CN105247067A - fusion protease - Google Patents
fusion protease Download PDFInfo
- Publication number
- CN105247067A CN105247067A CN201480029964.7A CN201480029964A CN105247067A CN 105247067 A CN105247067 A CN 105247067A CN 201480029964 A CN201480029964 A CN 201480029964A CN 105247067 A CN105247067 A CN 105247067A
- Authority
- CN
- China
- Prior art keywords
- protease
- fusion
- protein
- bifunctional fusion
- fusion protease
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/06—Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/485—Exopeptidases (3.4.11-3.4.19)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/503—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from viruses
- C12N9/506—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from viruses derived from RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/14—Dipeptidyl-peptidases and tripeptidyl-peptidases (3.4.14)
- C12Y304/14011—Xaa-Pro dipeptidyl-peptidase (3.4.14.11)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/22—Cysteine endopeptidases (3.4.22)
- C12Y304/22028—Picornain 3C (3.4.22.28)
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Enzymes And Modification Thereof (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
技术领域 technical field
本发明涉及蛋白表达和蛋白化学的技术领域,其中由融合蛋白释放成熟蛋白。 The present invention relates to the technical field of protein expression and protein chemistry, wherein mature proteins are released from fusion proteins.
背景技术 Background technique
重组蛋白技术使得能够生产大量的可用于其生物活性的所需蛋白。这种蛋白通常表达为微生物宿主细胞中的重组融合蛋白。成熟蛋白(目标蛋白)通常与融合伙伴蛋白或较小的氨基酸延伸连接,以便提高表达水平、提高溶解性、促进蛋白折叠或促进纯化和下游加工。 Recombinant protein technology enables the production of large quantities of a desired protein available for its biological activity. Such proteins are usually expressed as recombinant fusion proteins in microbial host cells. Mature proteins (proteins of interest) are often linked to fusion partners or smaller amino acid extensions to increase expression levels, improve solubility, facilitate protein folding, or facilitate purification and downstream processing.
对于维持蛋白的完整生物活性以及药物调节目的,由融合蛋白除去融合伙伴蛋白以释放具有天然N-和C-末端的成熟蛋白可能是关键的。 Removal of the fusion partner protein from the fusion protein to release the mature protein with native N- and C-termini may be critical for maintaining the intact biological activity of the protein as well as for drug regulation purposes.
目前,少数可用于由融合蛋白除去融合伙伴蛋白的蛋白酶可用作用于工业用途的经济上可持续的酶,该蛋白酶在释放的成熟靶蛋白中留下天然N-末端。 Currently, the few proteases available for the removal of fusion partners from fusion proteins are available as economically sustainable enzymes for industrial use, leaving the native N-terminus in the released mature target protein.
一种这样的酶是肠激酶,然而,其缺少特异性而难以广泛应用。其它的这样的酶有因子Xa、胰蛋白酶、梭菌蛋白酶、凝血酶、TEV或鼻病毒3C蛋白酶,它们均要么缺少特异性,因为大多数蛋白包含内部二次切割位点,要么在成熟蛋白的C-或N-末端留下氨基酸延伸。 One such enzyme is enterokinase, however, its lack of specificity prevents widespread use. Other such enzymes are Factor Xa, trypsin, clostripain, thrombin, TEV or rhinovirus 3C protease, all of which either lack specificity since most proteins contain an internal secondary An amino acid extension is left at the C- or N-terminus.
Waugh, Protein Expr. Purif. 80:283-293 (2011)公开了用于除去亲和标签的酶试剂的综述。 Waugh, Protein Expr. Purif. 80:283-293 (2011) discloses a review of enzymatic reagents for the removal of affinity tags.
WO92/10576公开了在药物制剂中使用具有DPP IV可切割的延伸肽部分的融合蛋白。 WO92/10576 discloses the use of fusion proteins with DPP IV cleavable extended peptide moieties in pharmaceutical formulations.
Xin, Protein Expr. Purif. 2002, 24, pp530-538公开了用于由重组蛋白除去N-末端Pro-Pro的来自乳酸乳球菌(Lact ococ cus lactis)的X-脯氨酰基二肽基氨肽酶在大肠杆菌(Escherichia coli)中的克隆、表达以及应用。 Xin, Protein Expr. Purif. 2002, 24, pp530-538 discloses X-prolyl dipeptidyl aminopeptides from Lactococcus lactis for removal of N-terminal Pro-Pro from recombinant proteins Cloning, expression and application of the enzyme in Escherichia coli .
Bülow, TIBTECH 9:226-231(1991)公开了一种通过基因融合来制备双功能酶的方法。 Bülow, TIBTECH 9:226-231 (1991) discloses a method for producing bifunctional enzymes by gene fusion.
Seo, Appl. Environ. Microbiol. 2000, 66, pp2484-2490公开了一种海藻糖-6-磷酸合酶和海藻糖-6-磷酸磷酸酶的双功能融合酶。 Seo, Appl. Environ. Microbiol. 2000, 66, pp2484-2490 discloses a bifunctional fusion enzyme of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase.
在制药工业,蛋白药物目前构成竞争市场的相当部分,因此,需要大规模制造这些蛋白药物的高效方法。融合蛋白的工业用途的关键问题仍然是由融合蛋白除去融合蛋白伙伴以释放完整的成熟蛋白。 In the pharmaceutical industry, protein drugs currently constitute a substantial portion of the competitive market and, therefore, efficient methods of manufacturing these protein drugs on a large scale are required. A key issue for the industrial use of fusion proteins remains the removal of the fusion protein partner from the fusion protein to release the intact mature protein.
因此,需要一种工业方法,其特异性地除去融合伙伴蛋白,而不成熟蛋白中具有内部切割位点,且不在成熟蛋白上留下任何氨基酸延伸。优选地,该融合伙伴蛋白的除去是使用在工业方法中容易制备的仅单一酶进行。同样需要这样的方法,其可在温和的加工条件下对众多不同的蛋白起到该作用,以防止非计划的成熟蛋白的化学和物理变化。 Therefore, there is a need for an industrial method that specifically removes fusion partner proteins with an internal cleavage site in the immature protein and does not leave any amino acid stretches on the mature protein. Preferably, the removal of the fusion partner is performed using only a single enzyme that is readily prepared in an industrial process. There is also a need for methods that can do this for a wide variety of proteins under mild processing conditions to prevent unintended chemical and physical changes to mature proteins.
概述 overview
本发明的一个目的在于,提供一种用于由融合蛋白提供成熟蛋白的简单的一步方法。 It is an object of the present invention to provide a simple one-step method for providing mature proteins from fusion proteins.
小RNA病毒3C蛋白酶和Xaa-Pro-二肽基氨肽酶(XaaProDAP)均是非常特异的酶,其表现出被发现可用于制造蛋白药物的互补活性。然而,作为蛋白水解酶,它们还引起在融合成为一种双功能融合蛋白酶时自我切割方面的问题。 Both picornavirus 3C protease and Xaa-Pro-dipeptidyl aminopeptidase (XaaProDAP) are very specific enzymes that exhibit complementary activities that have been found to be useful in the manufacture of protein pharmaceuticals. However, as proteolytic enzymes, they also cause problems with self-cleavage when fused into a bifunctional fusion protease.
由于两种酶物理上靠近并因此副反应更少,在融合蛋白酶中组合两种酶可具有有利的反应动力学的优点。在融合蛋白酶中组合两种酶还具有的优点是,仅需要提供和使用一种试剂。由于尺寸更大,融合蛋白酶也可容易地通过简单的凝胶过滤方法由成熟蛋白中除去。 Combining two enzymes in a fusion protease may have the advantage of favorable reaction kinetics due to the physical proximity of the two enzymes and thus fewer side reactions. Combining two enzymes in a fusion protease also has the advantage that only one reagent needs to be provided and used. Due to their larger size, the fusion protease can also be easily removed from the mature protein by a simple gel filtration method.
根据本发明的第一方面,提供一种双功能融合蛋白酶,其包含小RNA病毒3C蛋白酶和XaaProDAP的催化结构域。在一个实施方案中,双功能融合蛋白酶包含小RNA病毒3C蛋白酶和XaaProDAP。 According to the first aspect of the present invention, there is provided a bifunctional fusion protease comprising picornavirus 3C protease and the catalytic domain of XaaProDAP. In one embodiment, the bifunctional fusion protease comprises picornavirus 3C protease and XaaProDAP.
根据本发明的第二方面,提供一种双功能融合蛋白酶,其包含下式的蛋白: According to a second aspect of the present invention, there is provided a bifunctional fusion protease comprising a protein of the following formula:
X-Y-Z (I) 或 Z-Y-X (II) X-Y-Z (I) or Z-Y-X (II)
其中 in
X是小RNA病毒3C蛋白酶或其功能变体; X is a picornavirus 3C protease or a functional variant thereof;
Y是任选的接头; Y is an optional linker;
Z是Xaa-Pro-二肽基氨肽酶(XaaProDAP)或其功能变体; Z is Xaa-Pro-dipeptidyl aminopeptidase (XaaProDAP) or a functional variant thereof;
其中所述融合蛋白酶实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性。 Wherein said fusion protease has substantially no self-cleavage activity capable of impairing at least one of the two proteolytic activities.
在一个实施方案中,本发明的双功能融合蛋白酶具有式(I),即所述小RNA病毒3C蛋白酶或其功能变体位于所述双功能融合蛋白酶的N-末端部分。 In one embodiment, the bifunctional fusion protease of the present invention has formula (I), that is, the picornavirus 3C protease or its functional variant is located at the N-terminal part of the bifunctional fusion protease.
在另一个实施方案中,X是人鼻病毒14型3C蛋白酶(HRV14 3C)或其功能变体。 In another embodiment, X is human rhinovirus type 14 3C protease (HRV14 3C) or a functional variant thereof.
在另一个实施方案中,Z是E.C. 3.4.14.11酶或其功能变体。 In another embodiment, Z is an E.C. 3.4.14.11 enzyme or a functional variant thereof.
根据本发明的第三方面,提供一种制备本发明的双功能融合蛋白酶的方法,其包括在宿主细胞中重组表达包含双功能融合蛋白酶的蛋白和随后分离双功能融合蛋白酶。 According to a third aspect of the present invention, there is provided a method for preparing the bifunctional fusion protease of the present invention, which comprises recombinantly expressing a protein comprising the bifunctional fusion protease in a host cell and subsequently isolating the bifunctional fusion protease.
在一个实施方案中,制备双功能融合蛋白酶的方法包括大肠杆菌作为所述宿主细胞。 In one embodiment, the method for preparing a bifunctional fusion protease includes Escherichia coli as the host cell.
根据本发明的第四方面,提供本发明的双功能融合蛋白酶用于由较大的肽或蛋白除去N-末端肽或蛋白的用途。 According to a fourth aspect of the present invention there is provided the use of the bifunctional fusion protease of the present invention for removing N-terminal peptides or proteins from larger peptides or proteins.
附图简述 Brief description of the drawings
图1显示纯化的双功能HRV14-XaaProDAP融合蛋白酶(蛋白酶20986)的还原SDS-PAGE。泳道1:蛋白标志物。数字表示以kDa计的大小。泳道2:纯化的蛋白酶20986。 Figure 1 shows the reducing SDS-PAGE of the purified bifunctional HRV14-XaaProDAP fusion protease (Protease 20986). Lane 1: protein markers. Numbers indicate sizes in kDa. Lane 2: Purified protease 20986.
