%, after the same preparation and heat treatment process as in Example 1, A transparent rare earth ion Ho 3+ doped Li 3 YCl 6 glass-ceramic was obtained. The glass-ceramic is measured by a TRIAX550 fluorescence spectrometer, under the excitation condition of a 970nm laser, strong green and red up-conversion luminescence are observed.
对比例1Comparative example 1
Tm3+、Yb3+掺杂Li3YF6微晶玻璃的摩尔百分比组成为:SiO287.8mol%、Li3YF610mol%、TmF30.2mol%、YbF32mol%,经过与实施例1相同的制备和热处理过程后,得到透明的稀土离子Tm3+、Yb3+掺杂的Li3YF6微晶玻璃。用TRIAX550荧光光谱仪测量,在970nm激光器激发条件下,测得的该微晶玻璃的上转换发光光谱如图3所示,蓝光(476nm)、红光(679nm)的积分发光强度分别约3.96×104、6.56×104,与实施例1比较,蓝色、红色上转换发光强度低,说明实施例1得到的Tm3+、Yb3+掺杂的Li3YCl6微晶玻璃的上转换发光性能比对比例1得到的Tm3+、Yb3+掺杂的Li3YF6微晶玻璃更好。The mole percentage composition of Tm 3+ and Yb 3+ doped Li 3 YF 6 glass-ceramic is: SiO 2 87.8 mol%, Li 3 YF 6 10 mol%, TmF 3 0.2 mol%, YbF 3 2 mol%, through and embodiment 1 After the same preparation and heat treatment process, a transparent rare earth ion Tm 3+ , Yb 3+ doped Li 3 YF 6 glass-ceramic is obtained. Measured with a TRIAX550 fluorescence spectrometer, under the excitation condition of a 970nm laser, the measured up-conversion luminescence spectrum of the glass-ceramics is shown in Figure 3, and the integrated luminescence intensities of blue light (476nm) and red light (679nm) are respectively about 3.96×10 4. 6.56×10 4 , compared with Example 1, the blue and red up-conversion luminescence intensity is lower, indicating the up-conversion luminescence of Tm 3+ , Yb 3+ doped Li 3 YCl 6 glass ceramics obtained in Example 1 The performance is better than the Tm 3+ , Yb 3+ doped Li 3 YF 6 glass ceramics obtained in Comparative Example 1.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510852817.6A CN105254184A (en) | 2015-11-27 | 2015-11-27 | A kind of rare earth ion doped Li3YCl6 glass-ceramics and its preparation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510852817.6A CN105254184A (en) | 2015-11-27 | 2015-11-27 | A kind of rare earth ion doped Li3YCl6 glass-ceramics and its preparation method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105254184A true CN105254184A (en) | 2016-01-20 |
Family
ID=55094190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510852817.6A Withdrawn CN105254184A (en) | 2015-11-27 | 2015-11-27 | A kind of rare earth ion doped Li3YCl6 glass-ceramics and its preparation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105254184A (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018025582A1 (en) * | 2016-08-04 | 2018-02-08 | パナソニックIpマネジメント株式会社 | Solid electrolyte material, and cell |
CN109775744A (en) * | 2019-01-11 | 2019-05-21 | 蜂巢能源科技有限公司 | Preparation method of lithium yttrium halide and its application in solid electrolyte and battery |
WO2019135322A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Positive electrode material and battery |
WO2019135344A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material, and battery |
WO2019135321A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019135323A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Battery |
WO2019135320A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019135341A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material, and battery |
WO2019135328A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019135319A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019135315A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019146219A1 (en) * | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2020136956A1 (en) * | 2018-12-28 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Method for producing halides |
WO2020136953A1 (en) * | 2018-12-28 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Halide production method |
WO2020136954A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Method for producing halide |
WO2020136955A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Method for producing halide |
WO2020136952A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Halide production method |
WO2020136951A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Method for producing halides |