图2显示在使用1:20摩尔的酶与底物比与蛋白酶20986于37℃孵育3小时(反应1)后RL27_EVLFQGP_PYY(3-36)的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 2 shows the deconvoluted mass spectrum of RL27_EVLFQGP_PYY(3-36) after incubation with protease 20986 at 37°C for 3 hours using a 1:20 molar enzyme to substrate ratio (reaction 1). X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图3显示在使用1:40摩尔的酶与底物比与蛋白酶20986于37℃孵育3小时(反应2)后RL27_EVLFQGP_PYY(3-36)的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 3 shows the deconvoluted mass spectrum of RL27_EVLFQGP_PYY(3-36) after incubation with protease 20986 at 37°C for 3 hours using a 1:40 molar enzyme to substrate ratio (reaction 2). X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图4显示在使用1:20摩尔的酶与底物比与RL9-HRV14 3C蛋白酶于37℃孵育3小时(反应3)后RL27_EVLFQGP_PYY(3-36)的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 4 shows the deconvoluted mass spectrum of RL27_EVLFQGP_PYY(3-36) after incubation with RL9-HRV14 3C protease for 3 hours at 37°C using a 1:20 molar enzyme to substrate ratio (reaction 3). X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图5显示在使用1:40摩尔的酶与底物比与RL9-HRV14 3C蛋白酶于37℃孵育3小时(反应4)后RL27_EVLFQGP_PYY(3-36)的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 5 shows the deconvoluted mass spectrum of RL27_EVLFQGP_PYY(3-36) after incubation with RL9-HRV14 3C protease for 3 hours at 37°C using a 1:40 molar enzyme to substrate ratio (reaction 4). X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图6显示在使用1:500摩尔的酶与底物比与蛋白酶20986于4℃孵育过夜(反应12)后RL27_EVLFQGP_胰高血糖素的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 6 shows the deconvoluted mass spectrum of RL27_EVLFQGP_glucagon after overnight incubation at 4°C with protease 20986 using a 1 :500 molar enzyme to substrate ratio (reaction 12). X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图7显示在使用1:100摩尔的酶与底物比与蛋白酶28994于4℃孵育过夜(反应13)后RL27_EVLFQGP_胰高血糖素的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 7 shows the deconvoluted mass spectrum of RL27_EVLFQGP_glucagon after overnight incubation at 4°C with protease 28994 using a 1:100 molar enzyme to substrate ratio (reaction 13). X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图8显示在使用1:500摩尔的酶与底物比与蛋白酶28996于4℃孵育过夜(反应16)后RL27_EVLFQGP_胰高血糖素的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 8 shows the deconvoluted mass spectrum of RL27_EVLFQGP_glucagon after overnight incubation at 4°C with protease 28996 using a 1 :500 molar enzyme to substrate ratio (reaction 16). X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图9显示在使用1:500摩尔的酶与底物比与蛋白酶28997于4℃孵育过夜(反应17)后RL27_EVLFQGP_胰高血糖素的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 9 shows the deconvoluted mass spectrum of RL27_EVLFQGP_glucagon after overnight incubation at 4°C with protease 28997 using a 1 :500 molar enzyme to substrate ratio (reaction 17). X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图10显示在使用1:20摩尔的酶与底物比与RL9-HRV14 3C蛋白酶于4℃孵育过夜(反应18,对照)后RL27_EVLFQGP_胰高血糖素的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 10 shows the deconvoluted mass spectrum of RL27_EVLFQGP_glucagon after overnight incubation at 4°C with RL9-HRV14 3C protease using a 1:20 molar enzyme to substrate ratio (reaction 18, control). X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图11显示在使用1:500摩尔的酶与底物比与蛋白酶20986于4℃孵育过夜(反应20)后RL27_EVLFQGP_GLP-1(7-37, K34R)的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 11 shows RL27_EVLFQGP_GLP-1(7-37, K34R) deconvoluted mass spectrum. X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图12显示在使用1:100摩尔的酶与底物比与蛋白酶28994于4℃孵育过夜(反应21)后RL27_EVLFQGP_GLP-1(7-37, K34R)的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 12 shows that RL27_EVLFQGP_GLP-1(7-37, K34R) deconvoluted mass spectrum. X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图13显示在使用1:100摩尔的酶与底物比与蛋白酶28996于4℃孵育过夜(反应23)后RL27_EVLFQGP_GLP-1(7-37, K34R)的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 13 shows RL27_EVLFQGP_GLP-1(7-37, K34R) deconvoluted mass spectrum. X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图14显示在使用1:100摩尔的酶与底物比与蛋白酶28997于4℃孵育过夜(反应25)后RL27_EVLFQGP_GLP-1(7-37, K34R)的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 14 shows RL27_EVLFQGP_GLP-1(7-37, K34R) deconvoluted mass spectrum. X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
图15显示在使用1:20摩尔的酶与底物比与RL9-HRV14 3C蛋白酶于4℃孵育过夜(反应27)后RL27_EVLFQGP_GLP-1(7-37, K34R)的去卷积质谱。X-轴:以Da计的质/荷比。Y-轴:相对强度。 Figure 15 shows that RL27_EVLFQGP_GLP-1(7-37, K34R) deconvoluted mass spectrum. X-axis: mass/charge ratio in Da. Y-axis: relative intensity.
描述 describe
根据本发明的第一方面,提供一种双功能融合酶,其包含小RNA病毒3C蛋白酶和XaaProDAP的催化结构域。 According to the first aspect of the present invention, a bifunctional fusion enzyme is provided, which comprises picornavirus 3C protease and the catalytic domain of XaaProDAP.
根据本发明的第二方面,提供一种双功能融合蛋白酶,其包含下式的蛋白: According to a second aspect of the present invention, there is provided a bifunctional fusion protease comprising a protein of the following formula:
X-Y-Z (I) 或 Z-Y-X (II) X-Y-Z (I) or Z-Y-X (II)
其中 in
X是小RNA病毒3C蛋白酶或其功能变体; X is a picornavirus 3C protease or a functional variant thereof;
Y是任选的接头; Y is an optional linker;
Z是Xaa-Pro-二肽基氨肽酶(XaaProDAP)或其功能变体; Z is Xaa-Pro-dipeptidyl aminopeptidase (XaaProDAP) or a functional variant thereof;
其中所述融合蛋白酶实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性。 Wherein said fusion protease has substantially no self-cleavage activity capable of impairing at least one of the two proteolytic activities.
本发明的方法提供优于以前描述的用于由融合蛋白释放成熟蛋白的方法的许多优点。例如,已出乎意料地发现,可获得非常特异性的融合蛋白水解,从而在没有或具有最低水平的相关杂质的情况下以高产率释放具有正确的天然N-末端氨基酸的成熟蛋白。存在任何相关杂质(即以具有化学结构的有限差异的方式与成熟蛋白类似的蛋白)显然是不合乎需要的,因为在制造过程中难以将它们除去,因此是昂贵的。另外的实施方案具有下述优点:使得能够在具有低温的反应条件下由融合蛋白释放成熟蛋白。 The methods of the invention offer a number of advantages over previously described methods for the release of mature proteins from fusion proteins. For example, it has been unexpectedly found that very specific fusion proteolysis can be achieved, releasing the mature protein with the correct native N-terminal amino acid in high yield with no or minimal levels of associated impurities. The presence of any related impurities (ie proteins that resemble the mature protein in such a way that they have limited differences in chemical structure) is clearly undesirable as they are difficult and therefore expensive to remove during the manufacturing process. Additional embodiments have the advantage of enabling release of the mature protein from the fusion protein under reaction conditions with low temperature.
还已出乎意料地发现,本发明的双功能融合蛋白酶可通过在大肠杆菌中重组表达来制备。通常,难以在不引起问题的情况下在大肠杆菌中表达大的蛋白。然而,本发明的双功能融合蛋白酶可通过在大肠杆菌中重组表达来制备,如在公开的本发明实施例中所示。 It has also been unexpectedly found that the bifunctional fusion protease of the present invention can be prepared by recombinant expression in E. coli. Often, it is difficult to express large proteins in E. coli without causing problems. However, the bifunctional fusion protease of the present invention can be produced by recombinant expression in E. coli, as shown in the disclosed examples of the present invention.
本发明人旨在提供一种融合蛋白酶,其包含功能性XaaProDAP和功能性小RNA病毒3C蛋白酶。这样的双功能融合蛋白酶应当能够在微生物中表达,且应当在表达、纯化以及用于由融合蛋白释放成熟蛋白期间稳定。在制备该双功能融合蛋白酶期间,遇到了许多技术挑战。首先,发现HRV14 3C由HRV14 3C – XaaProDAP融合蛋白酶切割自身,从而融合蛋白酶不稳定。其次,HRV14 3C还在来自乳酸乳球菌的XaaProDAP中在不被识别为典型的HRV14 3C切割位点内部切割HRV14 3C – XaaProDAP融合蛋白酶。这也使融合蛋白酶不稳定。再次,当XaaProDAP位于融合蛋白酶的C-末端时,来自乳酸乳球菌的XaaProDAP可由HRV14 3C – XaaProDAP融合蛋白酶的N-末端除去二肽。因此,第一融合蛋白酶表现出在三个不同位点的自我切割,如果双功能融合蛋白酶的表达、纯化、催化功能、稳定性或它们的组合是原因,那么导致没有活性和待解决的挑战性任务。 The inventors of the present invention aim to provide a fusion protease comprising functional XaaProDAP and functional picornavirus 3C protease. Such bifunctional fusion proteases should be expressible in microorganisms and should be stable during expression, purification and use to release the mature protein from the fusion protein. During the preparation of this bifunctional fusion protease, many technical challenges were encountered. First, HRV14 3C was found to be cleaved by itself by the HRV14 3C-XaaProDAP fusion protease, making the fusion protease unstable. Second, HRV14 3C also cleaves the HRV14 3C-XaaProDAP fusion protease internally in XaaProDAP from Lactococcus lactis at a site not recognized as a canonical HRV14 3C cleavage site. This also destabilizes the fusion protease. Again, when XaaProDAP is located at the C-terminus of the fusion protease, XaaProDAP from Lactococcus lactis can remove the dipeptide from the N-terminus of HRV14 3C – XaaProDAP fusion protease. Thus, the first fusion protease exhibited self-cleavage at three different sites, resulting in no activity and a challenge to be resolved if expression, purification, catalytic function, stability, or a combination of these of the bifunctional fusion protease were the cause Task.
在设计本发明的双功能融合蛋白酶时,可进行下述步骤: When designing the bifunctional fusion protease of the present invention, the following steps can be carried out:
a)提供不具有蛋白表面上可用的QG子序列的XaaProDAP或功能变体, a) providing XaaProDAP or functional variants that do not have a QG subsequence available on the surface of the protein,
b)提供小RNA病毒3C蛋白酶或其功能变体,其若是位于双功能融合蛋白酶的N-末端则不在其N-末端具有XaaProDAP切割位点,且不具有使其能够通过在其C-末端的切割而切除自身的切割位点,和 b) providing a picornavirus 3C protease or a functional variant thereof which, if located at the N-terminus of the bifunctional fusion protease, does not have a XaaProDAP cleavage site at its N-terminus and does not have a cleavage site enabling passage at its C-terminus cleavage to excise its own cleavage site, and
c)将XaaProDAP和小RNA病毒3C蛋白酶经由任选的氨基酸接头序列连接,从而构成可由单一核酸序列表达的双功能融合蛋白酶。 c) connecting XaaProDAP and picornavirus 3C protease via an optional amino acid linker sequence to form a bifunctional fusion protease that can be expressed by a single nucleic acid sequence.
应当理解,术语多肽、肽和蛋白在当前语境中可互换使用。同样,根据IUPAC命名法将氨基酸缩写为单字母或三字母名称。 It should be understood that the terms polypeptide, peptide and protein are used interchangeably in the present context. Likewise, amino acids are abbreviated to one-letter or three-letter names according to IUPAC nomenclature.
本发明的双功能融合蛋白酶优选表现出在低温(例如2-10℃或2-15℃)的充分的活性,因为从工业制造观点来看这是所需的,例如由于在非无菌工艺条件下控制微生物活性。 The bifunctional fusion protease of the present invention preferably exhibits sufficient activity at low temperatures (e.g. 2-10°C or 2-15°C), as this is desirable from an industrial manufacturing point of view, e.g. control microbial activity.