US11427477B2 (en) | 2018-01-05 | 2022-08-30 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11489195B2 (en) * | 2018-12-28 | 2022-11-01 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery using same |
US11498849B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11498850B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11524902B2 (en) | 2018-01-05 | 2022-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery |
US11560320B2 (en) | 2018-01-05 | 2023-01-24 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11591236B2 (en) | 2018-01-05 | 2023-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11637287B2 (en) | 2018-01-26 | 2023-04-25 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery using same |
US11652235B2 (en) | 2018-01-26 | 2023-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
US11682764B2 (en) | 2018-01-26 | 2023-06-20 | Panasonic Intellectual Property Management Co., Ltd. | Cathode material and battery using same |
US11760649B2 (en) | 2018-01-05 | 2023-09-19 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11949064B2 (en) | 2018-11-29 | 2024-04-02 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material, battery, and method for producing battery |
US11955599B2 (en) | 2018-11-29 | 2024-04-09 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material and battery |
US12176481B2 (en) | 2020-11-24 | 2024-12-24 | Samsung Electronics Co., Ltd. | Solid ion conductor, solid electrolyte and electrochemical device including the same, and method of preparing the solid ion conductor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101024553A (en) * | 2006-02-24 | 2007-08-29 | 中国科学院福建物质结构研究所 | Alkaline-earth contained fluoride nano crystal transparent glass ceramic and its sol-gel preparing method |
CN103951243A (en) * | 2014-05-08 | 2014-07-30 | 宁波大学 | Cs2LiYCl6 glass ceramics doped with rare earth ions and its preparation method |
CN103951197A (en) * | 2014-05-08 | 2014-07-30 | 宁波大学 | Cs2LiYBr6 glass ceramics doped with rare earth ions and its preparation method |
-
2015
- 2015-11-27 CN CN201510852817.6A patent/CN105254184A/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101024553A (en) * | 2006-02-24 | 2007-08-29 | 中国科学院福建物质结构研究所 | Alkaline-earth contained fluoride nano crystal transparent glass ceramic and its sol-gel preparing method |
CN103951243A (en) * | 2014-05-08 | 2014-07-30 | 宁波大学 | Cs2LiYCl6 glass ceramics doped with rare earth ions and its preparation method |
CN103951197A (en) * | 2014-05-08 | 2014-07-30 | 宁波大学 | Cs2LiYBr6 glass ceramics doped with rare earth ions and its preparation method |
Non-Patent Citations (1)
Title |
---|
JOANNA CYBINSKA 等: "Up-conversion Luminescence in K2LaX5(X=Cl,Br,I) Crystals Doped with Pr3+ Ions", 《Z.ANORG. ALLG. CHEM》 * |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018025582A1 (en) * | 2016-08-04 | 2018-02-08 | パナソニックIpマネジメント株式会社 | Solid electrolyte material, and cell |
JP7281672B2 (en) | 2018-01-05 | 2023-05-26 | パナソニックIpマネジメント株式会社 | battery |
US11427477B2 (en) | 2018-01-05 | 2022-08-30 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
WO2019135344A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material, and battery |
WO2019135321A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019135323A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Battery |
WO2019135320A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019135341A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material, and battery |
WO2019135328A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019135319A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
WO2019135315A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
US12095027B2 (en) | 2018-01-05 | 2024-09-17 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11784345B2 (en) | 2018-01-05 | 2023-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11760649B2 (en) | 2018-01-05 | 2023-09-19 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11670775B2 (en) | 2018-01-05 | 2023-06-06 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery |
JP7281771B2 (en) | 2018-01-05 | 2023-05-26 | パナソニックIpマネジメント株式会社 | Cathode materials and batteries |