本文所用的“Xaa-Pro二肽基氨肽酶” (“XaaProDAP”)旨在意指具有Xaa-Pro二肽特异性的二肽酶活性的酶,即易切断的键连接Xaa-Pro二肽的C-末端与目标肽或蛋白的N-末端。根据国际生物化学和分子生物学学会(IUBMB)酶命名法,将XaaProDAP分类为来自肽酶家族S15的酶EC 3.4.14.11和来自肽酶家族S9B的酶EC 3.4.14.5。XaaProDAP的非限制性实例有来自哺乳动物的二肽基-肽酶IV (DPP-IV)。XaaProDAP的其他非限制性实例有来自细胞的Xaa-脯氨酰基二肽基氨肽酶,例如来自乳酸乳球菌、嗜热链球菌(Strept ococ cus thermophilus)、德氏乳杆菌(Lactobacillus delbrueckii)和猪链球菌(Strept ococ cus suis)。来自乳酸乳球菌乳脂亚种(Lactococcus lactis subsp. cremoris) CNCM I-1631的Xaa-脯氨酰基二肽基氨肽酶具有下述序列: As used herein, "Xaa-Pro dipeptidyl aminopeptidase"("XaaProDAP") is intended to mean an enzyme having dipeptidase activity specific for an Xaa-Pro dipeptide, i.e., a scissile bond linking an Xaa-Pro dipeptide. C-terminus and N-terminus of target peptide or protein. According to the International Union of Biochemistry and Molecular Biology (IUBMB) enzyme nomenclature, XaaProDAP is classified as enzyme EC 3.4.14.11 from peptidase family S15 and enzyme EC 3.4.14.5 from peptidase family S9B. A non-limiting example of XaaProDAP is dipeptidyl-peptidase IV (DPP-IV) from mammals. Other non-limiting examples of XaaProDAP are Xaa-prolyl dipeptidyl aminopeptidases from cells such as those from Lactococcus lactis , Streptococcus thermophilus , Lactobacillus delbrueckii and porcine Streptococcus cus suis . The Xaa-prolyl dipeptidyl aminopeptidase from Lactococcus lactis subsp. cremoris CNCM 1-1631 has the following sequence:
MRFNHFSIVDKNFDEQLAELDQLGFRWSVFWDEKKILKDFLIQSPTDMTVLQANTELDVIEFLKSSIELDWEIFWNITLQLLDFVPNFDFEIGKATEFAKKLNLPQRDVEMTTETIISAFYYLLCSRRKSGMILVEHWVSEGLLPLDNHYHFFNDKSLATFDSSLLEREVVWVESPVDTEQKGKNDLIKIQIIRPKSTEKLPVVITASPYHLGINEKANDLALHEMNVDLEKKDSHKIHVQGKLPQKRPSETKELPIVDKAPYRFTHGWTYSLNDYFLTRGFASIYVAGVGTRGSNGFQTSGDYQQIYSMTAVIDWLNGRTRAYTSRKKTHEIKATWANGKVAMTGKSYLGTMAYGAATTGVDGLEVILAEAGISSWYNYYRENGLVRSPGGFPGEDLDVLAALTYSRNLDGADYLKGNDEYEKRLAEMTTALDRKSGDYNQFWHDRNYLINSDQVRADVLIVHGLQDWNVTPEQAYNFWQALPEGHAKHAFLHRGAHIYMNSWQSIDFSETINAYFSAKLLDRDLNLNLPPVILQENSKEQVWSAVSKFGGDDQLKLPLGKTAVSFAQFDNHYDDESFKKYSKDFNVFKKDLFENKANEAVIDLELPSELTINGPIELEIRLKLNDSKGLLSAQILDFGPKKRLEDKARVKDFKVLDRGRNFMLDDLVELPLVESPYQLVTKGFTNLQNKDLLTVSDLKADEWFTLKFELQPTIYHLEKADKLRVILYSTDFEHTVRDNRKVTYEIDLSQSKLIIPIESVKK (SEQ ID NO: 1)。 MRFNHFSIVDKNFDEQLAELDQLGFRWSVFWDEKKILKDFLIQSPTDMTVLQANTELDVIEFLKSSIELDWEIFWNITLQLLDFVPNFDFEIGKATEFAKKLNLPQRDVEMTTETIISAFYYLLCSRRKSGMILVEHWVSEGLLPLDNHYHFFNDKSLATFDSSLLEREVVWVESPVDTEQKGKNDLIKIQIIRPKSTEKLPVVITASPYHLGINEKANDLALHEMNVDLEKKDSHKIHVQGKLPQKRPSETKELPIVDKAPYRFTHGWTYSLNDYFLTRGFASIYVAGVGTRGSNGFQTSGDYQQIYSMTAVIDWLNGRTRAYTSRKKTHEIKATWANGKVAMTGKSYLGTMAYGAATTGVDGLEVILAEAGISSWYNYYRENGLVRSPGGFPGEDLDVLAALTYSRNLDGADYLKGNDEYEKRLAEMTTALDRKSGDYNQFWHDRNYLINSDQVRADVLIVHGLQDWNVTPEQAYNFWQALPEGHAKHAFLHRGAHIYMNSWQSIDFSETINAYFSAKLLDRDLNLNLPPVILQENSKEQVWSAVSKFGGDDQLKLPLGKTAVSFAQFDNHYDDESFKKYSKDFNVFKKDLFENKANEAVIDLELPSELTINGPIELEIRLKLNDSKGLLSAQILDFGPKKRLEDKARVKDFKVLDRGRNFMLDDLVELPLVESPYQLVTKGFTNLQNKDLLTVSDLKADEWFTLKFELQPTIYHLEKADKLRVILYSTDFEHTVRDNRKVTYEIDLSQSKLIIPIESVKK (SEQ ID NO: 1).
XaaProDAP可以是在例如细菌或哺乳动物中天然存在的酶,但是其也可以是这样的酶的功能变体。功能变体的非限制性实例有天然存在的XaaProDAP的类似物、延伸或截短形式,该功能变体保留Xaa-Pro二肽特异性的二肽酶活性。XaaProDAP may be an enzyme that occurs naturally in eg bacteria or mammals, but it may also be a functional variant of such an enzyme. Non-limiting examples of functional variants are analogues, extended or truncated forms of naturally occurring XaaProDAP which retain the dipeptidase activity specific for the Xaa-Pro dipeptide.
小RNA病毒3C蛋白酶 (或蛋白3C、Picornian 3C或小RNA病毒3C)是一组具有丝氨酸蛋白酶样折叠的半胱氨酸蛋白酶,其负责在小RNA病毒科病毒中由前体多蛋白产生成熟的病毒蛋白。 The picornavirus 3C proteases (or protein 3C, Picornian 3C, or picornavirus 3C) are a group of cysteine proteases with a serine protease-like fold that are responsible for the production of mature proteases from precursor polyproteins in Picornaviridae viruses. viral protein.
本文所用的“小RNA病毒3C蛋白酶”旨在意指来源于小RNA病毒科的蛋白酶,包括其功能变体,该蛋白酶切割P1-P1´ Gln-Gly对之间的肽键,其中易切断的键连接Gln与Gly (其中根据常用记号法,P1和P1´分别表示易切断的键的N-末端和C-末端侧的首个氨基酸)。若干小RNA病毒3C蛋白酶对P2’的Pro具有另外的优先选择性,其中P2’表示易切断的键的C-末端侧的第二个氨基酸。具有该底物特异性的酶典型地分离自肠道病毒(enterovirus)属的病毒,其目前包括柯萨奇病毒(Coxsackie virus)、埃可病毒(Echovirus)、肠道病毒、脊髓灰质炎病毒(Poliovirus)和鼻病毒。这样的小RNA病毒3C蛋白酶的非限制性实例有:人鼻病毒14型3C (HRV14 3C)蛋白酶,其具有序列GPNTEFALSLLRKNIMTITTSKGEFTGLGIHDRVCVIPTHAQPGDDVLVNGQKIRVKDKYKLVDPENINLELTVLTLDRNEKFRDIRGFISEDLEGVDATLVVHSNNFTNTILEVGPVTMAGLINLSSTPTNRMIRYDYATKTGQCGGVLCATGKIFGIHVGGNGRQGFSAQLKKQYFVEKQ (SEQ ID NO: 2);肠道病毒71 3C蛋白酶;柯萨奇病毒A16 3C蛋白酶;柯萨奇病毒B3 3C蛋白酶;豇豆花叶豇豆花叶病毒型小RNA病毒3C;和人脊髓灰质炎病毒3C蛋白酶。这些3C蛋白酶能够由大的融合蛋白释放在N-末端具有Gly-Pro的蛋白,且通常可通过具有在其自身的天然N-末端天然存在的Gly-Pro来鉴定。根据本发明,小RNA病毒3C蛋白酶可以是小RNA病毒科中天然存在的酶,但是其也可以是这样的酶的功能变体。功能变体的非限制性实例有天然存在的小RNA病毒3C蛋白酶的类似物、延伸或截短形式,该功能变体保留对于Gln-Gly对的底物特异性。 As used herein, "picornavirus 3C protease" is intended to mean a protease from the Picornaviridae family, including functional variants thereof, that cleaves the peptide bond between the P1-P1´ Gln-Gly pair, where the scissile bond Linking Gln to Gly (where P1 and P1′ represent the first amino acid on the N-terminal and C-terminal sides of the scissile bond, respectively, according to common notation). Several picornavirus 3C proteases have an additional preference for Pro at P2', where P2' represents the second amino acid on the C-terminal side of the scissile bond. Enzymes with this substrate specificity are typically isolated from viruses of the enterovirus genus, which currently includes Coxsackie viruses. virus), Echovirus, enterovirus, poliovirus, and rhinovirus.这样的小RNA病毒3C蛋白酶的非限制性实例有:人鼻病毒14型3C (HRV14 3C)蛋白酶,其具有序列GPNTEFALSLLRKNIMTITTSKGEFTGLGIHDRVCVIPTHAQPGDDVLVNGQKIRVKDKYKLVDPENINLELTVLTLDRNEKFRDIRGFISEDLEGVDATLVVHSNNFTNTILEVGPVTMAGLINLSSTPTNRMIRYDYATKTGQCGGVLCATGKIFGIHVGGNGRQGFSAQLKKQYFVEKQ (SEQ ID NO: 2); Enterovirus 71 3C protease; Coxsackievirus A16 3C protease; Coxsackievirus B3 3C protease; Coxsackie mosaic Vigna mosaic virus type picornavirus 3C; and human poliovirus 3C protease. These 3C proteases are capable of releasing proteins with Gly-Pro at the N-terminus from large fusion proteins and can often be identified by having a naturally occurring Gly-Pro at their own native N-terminus. According to the invention, the picornavirus 3C protease may be a naturally occurring enzyme in the picornaviridae family, but it may also be a functional variant of such an enzyme. Non-limiting examples of functional variants are analogues, extended or truncated forms of the naturally occurring picornavirus 3C protease, which functional variants retain substrate specificity for the Gln-Gly pair.
本文所用的“实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性”旨在意指,在表达条件、纯化条件、贮存条件和切割靶蛋白的前体的制造用途中,双功能融合蛋白酶不切割自身,或者仅以极慢的速率切割自身,而不阻碍其切割靶蛋白的前体的预期用途。 As used herein, "substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities" is intended to mean that, under expression conditions, purification conditions, storage conditions and manufacturing uses of precursors that cleave the target protein, The bifunctional fusion protease does not cleave itself, or cleaves itself only at a very slow rate, without hindering its intended use of cleaving the precursor of the target protein.
在一个实施方案中,通过双功能融合蛋白酶在制造条件下足够稳定用于切割靶蛋白的前体,来确定“实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性”。 In one embodiment, "substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities" is determined by the bifunctional fusion protease being sufficiently stable under the conditions of manufacture to cleave the precursor of the target protein .
在另一个实施方案中,确定所述实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性的融合蛋白酶,是通过所述双功能融合蛋白酶适合用于其预期用途确定。 In another embodiment, said fusion protease is determined to be substantially free of self-cleavage activity capable of impairing at least one of two proteolytic activities by determining that said bifunctional fusion protease is suitable for its intended use.
在另一个实施方案中,确定所述实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性的融合蛋白酶,是通过在以0.5 mg/mL浓度在1x PBS缓冲液, pH 7.4中于温度37℃孵育所述双功能融合蛋白酶3小时后至少50%的双功能融合蛋白酶是完整的来确定。 In another embodiment, determining said fusion protease that is substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities is performed at a concentration of 0.5 mg/mL in 1x PBS buffer, pH It is determined that at least 50% of the bifunctional fusion protease is intact after incubating the bifunctional fusion protease at a temperature of 37° C. for 3 hours in 7.4.
在另一个实施方案中,确定所述实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性的融合蛋白酶,是通过在以0.5 mg/mL浓度在1x PBS缓冲液, pH 7.4中于温度37℃孵育所述双功能融合蛋白酶3小时后双功能融合蛋白酶的至少50%的小RNA病毒3C蛋白酶活性和XaaProDAP活性是完整的来确定。 In another embodiment, determining said fusion protease that is substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities is performed at a concentration of 0.5 mg/mL in 1x PBS buffer, pH It is determined that at least 50% of the picornavirus 3C protease activity and XaaProDAP activity of the bifunctional fusion protease are intact after incubating the bifunctional fusion protease at a temperature of 37° C. for 3 hours in 7.4.
在另一个实施方案中,确定所述实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性的融合蛋白酶,是通过在以0.5 mg/mL浓度在1x PBS缓冲液, pH 7.4中于温度37℃孵育所述双功能融合蛋白酶3小时后双功能融合蛋白酶的至少80%的小RNA病毒3C蛋白酶活性和XaaProDAP活性是完整的来确定。 In another embodiment, determining said fusion protease that is substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities is performed at a concentration of 0.5 mg/mL in 1x PBS buffer, pH It is determined that at least 80% of the picornavirus 3C protease activity and XaaProDAP activity of the bifunctional fusion protease are intact after incubating the bifunctional fusion protease at a temperature of 37° C. for 3 hours in 7.4.
在另一个实施方案中,确定所述实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性的融合蛋白酶,是通过在以0.5 mg/mL浓度在1x PBS缓冲液, pH 7.4中于温度4℃孵育所述双功能融合蛋白酶24小时后双功能融合蛋白酶的至少50%的小RNA病毒3C蛋白酶活性和XaaProDAP活性是完整的来确定。 In another embodiment, determining said fusion protease that is substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities is performed at a concentration of 0.5 mg/mL in 1x PBS buffer, pH It is determined that at least 50% of the picornavirus 3C protease activity and XaaProDAP activity of the bifunctional fusion protease are intact after incubating the bifunctional fusion protease at a temperature of 4° C. for 24 hours in 7.4.
在另一个实施方案中,确定所述实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性的融合蛋白酶,是通过在以0.5 mg/mL浓度在1x PBS缓冲液, pH 7.4中于温度4℃孵育所述双功能融合蛋白酶24小时后双功能融合蛋白酶的至少80%的小RNA病毒3C蛋白酶活性和XaaProDAP活性是完整的来确定。本文所用的“成熟蛋白”旨在意指目标蛋白、肽或多肽或其延伸形式,该延伸形式可被XaaProDAP在其N-末端切割。成熟蛋白在其制造期间通常以融合蛋白存在,例如除了成熟蛋白之外还包含标签序列、任选的接头序列和小RNA病毒3C蛋白酶位点的蛋白。成熟蛋白的非限制性实例有胰高血糖素、PYY(3-36)、GLP-1(7-37)、Arg34-GLP1(7-37)、Arg34-GLP-1(9-37)和Arg34-GLP-1(11-37)。使用常用的氨基酸残基单字母缩写,例如,Arg34-GLP-1(7-37)是K34R-GLP-1(7-37) (亦称为GLP-1(7-37, K34R))。 In another embodiment, determining said fusion protease that is substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities is performed at a concentration of 0.5 mg/mL in 1x PBS buffer, pH It is determined that at least 80% of the picornavirus 3C protease activity and XaaProDAP activity of the bifunctional fusion protease are intact after incubating the bifunctional fusion protease at a temperature of 4° C. for 24 hours in 7.4. "Mature protein" as used herein is intended to mean a protein, peptide or polypeptide of interest, or an extended form thereof, which is cleavable at its N-terminus by XaaProDAP. Mature proteins typically exist as fusion proteins during their manufacture, eg, proteins comprising, in addition to the mature protein, a tag sequence, an optional linker sequence, and a picornavirus 3C protease site. Non-limiting examples of mature proteins are Glucagon, PYY(3-36), GLP-1(7-37), Arg34-GLP1(7-37), Arg34-GLP-1(9-37) and Arg34 - GLP-1(11-37). Commonly used single letter abbreviations for amino acid residues are used, eg, Arg34-GLP-1(7-37) is K34R-GLP-1(7-37) (also known as GLP-1(7-37, K34R)).
本文所用的"融合蛋白"旨在意指可通过包含编码至少两个不同蛋白的核苷酸序列的核酸分子表达的杂合蛋白。例如,融合蛋白可包含与具有目标药物活性的蛋白融合的标签蛋白。融合蛋白通常用于提高治疗蛋白的重组表达以及用于提高这样蛋白由细胞培养物的回收和纯化等。融合也可用于将两种不同酶活性组合到一种单一蛋白中。融合蛋白也可包含人工序列,例如接头序列。 As used herein, "fusion protein" is intended to mean a hybrid protein expressible by a nucleic acid molecule comprising nucleotide sequences encoding at least two different proteins. For example, a fusion protein may comprise a tag protein fused to a protein having a pharmaceutical activity of interest. Fusion proteins are commonly used to enhance recombinant expression of therapeutic proteins and to enhance the recovery and purification of such proteins from cell culture, among other things. Fusion can also be used to combine the activities of two different enzymes into a single protein. Fusion proteins may also contain artificial sequences, such as linker sequences.
本文所用的“融合蛋白酶”旨在意指可通过包含编码至少两个均具有蛋白水解活性的不同蛋白的核苷酸序列的核酸分子表达的杂合蛋白。例如,融合蛋白酶可包含两个不同的蛋白酶,例如内肽酶和外切蛋白酶。融合蛋白酶也可包含例如与两个蛋白水解性蛋白融合的标签蛋白。 As used herein, "fusion protease" is intended to mean a hybrid protein expressible by a nucleic acid molecule comprising nucleotide sequences encoding at least two different proteins each having proteolytic activity. For example, a fusion protease can comprise two different proteases, such as an endopeptidase and an exoprotease. A fusion protease may also comprise, for example, a tag protein fused to two proteolytic proteins.
在一个实施方案中,融合蛋白酶所包含的两个不同的蛋白表现出两种不同的蛋白水解活性。在另一个实施方案中,融合蛋白酶所包含的两个不同的蛋白是来源于不同生物体的蛋白酶或其功能变体。 In one embodiment, the two different proteins comprised by the fusion protease exhibit two different proteolytic activities. In another embodiment, the two different proteins comprised by the fusion protease are proteases or functional variants thereof derived from different organisms.
XaaProDAP蛋白酶具有包含经由大的蛋白环连接在一起的两个α螺旋的蛋白结构。该环暴露于蛋白的表面,因此易于被小RNA病毒3C蛋白酶切割,尤其是在该小RNA病毒3C蛋白酶和XaaProDAP包含在双功能融合蛋白酶中时。XaaProDAP的连接两个小的α-螺旋的环表示XaaProDAP蛋白酶中的高度保守区。在SEQ ID NO: 1中,环是跨越大约223 to 270的残基的子序列。本发明人发现,XaaProDAP在与HRV14 3C融合时是不稳定的,而这是由于241-242位的QG子序列的HRV14 3C切割所引起的。这是非常出乎意料的,因为该环并不包含作为常见的小RNA病毒3C蛋白酶切割位点的子序列。因此,通过使用将QG氨基酸取代成其他氨基酸(例如ET)的XaaProDAP 功能变体,解决了该问题。 The XaaProDAP protease has a protein structure comprising two alpha helices linked together by a large protein loop. This loop is exposed on the surface of the protein and is thus susceptible to cleavage by the picornavirus 3C protease, especially when the picornavirus 3C protease and XaaProDAP are contained in a bifunctional fusion protease. The loop of XaaProDAP connecting two small α-helices represents a highly conserved region among XaaProDAP proteases. In SEQ ID NO: 1, the loop is a subsequence spanning approximately 223 to 270 residues. The present inventors found that XaaProDAP is unstable when fused to HRV14 3C, which is caused by HRV14 3C cleavage of the QG subsequence at position 241-242. This was very unexpected since this loop does not contain a subsequence that is the cleavage site for the common picornavirus 3C protease. Therefore, this problem was solved by using functional variants of XaaProDAP that substituted the QG amino acid for other amino acids (eg ET).
本文所用的“融合伙伴蛋白”或“融合伙伴”旨在意指作为融合蛋白的一部分的蛋白,即融合蛋白所包含的至少两个蛋白中的一个。融合伙伴蛋白的非限制性实例有标签蛋白和增溶结构域,例如His6-标签、麦芽糖结合蛋白、硫氧还蛋白等。 As used herein, "fusion partner protein" or "fusion partner" is intended to mean a protein that is part of a fusion protein, ie one of at least two proteins comprised by the fusion protein. Non-limiting examples of fusion partner proteins are tag proteins and solubilizing domains, such as His6-tag, maltose binding protein, thioredoxin, and the like.
本文所用的“融合酶”旨在意指包含至少两个均为酶的蛋白的融合蛋白(意思是两个蛋白具有共价连接的骨架序列)。 As used herein, "fusion enzyme" is intended to mean a fusion protein comprising at least two proteins that are both enzymes (meaning that the two proteins have covalently linked backbone sequences).
本文所用的“标签蛋白”或“标签”旨在意指蛋白,其与另一个蛋白连接以促进或提高所述另一个蛋白的制造,例如促进或提高所述另一个蛋白的重组表达、回收和/或纯化。标签蛋白的非限制性实例有His6-标签、谷胱甘肽S-转移酶(GST)、麦芽糖结合蛋白(MBP)、金黄色葡萄球菌蛋白A、生物素化肽以及WO2006/108826和WO2008/043847中所述的来自嗜热细菌的高碱性蛋白。 "Tag protein" or "tag" as used herein is intended to mean a protein which is linked to another protein to facilitate or enhance the manufacture of said other protein, for example to facilitate or enhance recombinant expression, recovery and/or or purification. Non-limiting examples of tagged proteins are His6-tag, glutathione S-transferase (GST), maltose binding protein (MBP), S. aureus protein A, biotinylated peptides and WO2006/108826 and WO2008/043847 Highly basic proteins from thermophilic bacteria as described in .
本文所用的“标签序列”旨在意指包含蛋白的序列。标签序列还可任选包含额外的序列,例如接头序列。蛋白标签是遗传接枝到重组蛋白上的肽序列,其可通过化学试剂或通过酶方法(例如蛋白水解)除去。标签与蛋白连接用于多种目的,例如为了促进蛋白的表达或由细胞分泌、为了提高蛋白溶解性或为了助于蛋白的正确折叠。 "Tag sequence" as used herein is intended to mean a sequence comprising a protein. The tag sequence may also optionally comprise additional sequences, such as linker sequences. Protein tags are peptide sequences genetically grafted onto recombinant proteins that can be removed by chemical reagents or by enzymatic methods (eg, proteolysis). Tags are attached to proteins for a variety of purposes, such as to facilitate protein expression or secretion from cells, to improve protein solubility, or to facilitate proper protein folding.
本文所用的“接头”旨在意指通常用于促进融合蛋白的功能、折叠或表达的氨基酸序列。本领域技术人员已知,以融合酶形式存在的两个蛋白可能干扰彼此的酶活性,这是一种一般可通过在两个酶序列之间插入接头来消除或减少的相互作用。 As used herein, "linker" is intended to mean an amino acid sequence commonly used to facilitate the function, folding or expression of a fusion protein. It is known to those skilled in the art that two proteins in the form of a fusion enzyme may interfere with each other's enzymatic activity, an interaction that can generally be eliminated or reduced by inserting a linker between the two enzyme sequences.
本文所用的“类似物”旨在意指通过取代、缺失和/或添加另一个蛋白的一个或多个氨基酸残基而来源于该蛋白的蛋白。GLP-1(7-37)类似物的非限制性实例有残基34已取代为精氨酸残基的K34R-GLP-1(7-37)和残基34已取代为精氨酸残基且氨基酸残基7-8已缺失的K34R-GLP-1(9-37)(使用GLP-1肽的氨基酸残基的常用编号)。 As used herein, "analogue" is intended to mean a protein derived from another protein by substitution, deletion and/or addition of one or more amino acid residues of that protein. Non-limiting examples of GLP-1(7-37) analogs are K34R-GLP-1(7-37) with residue 34 replaced by an arginine residue and residue 34 replaced by an arginine residue K34R-GLP-1(9-37) with amino acid residues 7-8 deleted (using the usual numbering of amino acid residues for GLP-1 peptides).
本文所用的“功能变体”旨在意指某蛋白的化学变体,其具有改变的氨基酸序列,但是保留与原始蛋白基本上相同的功能。因此,功能变体通常是蛋白的修饰形式,其中视需要对修饰蛋白引入尽可能少的修饰以获得一些所需的性质,同时保留与原始蛋白基本上相同的功能。功能变体的非限制性实例例如有延伸蛋白、截短蛋白、融合蛋白和类似物。HRV14 3C功能变体的非限制性实例例如有带His6标签的HRV14 3C、带GST-标签的HRV14 3C和截短(例如为了不包含N-末端GP二肽)的HRV14 3C。GLP-1(7-37)的非限制性功能变体有K34R-GLP-1(7-37)。 As used herein, "functional variant" is intended to mean a chemical variant of a protein that has an altered amino acid sequence, but retains substantially the same function as the original protein. Thus, a functional variant is generally a modified form of a protein in which as few modifications as necessary are introduced into the modified protein to obtain some desired property while retaining substantially the same function as the original protein. Non-limiting examples of functional variants are e.g. elongated proteins, truncated proteins, fusion proteins and the like. Non-limiting examples of functional variants of HRV14 3C are eg His6-tagged HRV14 3C, GST-tagged HRV14 3C and truncated (eg to not contain the N-terminal GP dipeptide) HRV14 3C. A non-limiting functional variant of GLP-1(7-37) is K34R-GLP-1(7-37).
在一个实施方案中,蛋白的功能变体与所述蛋白相比包含1-2个氨基酸取代、缺失或添加。在另一个实施方案中,功能变体与所述蛋白相比包含1-5个氨基酸取代、缺失或添加。在另一个实施方案中,功能变体相对于对应的蛋白的天然存在的蛋白或天然存在的子序列包含1-15个氨基酸取代、缺失或添加。 In one embodiment, a functional variant of a protein comprises 1-2 amino acid substitutions, deletions or additions compared to said protein. In another embodiment, the functional variant comprises 1-5 amino acid substitutions, deletions or additions compared to said protein. In another embodiment, the functional variant comprises 1-15 amino acid substitutions, deletions or additions relative to the corresponding naturally occurring protein or naturally occurring subsequence of the protein.
本文所用的“增溶结构域”旨在意指蛋白,其是融合蛋白的一部分,且用于使所述融合蛋白与目标蛋白本身相比在特定条件下溶解性更高。增溶结构域的非限制性实例有DsbC (硫醇、二硫键互换蛋白)、WO2008/043847中所述的RL9 (核糖体蛋白L9)、MPB (麦芽糖结合蛋白)、NusA (转录终止/抗终止蛋白)和Trx(硫氧还蛋白)。 "Solubilization domain" as used herein is intended to mean a protein which is part of a fusion protein and which serves to render the fusion protein more soluble under specific conditions than the protein of interest itself. Non-limiting examples of solubilizing domains are DsbC (thiol, disulfide bond interchanger), RL9 (ribosomal protein L9), MPB (maltose binding protein), NusA (transcription termination/ antitermin) and Trx (thioredoxin).
本文所用的“酶处理”旨在意指使底物蛋白与催化至少一个涉及所述底物蛋白的反应的酶接触。一种常见的酶处理是使融合蛋白与具有蛋白水解活性的酶接触,以分离作为融合蛋白的组成的两个蛋白。 "Enzyme treatment" as used herein is intended to mean contacting a substrate protein with an enzyme that catalyzes at least one reaction involving said substrate protein. A common enzymatic treatment involves contacting the fusion protein with an enzyme with proteolytic activity to separate the two proteins that are constituents of the fusion protein.