US11591236B2 (en) | 2018-01-05 | 2023-02-28 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11560320B2 (en) | 2018-01-05 | 2023-01-24 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
CN111448619A (en) * | 2018-01-05 | 2020-07-24 | 松下知识产权经营株式会社 | Solid electrolyte material and battery |
CN111492517A (en) * | 2018-01-05 | 2020-08-04 | 松下知识产权经营株式会社 | Positive electrode material and battery |
US11524902B2 (en) | 2018-01-05 | 2022-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery |
JPWO2019135328A1 (en) * | 2018-01-05 | 2020-12-24 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
JPWO2019135322A1 (en) * | 2018-01-05 | 2021-01-07 | パナソニックIpマネジメント株式会社 | Positive electrode material and battery |
JPWO2019135323A1 (en) * | 2018-01-05 | 2021-02-18 | パナソニックIpマネジメント株式会社 | battery |
US11411247B2 (en) | 2018-01-05 | 2022-08-09 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
JP7182114B2 (en) | 2018-01-05 | 2022-12-02 | パナソニックIpマネジメント株式会社 | solid electrolyte material and battery |
CN111448619B (en) * | 2018-01-05 | 2021-11-05 | 松下知识产权经营株式会社 | Solid electrolyte material and battery |
US11515565B2 (en) | 2018-01-05 | 2022-11-29 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
US11498850B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11498849B2 (en) | 2018-01-05 | 2022-11-15 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US11404718B2 (en) | 2018-01-05 | 2022-08-02 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
WO2019135322A1 (en) * | 2018-01-05 | 2019-07-11 | パナソニックIpマネジメント株式会社 | Positive electrode material and battery |
US11652235B2 (en) | 2018-01-26 | 2023-05-16 | Panasonic Intellectual Property Management Co., Ltd. | Battery |
CN111566756A (en) * | 2018-01-26 | 2020-08-21 | 松下知识产权经营株式会社 | Solid Electrolyte Materials and Batteries |
US12209030B2 (en) | 2018-01-26 | 2025-01-28 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery |
US12206111B2 (en) | 2018-01-26 | 2025-01-21 | Panasonic Intellectual Property Management Co., Ltd. | Cathode material and battery using same |
WO2019146219A1 (en) * | 2018-01-26 | 2019-08-01 | パナソニックIpマネジメント株式会社 | Solid electrolyte material and battery |
US11682764B2 (en) | 2018-01-26 | 2023-06-20 | Panasonic Intellectual Property Management Co., Ltd. | Cathode material and battery using same |
CN111566756B (en) * | 2018-01-26 | 2022-03-08 | 松下知识产权经营株式会社 | Solid electrolyte material and battery |
US11637287B2 (en) | 2018-01-26 | 2023-04-25 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode material and battery using same |
US11955599B2 (en) | 2018-11-29 | 2024-04-09 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material and battery |
US11949064B2 (en) | 2018-11-29 | 2024-04-02 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode material, battery, and method for producing battery |
JPWO2020136952A1 (en) * | 2018-12-26 | 2021-11-04 | パナソニックIpマネジメント株式会社 | Halide manufacturing method |
JP7365600B2 (en) | 2018-12-26 | 2023-10-20 | パナソニックIpマネジメント株式会社 | Method for producing halides |
WO2020136952A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Halide production method |
JPWO2020136955A1 (en) * | 2018-12-26 | 2021-11-18 | パナソニックIpマネジメント株式会社 | Halide manufacturing method |
JPWO2020136954A1 (en) * | 2018-12-26 | 2021-11-11 | パナソニックIpマネジメント株式会社 | Halide manufacturing method |
WO2020136955A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Method for producing halide |
JP7378039B2 (en) | 2018-12-26 | 2023-11-13 | パナソニックIpマネジメント株式会社 | Method for producing halides |
WO2020136954A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Method for producing halide |
JPWO2020136951A1 (en) * | 2018-12-26 | 2021-11-04 | パナソニックIpマネジメント株式会社 | Halide manufacturing method |
JP7365599B2 (en) | 2018-12-26 | 2023-10-20 | パナソニックIpマネジメント株式会社 | Method for producing halides |
JP7357299B2 (en) | 2018-12-26 | 2023-10-06 | パナソニックIpマネジメント株式会社 | Method for producing halides |
WO2020136951A1 (en) * | 2018-12-26 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Method for producing halides |
WO2020136956A1 (en) * | 2018-12-28 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Method for producing halides |
WO2020136953A1 (en) * | 2018-12-28 | 2020-07-02 | パナソニックIpマネジメント株式会社 | Halide production method |