根据本发明的第四方面,提供本发明的双功能融合蛋白酶用于由较大的肽或蛋白除去N-末端肽或蛋白以便获得具有预期的N-末端aa残基的成熟蛋白。所述较大的肽或蛋白通常是融合蛋白,其包含成熟蛋白和一个或多个用来促进蛋白的重组表达、正确折叠、纯化目的等的标签序列。 According to a fourth aspect of the present invention, there is provided a bifunctional fusion protease of the present invention for the removal of N-terminal peptides or proteins from larger peptides or proteins in order to obtain mature proteins with the expected N-terminal aa residues. The larger peptide or protein is typically a fusion protein comprising the mature protein and one or more tag sequences to facilitate recombinant expression of the protein, proper folding, purification purposes, and the like.
在一个实施方案中,所述较大的肽或蛋白与所述双功能融合蛋白酶在合适的反应条件下接触足够时间,以释放大多数的所述N-末端肽。反应条件例如可包括下述范围的pH:约6.0-约9.0、约7.0-约8.5、约7.5-约8.5、约8.0-约9.0或约6.0-约7.0。反应条件可包括下述范围的温度:约0℃-约50℃、约30℃-约37℃、约0℃-约15℃、约0℃-约10℃、约2℃-约10℃、约5℃-约15℃、约0℃-约5℃或约2℃-约8℃。在另一个实施方案中,反应条件包括范围为约pH 7.5-约pH 8.5的pH和范围为约4℃-约10℃的温度。在又一个实施方案中,反应条件包括范围为约1分钟-约3小时的反应时间。在又一个实施方案中,反应条件包括范围为约3小时-约24小时的反应时间。在又一个实施方案中,反应时间范围为约3小时-约24小时、约3小时-约16小时、约6小时-约24小时、约10小时-约16小时。在另一个实施方案中,反应条件包括水性介质,其包含磷酸缓冲盐水,例如50 mM磷酸钠+0.9%氯化钠。磷酸缓冲盐水(缩写为PBS)是常用的缓冲溶液,且典型地是水基盐溶液,包含磷酸钠、氯化钠和(在一些溶液中)氯化钾和磷酸钾。用于本发明中酶反应的典型的1x PBS 缓冲液是(8.05 mM Na2HPO4x2H2O, 1,96 mM KH2PO4, 140 mM NaCl, pH 7.4)。 In one embodiment, said larger peptide or protein is contacted with said bifunctional fusion protease under suitable reaction conditions for a time sufficient to release a majority of said N-terminal peptide. Reaction conditions can include, for example, a pH in the range of about 6.0 to about 9.0, about 7.0 to about 8.5, about 7.5 to about 8.5, about 8.0 to about 9.0, or about 6.0 to about 7.0. Reaction conditions may include temperatures ranging from about 0°C to about 50°C, from about 30°C to about 37°C, from about 0°C to about 15°C, from about 0°C to about 10°C, from about 2°C to about 10°C, From about 5°C to about 15°C, from about 0°C to about 5°C, or from about 2°C to about 8°C. In another embodiment, the reaction conditions include a pH ranging from about pH 7.5 to about pH 8.5 and a temperature ranging from about 4°C to about 10°C. In yet another embodiment, the reaction conditions include a reaction time ranging from about 1 minute to about 3 hours. In yet another embodiment, the reaction conditions include a reaction time ranging from about 3 hours to about 24 hours. In yet another embodiment, the reaction time ranges from about 3 hours to about 24 hours, from about 3 hours to about 16 hours, from about 6 hours to about 24 hours, from about 10 hours to about 16 hours. In another embodiment, the reaction conditions include an aqueous medium comprising phosphate buffered saline, eg, 50 mM sodium phosphate + 0.9% sodium chloride. Phosphate buffered saline (abbreviated PBS) is a commonly used buffered solution and is typically an aqueous based saline solution containing sodium phosphate, sodium chloride and (in some solutions) potassium chloride and potassium phosphate. A typical 1x PBS buffer used for the enzyme reaction in the present invention is (8.05 mM Na2HPO4x2H2O, 1,96 mM KH2PO4, 140 mM NaCl, pH 7.4).
其它可用于反应介质的缓冲液可为TRIS(三(羟基甲基)-氨基甲烷)或HEPES (4-(2-羟基乙基)-1-哌嗪乙磺酸)缓冲液。 Other buffers that can be used in the reaction medium may be TRIS (tris(hydroxymethyl)-aminomethane) or HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffers.
在另一个实施方案中,双功能融合蛋白酶与所述较大的肽或蛋白共表达,以在宿主细胞内表达期间体内释放目标蛋白。在另一个实施方案中,所述较大的肽或蛋白与所述双功能融合蛋白酶在从用于其表达的宿主细胞分离这两种蛋白之后接触。 In another embodiment, a bifunctional fusion protease is co-expressed with the larger peptide or protein for in vivo release of the protein of interest during expression in the host cell. In another embodiment, the larger peptide or protein is contacted with the bifunctional fusion protease after isolation of the two proteins from the host cell for their expression.
在另一个实施方案中,所述较大的肽或蛋白选自包含肽或蛋白,其包含选自下述的肽:GLP-1(胰高血糖素样肽 1)、胰高血糖素、肽YY (PYY)和淀粉样肽(amylin)以及它们的功能变体。 In another embodiment, said larger peptide or protein is selected from comprising peptides or proteins comprising a peptide selected from the group consisting of: GLP-1 (glucagon-like peptide 1), glucagon, peptide YY (PYY) and amyloid peptide (amylin) and their functional variants.
在又一个实施方案中,所述较大的肽或蛋白的大小少于200个氨基酸残基、少于150个氨基酸残基、少于100个残基或少于60个氨基酸残基。 In yet another embodiment, the larger peptide or protein is less than 200 amino acid residues, less than 150 amino acid residues, less than 100 amino acid residues, or less than 60 amino acid residues in size.
“施加物(application)”意指包含融合蛋白的样品,其被加到纯化柱上。 "Application" means a sample comprising a fusion protein that is applied to a purification column.
“流穿液(flow through)”意指含有宿主细胞蛋白和不与纯化柱结合的污染物的施加物部分。 "Flow through" means the portion of the application that contains host cell proteins and contaminants that do not bind to the purification column.
“主要峰”是指纯化色谱图中的峰,其具有最高的UV强度且含有融合蛋白。 "Major peak" refers to the peak in the purified chromatogram that has the highest UV intensity and contains the fusion protein.
“UV280强度”是以毫吸光度单位测量的在280nm波长处的吸光度,在该波长蛋白会吸收。 "UV280 intensity" is the absorbance measured in milliabsorbance units at a wavelength of 280 nm at which a protein absorbs.
“UV215”是以毫吸光度单位测量的在215nm波长处的吸光度,在该波长蛋白会吸收。 "UV215" is the absorbance measured in milliabsorbance units at a wavelength of 215 nm at which a protein absorbs.
“IPTG”是异丙基-ß-D-硫代吡喃型半乳糖苷。 "IPTG" is isopropyl-ß-D-thiogalactopyranoside.
TIC是总离子计数(Total Ion Count)。 TIC is Total Ion Count.
HPLC是高效液相色谱。 HPLC is High Performance Liquid Chromatography.
LC-MS是指液相色谱质谱。 LC-MS refers to Liquid Chromatography Mass Spectrometry.
“%纯度”定义为特定蛋白的量/(特定蛋白的量+污染物的量)X 100。 "% Purity" is defined as amount of specific protein/(amount of specific protein + amount of contaminant) X 100.
SDS-PAGE是十二烷基硫酸钠聚丙烯酰胺凝胶电流。 SDS-PAGE is sodium dodecyl sulfate polyacrylamide gel current.
根据本发明的第三方面,提供一种用于制备本发明的双功能融合蛋白酶的方法,其包括在宿主细胞中重组表达包含双功能融合蛋白酶的蛋白和随后分离双功能融合蛋白酶。 According to a third aspect of the present invention, there is provided a method for preparing the bifunctional fusion protease of the present invention, which comprises recombinantly expressing a protein comprising the bifunctional fusion protease in a host cell and subsequently isolating the bifunctional fusion protease.
在一个实施方案中,用于制备双功能融合蛋白酶的方法包括大肠杆菌作为所述宿主细胞。 In one embodiment, the method for preparing a bifunctional fusion protease includes Escherichia coli as the host cell.
在另一个实施方案中,用于制备双功能融合蛋白酶的方法包括将所述双功能融合蛋白酶分离为可溶性蛋白。 In another embodiment, the method for preparing a bifunctional fusion protease comprises isolating the bifunctional fusion protease into a soluble protein.
在另一个实施方案中,用于制备双功能融合蛋白酶的方法包括在不使用重折叠步骤的情况下将所述双功能融合蛋白酶分离为可溶性蛋白。 In another embodiment, the method for making a bifunctional fusion protease comprises isolating said bifunctional fusion protease into a soluble protein without using a refolding step.
在另一个实施方案中,用于制备双功能融合蛋白酶的方法包括具有实施方案2所示的式(I)的双功能融合蛋白酶,即所述小RNA病毒3C蛋白酶或其功能变体位于所述双功能融合蛋白酶的N-末端部分。 In another embodiment, the method for preparing a bifunctional fusion protease comprises a bifunctional fusion protease having the formula (I) shown in Embodiment 2, that is, the picornavirus 3C protease or a functional variant thereof is located in the N-terminal portion of a bifunctional fusion protease.
双功能融合蛋白酶可通过重组蛋白技术产生。通常,对克隆的野生型小RNA病毒3C蛋白酶和克隆的野生型XaaProDAP核酸序列或其功能变体进行修饰,以编码所需的融合蛋白。该修饰包括框内融合编码待表达为融合蛋白的两个以上蛋白的核酸序列。这样的融合蛋白可以是双功能融合蛋白酶,具有或不具有接头肽,以及双功能融合蛋白酶与标签融合,例如His-标签或增溶结构域(例如DsbC、RL9、MBP、NusA或Trx)。然后将该修饰序列插入表达载体,继而转化或转染到表达宿主细胞中。 Bifunctional fusion proteases can be produced by recombinant protein technology. Typically, the cloned wild-type picornavirus 3C protease and the cloned wild-type XaaProDAP nucleic acid sequence or functional variant thereof are modified to encode the desired fusion protein. Such modifications include in-frame fusion of nucleic acid sequences encoding two or more proteins to be expressed as fusion proteins. Such fusion proteins may be bifunctional fusion proteases, with or without a linker peptide, and bifunctional fusion proteases fused to a tag, such as a His-tag or a solubilizing domain (eg DsbC, RL9, MBP, NusA or Trx). The modified sequence is then inserted into an expression vector, and then transformed or transfected into an expression host cell.
编码双功能融合蛋白酶的核酸构建体可合适地为基因组、cDNA或合成来源。通过利用公知技术改变遗传密码来完成氨基酸序列改变。 The nucleic acid construct encoding the bifunctional fusion protease may suitably be of genomic, cDNA or synthetic origin. Amino acid sequence changes are accomplished by altering the genetic code using known techniques.
通常将编码双功能融合蛋白酶的DNA序列插入可为任何载体的重组载体,其可合宜地进行重组DNA程序,载体的选择常常取决于其所要引入的宿主细胞。因此,载体可为自主复制载体,即以染色体外实体存在的载体,其复制与染色体复制无关,例如质粒。备选地,载体可为下述载体:在引入宿主细胞中时,其被整合到宿主细胞基因组中,并与整合它的染色体一起复制。 Usually, the DNA sequence encoding the bifunctional fusion protease is inserted into any recombinant vector, which can conveniently carry out recombinant DNA procedures, and the choice of the vector often depends on the host cell into which it is to be introduced. Thus, a vector may be an autonomously replicating vector, ie a vector that exists as an extrachromosomal entity whose replication is independent of chromosomal replication, eg a plasmid. Alternatively, the vector may be a vector which, when introduced into a host cell, is integrated into the genome of the host cell and replicated together with the chromosome into which it has been integrated.
载体优选表达载体,其中编码双功能融合蛋白酶的DNA序列与DNA转录所需的另外的区段有效连接。术语“有效连接”表示区段的排列使得它们对于它们的预期目的协调地起作用,例如转录起始于启动子并行进穿过编码多肽的DNA序列,直到其终止于终止子。 The vector is preferably an expression vector in which the DNA sequence encoding the bifunctional fusion protease is operably linked to additional segments required for DNA transcription. The term "operably linked" denotes an arrangement of segments such that they function in harmony for their intended purpose, eg, transcription begins at a promoter and progresses through a DNA sequence encoding a polypeptide until it terminates at a terminator.
因此,用于表达双功能融合蛋白酶的表达载体会包含能够起始和指导克隆的基因或cDNA的转录的启动子。启动子可为任何DNA序列,其显示出所选宿主细胞中的转录活性,且可来源于编码对于宿主细胞而言或同源或异源的蛋白的基因。 Accordingly, expression vectors for expression of bifunctional fusion proteases will contain a promoter capable of initiating and directing transcription of the cloned gene or cDNA. The promoter may be any DNA sequence that exhibits transcriptional activity in the host cell of choice and may be derived from a gene encoding a protein either homologous or heterologous to the host cell.
此外,用于双功能融合蛋白酶的表达载体还会包含终止子序列,其是为宿主细胞识别以终止转录的序列。终止子序列与编码多肽的核酸序列的3’末端有效连接。任何在所选宿主细胞中有功能的终止子均可用于本发明。 In addition, expression vectors for bifunctional fusion proteases will also contain terminator sequences, which are sequences recognized by the host cell to terminate transcription. A terminator sequence is operably linked to the 3' end of a nucleic acid sequence encoding a polypeptide. Any terminator that is functional in the host cell of choice may be used in the present invention.
双功能融合蛋白酶的表达可瞄准宿主细胞的胞质溶质中的胞内表达,或被导向分泌途径,以胞外表达到培养基中。 The expression of the bifunctional fusion protease can be targeted for intracellular expression in the cytosol of the host cell, or directed to the secretory pathway to reach the culture medium extracellularly.
胞内表达是默认途径,要求表达载体具有DNA序列,其包含启动子,后为编码双功能融合蛋白酶多肽的DNA序列,然后是终止子。 Intracellular expression is the default route, requiring the expression vector to have a DNA sequence comprising a promoter, followed by a DNA sequence encoding a bifunctional fusion protease polypeptide, and then a terminator.
为了将双功能融合蛋白酶导向宿主细胞的分泌途径,需要分泌信号序列(亦被称为信号肽或前序列)作为双功能融合蛋白酶的N-末端延伸。将编码信号肽的DNA序列在正确的阅读框内连接至编码双功能融合蛋白酶的DNA序列的5’端。信号肽可以是通常与该蛋白连接的,或可来自编码另一个分泌性蛋白的基因。 In order to direct the bifunctional fusion protease to the secretory pathway of the host cell, a secretory signal sequence (also known as signal peptide or presequence) is required as an N-terminal extension of the bifunctional fusion protease. The DNA sequence encoding the signal peptide is connected to the 5' end of the DNA sequence encoding the bifunctional fusion protease in the correct reading frame. The signal peptide may be one normally associated with the protein, or may be from a gene encoding another secreted protein.
用于连接分别编码双功能融合蛋白酶、启动子、终止子和/或分泌信号序列的DNA序列的程序和用于将它们插入含有复制所必需的信息的合适载体中的程序均是本领域技术人员周知的(参见例如Sambrook等, Molecular Cloning:A Laboratory Manual, Cold Spring Harbor, New York, 1989)。 Procedures for ligating DNA sequences encoding bifunctional fusion proteases, promoters, terminators and/or secretion signal sequences, respectively, and for inserting them into suitable vectors containing the information necessary for replication are within the skill of the artisan Well known (see for example Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989).
引入编码双功能融合蛋白酶的DNA序列的宿主细胞可以是能够胞内或胞外表达双功能融合蛋白酶的任何细胞。如果需要翻译后修饰,那么合适的宿主细胞包括酵母、真菌、昆虫、和高等真核细胞,例如哺乳动物细胞。 The host cell into which the DNA sequence encoding the bifunctional fusion protease is introduced can be any cell capable of expressing the bifunctional fusion protease intracellularly or extracellularly. If post-translational modifications are desired, suitable host cells include yeast, fungi, insects, and higher eukaryotic cells, such as mammalian cells.
细菌表达bacterial expression
对于大肠杆菌中的表达,用于指导核酸构建体在细菌宿主细胞中转录的合适启动子实例有可获自以下的启动子:lac操纵子、trp操纵子及其杂合体trc和tac,均来自大肠杆菌(DeBoer 等, 1983, Pr oc eedings of the National Academy of Sciences USA 80:21-25)。用于大肠杆菌的其它甚至更强的启动子是来自T7和T5噬菌体的噬菌体启动子。T7启动子需要大肠杆菌宿主中存在T7聚合酶(Studier和Moffatt, J. Mol. Biol. 189, 113, (1986))。所有这些启动子受IPTG、乳糖或色氨酸诱导的调节,以在细菌生长期的策略性时间点起始转录。大肠杆菌还具有用于连续表达的强启动子,例如Dalbøge等, 1987, Biotechnology 5, 161-164中用于表达hGH的合成启动子。 For expression in E. coli , examples of suitable promoters for directing transcription of nucleic acid constructs in bacterial host cells are those available from the lac operon, trp operon and their hybrids trc and tac , all from Escherichia coli ( DeBoer et al ., 1983, Proceedings of the National Academy of Sciences USA 80:21-25). Other even stronger promoters for use in E. coli are the phage promoters from T7 and T5 phage. The T7 promoter requires the presence of T7 polymerase in the E. coli host (Studier and Moffatt, J. Mol. Biol. 189 , 113, (1986)). All of these promoters are regulated by IPTG, lactose or tryptophan induction to initiate transcription at strategic time points during bacterial growth. E. coli also has strong promoters for continuous expression, such as the synthetic promoter for expression of hGH in Dalbøge et al., 1987, Biotechnology 5 , 161-164.
对于杆菌(Bacillus)中的表达,合适的实例有来自以下的启动子:枯草芽孢杆菌(Bacillus subtilis)果聚糖蔗糖酶基因(sacB)、地衣芽孢杆菌(Bacillus licheniformis) α-淀粉酶基因(amyL)、嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)产麦芽糖淀粉酶基因(amyM)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens) α-淀粉酶基因(amyQ)、地衣芽孢杆菌青霉素酶基因(penP)、枯草芽孢杆菌xylA和xylB基因。更多的启动子见述于:"Useful proteins from recombinant bacteria (来自重组细菌的有用蛋白)", Scientific American, 1980, 242:74-94;和Sambrook等, 1989, 同上。 For expression in Bacillus , suitable examples are promoters from the following: Bacillus subtilis fructan sucrase gene ( sacB ), Bacillus licheniformis α-amylase gene ( amyL ), Bacillus stearothermophilus ( Bacillus stearothermophilus ) maltogenic amylase gene ( amyM ), Bacillus amyloliquefaciens ( Bacillus amyloliquefaciens ) α-amylase gene ( amyQ ), Bacillus licheniformis penicillinase gene ( penP ), Bacillus subtilis xylA and xylB genes. Further promoters are described in: "Useful proteins from recombinant bacteria", Scientific American , 1980, 242:74-94; and Sambrook et al., 1989, supra.
对于大肠杆菌,细菌宿主细胞的有效的信号肽编码区有获自下述基因的信号肽:DegP、OmpA、OmpF、OmpT、PhoA和内毒素STII,均来自大肠杆菌。对于杆菌,信号肽区获自杆菌NCIB 11837产麦芽糖淀粉酶、嗜热脂肪芽孢杆菌α-淀粉酶、地衣芽孢杆菌枯草杆菌蛋白酶、地衣芽孢杆菌β-内酰胺酶、嗜热脂肪芽孢杆菌中性蛋白酶(nprT、nprS、nprM)和枯草芽孢杆菌prsA。更多的信号肽见述于Simonen 和 Palva, 1993, Microbiological Reviews 57:109-137。对于大肠杆菌和杆菌二者,可根据算法SignalP (Nielsen 等, 1997, 蛋白 Eng. 10, 1-6., Emanuelsen 等, 2007, Nature Protocols 2, 953-971)中列出的规则从头产生信号肽。使信号序列适于给定环境,并检查SignalP评分。 For E. coli, effective signal peptide coding regions for bacterial host cells have signal peptides obtained from the following genes: DegP , OmpA , OmpF , OmpT , PhoA , and endotoxin STII, all from E. coli. For Bacillus, the signal peptide region was obtained from Bacillus NCIB 11837 maltogenic amylase, Bacillus stearothermophilus alpha-amylase, Bacillus licheniformis subtilisin, Bacillus licheniformis β-lactamase, Bacillus stearothermophilus neutropease (nprT, nprS, nprM) and Bacillus subtilis prsA. Further signal peptides are described in Simonen and Palva, 1993, Microbiological Reviews 57: 109-137. For both E. coli and Bacillus, signal peptides can be generated de novo according to the rules outlined in the algorithm SignalP (Nielsen et al., 1997, Protein Eng. 10 , 1-6., Emanuelsen et al., 2007, Nature Protocols 2 , 953-971) . Adapt the signal sequence to the given environment and check the SignalP score.
强转录终止子的实例有:Thiofusion表达系统中的天冬氨酸酶aspA、PET载体中的T7基因10终止子(Studier 等)和核糖体RNA基因rrnA、rrnD的终止子。 Examples of strong transcriptional terminators are the aspartase aspA in the Thiofusion expression system, the T7 gene 10 terminator in PET vectors (Studier et al.) and the terminators of the ribosomal RNA genes rrnA , rrnD .
优选表达宿主的实例有大肠杆菌K12 W3110、具有B, MC1061记号的大肠杆菌K12、和大肠杆菌B BL21 DE3,其通过用噬菌体进行溶源化而含有T7聚合酶。当用质粒转化以表达时,可用抗生素选择这些宿主。对于无抗生素选择,优选的宿主有例如具有下述缺失的大肠杆菌B BL21 DE3 3xKO:缺失2 D,L-丙氨酸消旋酶基因Δ alr、Δ dadX和缺失大肠杆菌B特有且常常与病原性质相关的II组荚膜基因簇Δ (kpsM-kpsF)。缺失II组基因簇使大肠杆菌B BL21 DE3 3xKO的安全类别与大肠杆菌K12相同。选择基于不需要D-丙氨酸,这是插入表达质粒中替代AmpR基因的alr基因所提供的。 Examples of preferred expression hosts are Escherichia coli K12 W3110, Escherichia coli K12 with B, MC1061 marker, and Escherichia coli B BL21 DE3, which contains T7 polymerase by lysogenization with bacteriophage. These hosts can be selected with antibiotics when transformed with plasmids for expression. For antibiotic-free selection, preferred hosts are e.g. E. coli B BL21 DE3 3xKO with deletions of the 2 D,L-alanine racemase genes Δalr , ΔdadX and deletions unique to E. coli B and often associated with the pathogen Property-related group II capsular gene cluster Δ (kpsM-kpsF) . Deletion of the group II gene cluster made the safety category of E. coli B BL21 DE3 3xKO the same as that of E. coli K12. The selection was based on not requiring D-alanine, provided by the alr gene inserted in the expression plasmid in place of the AmpR gene.
一旦在宿主生物体中表达了双功能融合蛋白酶,可通过常规技术将其回收并纯化至所需的纯度。这种常规的回收和纯化技术的非限制性实例有离心、溶解、过滤、沉淀、离子交换色谱、固定化金属亲和色谱(IMAC)、RP-HPLC、凝胶过滤和冷冻干燥。 Once the bifunctional fusion protease is expressed in the host organism, it can be recovered and purified to the desired purity by conventional techniques. Non-limiting examples of such conventional recovery and purification techniques are centrifugation, dissolution, filtration, precipitation, ion exchange chromatography, immobilized metal affinity chromatography (IMAC), RP-HPLC, gel filtration and freeze drying.
重组表达和纯化HRV14 3C的实例可见于例如:Cordingley 等, J. Virol. 1989, 63, pp5037-5045;Birch 等, Protein Expr Purif., 1995, 6, pp609-618;和WO2008/043847。 Examples of recombinant expression and purification of HRV14 3C can be found eg in: Cordingley et al., J. Virol. 1989, 63, pp5037-5045; Birch et al., Protein Expr Purif., 1995, 6, pp609-618; and WO2008/043847.
由乳酸乳球菌进行XaaProDAP的微生物表达和纯化的实例可见于例如:Chich 等, Anal. Biochem, 1995, 224, pp 245-249;和Xin 等, Protein Expr. Purif. 2002, 24, pp530-538。 Examples of microbial expression and purification of XaaProDAP by Lactococcus lactis can be found eg in: Chich et al., Anal. Biochem, 1995, 224, pp 245-249; and Xin et al., Protein Expr. Purif. 2002, 24, pp530-538.
本发明进一步通过下述非限制性实施方案说明: The invention is further illustrated by the following non-limiting embodiments:
1. 双功能融合酶,其包含小RNA病毒3C蛋白酶和XaaProDAP的催化结构域。 1. A bifunctional fusion enzyme comprising the catalytic domain of picornavirus 3C protease and XaaProDAP.
2. 实施方案1的双功能融合蛋白酶,其包含下式的蛋白蛋白: 2. The bifunctional fusion protease of embodiment 1, it comprises the proteoprotein of following formula:
X-Y-Z (I) 或 Z-Y-X (II) X-Y-Z (I) or Z-Y-X (II)
其中 in
X是小RNA病毒3C蛋白酶或其功能变体; X is a picornavirus 3C protease or a functional variant thereof;
Y是任选的接头; Y is an optional linker;
Z是Xaa-Pro-二肽基氨肽酶(XaaProDAP)或其功能变体; Z is Xaa-Pro-dipeptidyl aminopeptidase (XaaProDAP) or a functional variant thereof;
其中所述融合蛋白酶实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性。 Wherein said fusion protease has substantially no self-cleavage activity capable of impairing at least one of the two proteolytic activities.