JPWO2020136953A1 (en) * | 2018-12-28 | 2021-11-11 | パナソニックIpマネジメント株式会社 | Halide manufacturing method |
JP7186405B2 (en) | 2018-12-28 | 2022-12-09 | パナソニックIpマネジメント株式会社 | Halide production method |
US11981580B2 (en) | 2018-12-28 | 2024-05-14 | Panasonic Intellectual Property Management Co., Ltd. | Method for producing halides |
JPWO2020136956A1 (en) * | 2018-12-28 | 2021-11-18 | パナソニックIpマネジメント株式会社 | Halide manufacturing method |
US11489195B2 (en) * | 2018-12-28 | 2022-11-01 | Panasonic Intellectual Property Management Co., Ltd. | Solid electrolyte material and battery using same |
JP7186404B2 (en) | 2018-12-28 | 2022-12-09 | パナソニックIpマネジメント株式会社 | Halide production method |
US12269752B2 (en) | 2018-12-28 | 2025-04-08 | Panasonic Intellectual Property Managemnt Co., Ltd. | Halide production method |
CN109775744A (en) * | 2019-01-11 | 2019-05-21 | 蜂巢能源科技有限公司 | Preparation method of lithium yttrium halide and its application in solid electrolyte and battery |
US12176481B2 (en) | 2020-11-24 | 2024-12-24 | Samsung Electronics Co., Ltd. | Solid ion conductor, solid electrolyte and electrochemical device including the same, and method of preparing the solid ion conductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105254184A (en) | A kind of rare earth ion doped Li3YCl6 glass-ceramics and its preparation method | |
CN105481250A (en) | Colorless transparent glass-ceramic with long after-glow down-conversion luminescence characteristics and preparation method thereof | |
CN105314860A (en) | A kind of LaCl3 glass ceramics doped with rare earth ions and its preparation method | |
CN105293921A (en) | A kind of K3LuCl6 glass ceramics doped with rare earth ions and its preparation method | |
CN105314876A (en) | A kind of Cs2YCl5 glass ceramics doped with rare earth ions and its preparation method | |
CN105330164A (en) | A kind of PbCl2 glass ceramics doped with rare earth ions and its preparation method | |
CN105314871A (en) | A kind of YCl3 glass ceramics doped with rare earth ions and its preparation method | |
CN105314863A (en) | A kind of BaCl2 glass ceramics doped with rare earth ions and its preparation method | |
CN105314873A (en) | A kind of rare earth ion doped CeBr3 glass-ceramics and preparation method thereof | |
CN105293926A (en) | A kind of K2GdBr5 glass ceramics doped with rare earth ions and its preparation method | |
CN105330163A (en) | A kind of SrI2 glass ceramics doped with rare earth ions and its preparation method | |
CN105293923A (en) | A kind of K3GdCl6 glass ceramics doped with rare earth ions and its preparation method | |
CN105271773A (en) | A kind of Cs3CeCl6 glass ceramics doped with rare earth ions and its preparation method | |
CN105314869A (en) | A kind of CdCl2 glass ceramics doped with rare earth ions and its preparation method | |
CN105314867A (en) | A kind of CaCl2 glass ceramics doped with rare earth ions and its preparation method | |
CN105314865A (en) | A kind of SrCl2 glass ceramics doped with rare earth ions and its preparation method | |
CN105314875A (en) | A kind of Cs2LaCl5 glass ceramics doped with rare earth ions and its preparation method | |
CN105293927A (en) | A kind of NaGdCl4 glass ceramics doped with rare earth ions and its preparation method | |
CN105293928A (en) | A kind of K2GdCl5 glass ceramics doped with rare earth ions and its preparation method | |
CN105271771A (en) | A kind of Rb3LaCl6 glass ceramics doped with rare earth ions and its preparation method | |
CN105271775A (en) | A kind of KGd2Cl7 glass ceramics doped with rare earth ions and its preparation method | |
CN105271768A (en) | A kind of K2CeCl5 glass ceramics doped with rare earth ions and its preparation method | |
CN105330162A (en) | A kind of rare earth ion-doped GdCl3 glass-ceramic and its preparation method | |
CN105271769A (en) | A kind of K3GdI6 glass ceramics doped with rare earth ions and its preparation method | |
CN105271776A (en) | A kind of Cs2LuCl5 glass ceramics doped with rare earth ions and its preparation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20160120 |
|
WW01 | Invention patent application withdrawn after publication |