3. 实施方案1-2中任一项的双功能融合蛋白酶,其具有式(I),即所述小RNA病毒3C蛋白酶或其功能变体位于所述双功能融合蛋白酶的N-末端部分。 3. The bifunctional fusion protease according to any one of embodiments 1-2, which has formula (I), that is, the picornavirus 3C protease or its functional variant is located at the N-terminal part of the bifunctional fusion protease.
4. 实施方案1-3中任一项的双功能融合蛋白酶,其中X是鼻病毒蛋白酶或其功能变体。 4. The bifunctional fusion protease of any one of embodiments 1-3, wherein X is a rhinovirus protease or a functional variant thereof.
5. 实施方案1-3中任一项的双功能融合蛋白酶,其中X是小RNA病毒蛋白酶或其功能变体。 5. The bifunctional fusion protease of any one of embodiments 1-3, wherein X is a picornavirus protease or a functional variant thereof.
6. 实施方案1-4中任一项的双功能融合蛋白酶,其中X是HRV14 3C或其功能变体。 6. The bifunctional fusion protease according to any one of embodiments 1-4, wherein X is HRV14 3C or a functional variant thereof.
7. 实施方案1-6中任一项的双功能融合蛋白酶,其中X包含SEQ ID NO:2或其功能变体。 7. The bifunctional fusion protease according to any one of embodiments 1-6, wherein X comprises SEQ ID NO: 2 or a functional variant thereof.
8. 实施方案5-6中任一项的双功能融合蛋白酶,其中X是X1选自除了P之外的遗传编码氨基酸残基的P2X1 – SEQ ID NO:2或G1P – SEQ ID NO:2或者其功能变体。 8. The bifunctional fusion protease according to any one of embodiments 5-6, wherein X is X selected from P2X1 - SEQ ID NO:2 or G1P-SEQ ID NO: of genetically encoded amino acid residues other than P 2 or a functional variant thereof.
9. 实施方案5-6中任一项的双功能融合蛋白酶,其中X是CVB3 3C或其功能变体。 9. The bifunctional fusion protease according to any one of embodiments 5-6, wherein X is CVB3 3C or a functional variant thereof.
10. 实施方案5的双功能融合蛋白酶,其中X包含SEQ ID NO:23或其功能变体。 10. The bifunctional fusion protease of embodiment 5, wherein X comprises SEQ ID NO: 23 or a functional variant thereof.
11. 实施方案1-10中任一项的双功能融合蛋白酶,其中X是C-末端截短的功能性小RNA病毒3C蛋白酶或其功能变体。 11. The bifunctional fusion protease according to any one of embodiments 1-10, wherein X is a C-terminal truncated functional picornavirus 3C protease or a functional variant thereof.
12. 实施方案11的双功能融合蛋白酶,其中所述C-末端截短的功能性小RNA病毒3C蛋白酶截短了不多于20个氨基酸残基,例如不多于10个氨基酸残基,例如不多于5个氨基酸残基,例如不多于2个氨基酸残基。 12. The bifunctional fusion protease of embodiment 11, wherein the C-terminal truncated functional picornavirus 3C protease is truncated by no more than 20 amino acid residues, such as by no more than 10 amino acid residues, such as No more than 5 amino acid residues, such as no more than 2 amino acid residues.
13. 实施方案1-12中任一项的双功能融合蛋白酶,其中X是来自选自以下的病毒的酶:肠道病毒、柯萨奇病毒、埃可病毒、豇豆花叶豇豆花叶病毒、鼻病毒和脊髓灰质炎病毒,或者其功能变体。 13. The bifunctional fusion protease of any one of embodiments 1-12, wherein X is an enzyme from a virus selected from the group consisting of enterovirus, coxsackie virus, echovirus, cowpea mosaic cowpea mosaic virus, Rhinoviruses and polioviruses, or functional variants thereof.
14. 实施方案1-13中任一项的双功能融合蛋白酶,其中Z是E.C. 3.4.14.11酶或其功能变体。 14. The bifunctional fusion protease according to any one of embodiments 1-13, wherein Z is the E.C. 3.4.14.11 enzyme or a functional variant thereof.
15. 实施方案14的双功能融合蛋白酶,其中Z是来自乳酸细菌的酶或其功能变体。 15. The bifunctional fusion protease of embodiment 14, wherein Z is an enzyme from lactic acid bacteria or a functional variant thereof.
16. 实施方案15的双功能融合蛋白酶,其中Z是来自乳球菌(Lact ococ cus spp.)、链球菌(Streptococcus spp.)、乳杆菌(Lactobacillus spp.)、双歧杆菌(Bifidobacterium spp.)的酶或其功能变体。 16. The bifunctional fusion protease of embodiment 15, wherein Z is derived from Lactococcus spp . , Streptococcus spp. , Lactobacillus spp. , Bifidobacterium spp. Enzymes or functional variants thereof.
17. 实施方案1-16中任一项的双功能融合蛋白酶,其中Z是SEQ ID NO:1或其功能变体。 17. The bifunctional fusion protease according to any one of embodiments 1-16, wherein Z is SEQ ID NO: 1 or a functional variant thereof.
18. 实施方案 1-14中任一项的双功能融合蛋白酶,其中Z是来自Bacillus spp.的酶或其功能变体。 18. The bifunctional fusion protease according to any one of embodiments 1-14, wherein Z is an enzyme from Bacillus spp . or a functional variant thereof.
19. 实施方案1-16中任一项的双功能融合蛋白酶,其中Z是来自Strept ococ cus suis的酶或其功能变体。 19. The bifunctional fusion protease of any one of embodiments 1-16, wherein Z is an enzyme from Strept ococ cus suis or a functional variant thereof.
20. 实施方案 17的双功能融合蛋白酶,其中Z是SEQ ID NO: 24或其功能变体。 20. The bifunctional fusion protease of embodiment 17, wherein Z is SEQ ID NO: 24 or a functional variant thereof.
21. 实施方案1-17中任一项的双功能融合蛋白酶,其中Z是来自乳酸乳球菌的酶或其功能变体。 21. The bifunctional fusion protease according to any one of embodiments 1-17, wherein Z is an enzyme from Lactococcus lactis or a functional variant thereof.
22. 实施方案1-13中任一项的双功能融合蛋白酶,其中所述Z是E.C. 3.4.14.5酶或其功能变体。 22. The bifunctional fusion protease of any one of embodiments 1-13, wherein said Z is an E.C. 3.4.14.5 enzyme or a functional variant thereof.
23. 实施方案1-22中任一项的双功能融合蛋白酶,其中Z是具有暴露的连接两个α-螺旋的环的蛋白。 23. The bifunctional fusion protease according to any one of embodiments 1-22, wherein Z is a protein with an exposed loop connecting two α-helices.
24. 实施方案23的双功能融合蛋白酶,其中所述环不包含任何QG子序列。 24. The bifunctional fusion protease of embodiment 23, wherein said loop does not comprise any QG subsequences.
25. 实施方案23-24中任一项的双功能融合蛋白酶,其中所述环不包含下述子序列中的任一个:QS、QI、QN、QA和QT。 25. The bifunctional fusion protease according to any one of embodiments 23-24, wherein said loop does not comprise any of the following subsequences: QS, QI, QN, QA, and QT.
26. 实施方案23-25中任一项的双功能融合蛋白酶,其中所述环是跨越SEQ ID NO: 1中氨基酸残基223-270的序列。 26. The bifunctional fusion protease according to any one of embodiments 23-25, wherein said loop is a sequence spanning amino acid residues 223-270 in SEQ ID NO: 1 .
27. 实施方案23-26中任一项的双功能融合蛋白酶,其中所述环是XaaProDAP中对应于SEQ ID NO: 1中跨越氨基酸残基223-270的序列的序列。 27. The bifunctional fusion protease according to any one of embodiments 23-26, wherein said loop is a sequence in XaaProDAP corresponding to the sequence spanning amino acid residues 223-270 in SEQ ID NO: 1 .
28. 实施方案23-27中任一项的双功能融合蛋白酶,其中所述环是与跨越SEQ ID NO: 1中氨基酸残基223-270的残基的序列具有至少70%氨基酸同一性的序列。 28. The bifunctional fusion protease according to any one of embodiments 23-27, wherein said loop is a sequence having at least 70% amino acid identity to a sequence spanning residues 223-270 of amino acid residues in SEQ ID NO: 1 .
29. 实施方案1-28中任一项的双功能融合蛋白酶,其中Z包含不多于1个的QG子序列。 29. The bifunctional fusion protease of any one of embodiments 1-28, wherein Z comprises no more than 1 QG subsequence.
30. 实施方案1-29中任一项的双功能融合蛋白酶,其中Z不包含任何QG子序列。 30. The bifunctional fusion protease of any one of embodiments 1-29, wherein Z does not comprise any QG subsequences.
31. 实施方案1-17中任一项的双功能融合蛋白酶,其中Z包含Q241-G242中氨基酸残基的至少1个取代、添加或缺失。 31. The bifunctional fusion protease according to any one of embodiments 1-17, wherein Z comprises at least 1 substitution, addition or deletion of amino acid residues in Q241-G242.
32. 实施方案31的双功能融合蛋白酶,其中Z包含取代Q241E、G242T。 32. The bifunctional fusion protease of embodiment 31, wherein Z comprises the substitutions Q241E, G242T.
33. 实施方案1-32中任一项的双功能融合蛋白酶,其中所述融合蛋白酶中N-末端起第2个氨基酸残基不是P。 33. The bifunctional fusion protease according to any one of embodiments 1-32, wherein the second amino acid residue from the N-terminus in the fusion protease is not P.
34. 实施方案1-33中任一项的双功能融合蛋白酶,其中所述融合蛋白酶中N-末端起第2个氨基酸残基不是G、A和T。 34. The bifunctional fusion protease according to any one of embodiments 1-33, wherein the second amino acid residue from the N-terminus in the fusion protease is not G, A and T.
35. 实施方案1-33中任一项的双功能融合蛋白酶,其中所述融合蛋白酶的N-末端具有氨基酸序列MX1P,其中X1是使MX1P序列为甲硫氨酸氨肽酶的差底物的氨基酸。 35. The bifunctional fusion protease according to any one of embodiments 1-33, wherein the N-terminus of the fusion protease has the amino acid sequence MX 1 P, wherein X 1 is an aminopeptidase such that the MX 1 P sequence is methionine Amino acids that are poor substrates.
36. 实施方案1-34中任一项的双功能融合蛋白酶,其中所述双功能 融合蛋白酶的N-末端氨基酸残基是P。 36. The bifunctional fusion protease according to any one of embodiments 1-34, wherein the N-terminal amino acid residue of said bifunctional fusion protease is P.
37. 实施方案36的双功能融合蛋白酶,其中所述融合蛋白酶中N-末端起第2个氨基酸残基不是P、G、A或T。 37. The bifunctional fusion protease of embodiment 36, wherein the second amino acid residue from the N-terminus in the fusion protease is not P, G, A or T.
38. 实施方案1-37中任一项的双功能融合蛋白酶,其不包含接头Y。 38. The bifunctional fusion protease of any one of embodiments 1-37, which does not comprise a linker Y.
39. 实施方案1-37中任一项的双功能融合蛋白酶,其包含接头Y。 39. The bifunctional fusion protease of any one of embodiments 1-37, comprising a linker Y.
40. 实施方案39的双功能融合蛋白酶,其中所述接头Y的长度为2-100个氨基酸残基。 40. The bifunctional fusion protease of embodiment 39, wherein said linker Y is 2-100 amino acid residues in length.
41. 实施方案39-40中任一项的双功能融合蛋白酶,其中所述接头Y的长度为2-50个氨基酸残基。 41. The bifunctional fusion protease according to any one of embodiments 39-40, wherein said linker Y is 2-50 amino acid residues in length.
42. 实施方案39-41中任一项的双功能融合蛋白酶,其中所述接头Y的长度为2-25个氨基酸残基。 42. The bifunctional fusion protease according to any one of embodiments 39-41, wherein said linker Y is 2-25 amino acid residues in length.
43. 实施方案39-42中任一项的双功能融合蛋白酶,其中所述接头Y的长度为2-15个氨基酸残基。 43. The bifunctional fusion protease according to any one of embodiments 39-42, wherein said linker Y is 2-15 amino acid residues in length.
44. 实施方案39-41中任一项的双功能融合蛋白酶,其中Y的长度为约5-约50个氨基酸残基。 44. The bifunctional fusion protease of any one of embodiments 39-41, wherein Y is about 5 to about 50 amino acid residues in length.
45. 实施方案38-39中任一项的双功能融合蛋白酶,其中Y的长度为约5-约15个氨基酸残基。 45. The bifunctional fusion protease of any one of embodiments 38-39, wherein Y is about 5 to about 15 amino acid residues in length.
46. 实施方案39-45中任一项的双功能融合蛋白酶,其中Y不包含Cys残基。 46. The bifunctional fusion protease according to any one of embodiments 39-45, wherein Y does not comprise a Cys residue.
47. 实施方案39-46中任一项的双功能融合蛋白酶,其中Y不包含Gln残基。 47. The bifunctional fusion protease according to any one of embodiments 39-46, wherein Y does not comprise a Gln residue.
48. 实施方案39-47中任一项的双功能融合蛋白酶,其中Y仅包含下述氨基酸残基:G、S、A、L、P和T。 48. The bifunctional fusion protease according to any one of embodiments 39-47, wherein Y comprises only the following amino acid residues: G, S, A, L, P and T.
49. 实施方案39-48中任一项的双功能融合蛋白酶,其中Y选自SEQ ID NO: 3、4和12。 49. The bifunctional fusion protease according to any one of embodiments 39-48, wherein Y is selected from SEQ ID NO: 3, 4 and 12.
50. 实施方案1-49中任一项的双功能融合蛋白酶,其是式(I),即所述小RNA病毒3C蛋白酶或其功能变体位于所述双功能融合蛋白酶的N-末端部分。 50. The bifunctional fusion protease according to any one of embodiments 1-49, which is of formula (I), ie the picornavirus 3C protease or a functional variant thereof is located at the N-terminal portion of the bifunctional fusion protease.
51. 实施方案50的双功能融合蛋白酶,其中X不具有C-末端氨基酸残基Q。 51. The bifunctional fusion protease of embodiment 50, wherein X does not have the C-terminal amino acid residue Q.
52. 实施方案1-49中任一项的双功能融合蛋白酶,其是式(II),即所述小RNA病毒3C蛋白酶或其功能变体位于所述双功能融合蛋白酶的C-末端部分。 52. The bifunctional fusion protease according to any one of embodiments 1-49, which is of formula (II), ie the picornavirus 3C protease or a functional variant thereof is located at the C-terminal portion of the bifunctional fusion protease.
53. 实施方案1-52中任一项的双功能融合蛋白酶,其包含与N-末端连接的标签蛋白。 53. The bifunctional fusion protease of any one of embodiments 1-52, comprising a tag protein linked to the N-terminus.
54. 实施方案53的双功能融合蛋白酶,其中所述标签蛋白选自His-标签、增溶结构域和带His-标签的增溶结构域。 54. The bifunctional fusion protease according to embodiment 53, wherein said tag protein is selected from the group consisting of a His-tag, a solubilization domain, and a His-tag solubilization domain.
55. 实施方案1-54中任一项的双功能融合蛋白酶,其中所述功能变体相对于对应的天然存在的蛋白或天然存在的子序列包含:1-2个氨基酸取代、缺失或添加,或1-5个氨基酸取代、缺失或添加,或1-15个氨基酸取代、缺失或添加。 55. The bifunctional fusion protease according to any one of embodiments 1-54, wherein said functional variant comprises: 1-2 amino acid substitutions, deletions or additions relative to the corresponding naturally occurring protein or naturally occurring subsequence, Or 1-5 amino acid substitutions, deletions or additions, or 1-15 amino acid substitutions, deletions or additions.
56. 实施方案1-55中任一项的双功能融合蛋白酶,其中确定所述实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性的融合蛋白酶,是通过所述双功能融合蛋白酶适合用于其预期用途确定。 56. The bifunctional fusion protease according to any one of embodiments 1-55, wherein said fusion protease is determined to be substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities by said bifunctional fusion protease Functional fusion proteases suitable for their intended use are determined.
57. 实施方案1-55中任一项的双功能融合蛋白酶,其中确定所述实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性的融合蛋白酶,是通过在以0.5 mg/mL浓度在1x PBS缓冲液, pH 7.4中于温度37℃孵育所述双功能融合蛋白酶3小时后至少50%的双功能融合蛋白酶是完整的来确定。 57. The bifunctional fusion protease according to any one of embodiments 1-55, wherein said fusion protease is determined to be substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities by measuring The mg/mL concentration was determined when at least 50% of the bifunctional fusion protease was intact after incubating the bifunctional fusion protease in 1x PBS buffer, pH 7.4 at a temperature of 37°C for 3 hours.
58. 实施方案1-55中任一项的双功能融合蛋白酶,其中确定所述实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性的融合蛋白酶,是通过在以0.5 mg/mL浓度在1x PBS缓冲液, pH 7.4中于温度37℃孵育所述双功能融合蛋白酶3小时后双功能融合蛋白酶的至少50%的小RNA病毒3C蛋白酶活性和XaaProDAP活性是完整的来确定。 58. The bifunctional fusion protease according to any one of embodiments 1-55, wherein said fusion protease is determined to be substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities by measuring The mg/mL concentration was determined by incubating the bifunctional fusion protease in 1x PBS buffer, pH 7.4 at a temperature of 37°C for 3 hours after at least 50% of the picornavirus 3C protease activity and XaaProDAP activity of the bifunctional fusion protease were intact .
59. 实施方案58的双功能融合蛋白酶,其中在以0.5 mg/mL浓度在1x PBS缓冲液, pH 7.4中于温度37℃孵育所述双功能融合蛋白酶3小时后双功能融合蛋白酶的至少80%的小RNA病毒3C蛋白酶活性和XaaProDAP活性是完整的。 59. The bifunctional fusion protease of embodiment 58, wherein at least 80% of the bifunctional fusion protease is present after incubating said bifunctional fusion protease at a temperature of 37°C for 3 hours at a concentration of 0.5 mg/mL in 1x PBS buffer, pH 7.4 The picornavirus 3C protease activity and XaaProDAP activity are intact.
60. 实施方案1-55中任一项的双功能融合蛋白酶,其中确定所述实质上不具有能够损害两种蛋白水解活性中的至少一种的自我切割活性的融合蛋白酶,是通过在以0.5 mg/mL浓度在1x PBS缓冲液, pH 7.4中于温度4℃孵育所述双功能融合蛋白酶24小时后双功能融合蛋白酶的至少50%的小RNA病毒3C蛋白酶活性和XaaProDAP活性是完整的来确定。 60. The bifunctional fusion protease according to any one of embodiments 1-55, wherein said fusion protease is determined to be substantially free of self-cleavage activity capable of impairing at least one of the two proteolytic activities by performing the fusion at 0.5 The mg/mL concentration was determined by incubating the bifunctional fusion protease in 1x PBS buffer, pH 7.4 at a temperature of 4°C for 24 hours after at least 50% of the picornavirus 3C protease activity and XaaProDAP activity of the bifunctional fusion protease were intact .
61. 实施方案 60的双功能融合蛋白酶,其中在以0.5 mg/mL浓度在1x PBS缓冲液, pH 7.4中于温度4℃孵育所述双功能融合蛋白酶24小时后双功能融合蛋白酶的至少80%的小RNA病毒3C蛋白酶活性和XaaProDAP活性是完整的。 61. The bifunctional fusion protease of embodiment 60, wherein at least 80% of the bifunctional fusion protease is present after incubating said bifunctional fusion protease at a temperature of 4° C. for 24 hours at a concentration of 0.5 mg/mL in 1× PBS buffer, pH 7.4 The picornavirus 3C protease activity and XaaProDAP activity are intact.
62. 用于制备实施方案1-61中任一项的双功能融合蛋白酶的方法,其包括在宿主细胞中重组表达包含双功能融合蛋白酶的蛋白和随后分离双功能融合蛋白酶。 62. A method for preparing the bifunctional fusion protease of any one of embodiments 1-61, comprising recombinantly expressing a protein comprising the bifunctional fusion protease in a host cell and subsequently isolating the bifunctional fusion protease.
63. 实施方案62的方法,其中所述宿主细胞是大肠杆菌。 63. The method of embodiment 62, wherein the host cell is E. coli.
64. 实施方案62-63中任一项的方法,其中所述双功能融合蛋白酶分离为可溶性蛋白。 64. The method of any one of embodiments 62-63, wherein the bifunctional fusion protease is isolated as a soluble protein.
65. 实施方案62-64中任一项的方法,其中所述双功能融合蛋白酶在使用重折叠步骤的情况下分离为可溶性蛋白。 65. The method of any one of embodiments 62-64, wherein the bifunctional fusion protease is isolated as a soluble protein using a refolding step.
66. 实施方案62-65中任一项的方法,其中所述双功能融合蛋白酶具有实施方案2所示的式(I),即所述小RNA病毒3C蛋白酶或其功能变体位于所述双功能融合蛋白酶的N-末端部分。 66. The method according to any one of embodiments 62-65, wherein the bifunctional fusion protease has the formula (I) shown in embodiment 2, that is, the picornavirus 3C protease or a functional variant thereof is located in the bifunctional fusion protease N-terminal part of functional fusion protease.
67. 实施方案1-66中任一项的双功能融合蛋白酶用于由较大的肽或蛋白除去N-末端肽或蛋白的用途。 67. Use of the bifunctional fusion protease of any one of embodiments 1-66 for the removal of N-terminal peptides or proteins from larger peptides or proteins.
68. 实施方案67的用途,其中所述较大的肽或蛋白与所述双功能融合蛋白酶在合适的反应条件下接触足够时间,以释放大多数的所述N-末端肽。 68. The use of embodiment 67, wherein said larger peptide or protein is contacted with said bifunctional fusion protease under suitable reaction conditions for a time sufficient to release a majority of said N-terminal peptide.
69. 实施方案67-68中任一项的用途,其中双功能融合蛋白酶与所述较大的肽或蛋白共表达,以在宿主细胞内表达期间体内释放目标蛋白。 69. The use according to any one of embodiments 67-68, wherein the bifunctional fusion protease is co-expressed with said larger peptide or protein for in vivo release of the protein of interest during expression in the host cell.
70. 实施方案67-68中任一项的用途,其中所述较大的肽或蛋白与所述双功能融合蛋白酶在从用于其表达的宿主细胞分离这两种蛋白之后接触。 70. The use according to any one of embodiments 67-68, wherein said larger peptide or protein is contacted with said bifunctional fusion protease after isolation of the two proteins from the host cell used for their expression.
71. 实施方案67-70中任一项的用途,其中所述较大的肽或蛋白选自肽或蛋白,其包含选自以下的肽:GLP-1、胰高血糖素、PYY、淀粉样肽以及它们的功能变体。 71. The use of any one of embodiments 67-70, wherein the larger peptide or protein is selected from a peptide or protein comprising a peptide selected from: GLP-1, glucagon, PYY, amyloid Peptides and their functional variants.
72. 实施方案67-71中任一项的用途,其中所述较大的肽或蛋白的大小少于200个氨基酸残基、少于150个氨基酸残基、少于100个残基或少于60个氨基酸残基。 72. The use of any one of embodiments 67-71, wherein the larger peptide or protein is less than 200 amino acid residues, less than 150 amino acid residues, less than 100 residues, or less than 60 amino acid residues.
实施例 Example
实施例Example 11
HRV14/XaaProDAPHRV14/XaaProDAP 或or XaaProDAP/HRV14XaaProDAP/HRV14 变体的质粒构建体和表达Plasmid construction and expression of variants
pET系统用于表达酶,因为该系统提供强有力的在大肠杆菌中表达蛋白的方法。在pET载体中,在强的噬菌体T7转录和释放信号控制下克隆靶基因,并通过在宿主细胞中提供T7 RNA聚合酶来源诱导表达。 The pET system was used to express enzymes because this system provides a robust method of expressing proteins in E. coli. In pET vectors, target genes are cloned under the control of strong phage T7 transcription and release signals, and expression is induced by providing a source of T7 RNA polymerase in the host cell.
大肠杆菌表达质粒(pET22b, Novagen)编码包含HRV14 3C和乳酸乳球菌XaaProDAP序列的融合物的双功能融合蛋白酶。在一组构建体中,HRV14 3C部分位于XaaProDAP序列的N-末端,使用间插的接头GGSGGSGGS (SEQ ID NO: 3 )分开这两个结构域(表1)。 The E. coli expression plasmid (pET22b, Novagen) encodes a bifunctional fusion protease comprising a fusion of HRV14 3C and L. lactis XaaProDAP sequences. In one set of constructs, the HRV14 3C portion was located at the N-terminus of the XaaProDAP sequence using an intervening linker GGSGGSGGS (SEQ ID NO: 3 ) separates the two domains (Table 1).
表 1. 编码NH2-HRV14 3C-XaaProDAP-COOH融合蛋白酶的pET22b质粒构建体 Table 1. pET22b plasmid construct encoding NH2-HRV14 3C-XaaProDAP-COOH fusion protease
在另一组编码融合蛋白酶的质粒中,HRV14 3C部分置于XaaProDAP序列的C-末端,其中间插的接头GSSGSGGSG (SEQ ID NO: 4)分开这两个结构域。 In another set of plasmids encoding fusion proteases, the HRV14 3C portion was placed C-terminal to the XaaProDAP sequence with an intervening linker GSSGSGGSG (SEQ ID NO: 4) separating the two domains.
表 2. 编码NH2-XaaProDAP-HRV14 3C-COOH融合蛋白酶的pET22b质粒构建体 Table 2. pET22b plasmid construct encoding NH2-XaaProDAP-HRV14 3C-COOH fusion protease
增强表达、纯化或溶解性的融合伙伴置于两种双功能蛋白酶变体的N-末端。设计融合伙伴,以包含His6标签(位于融合伙伴序列的N-或C-末端)编码柔性Gly-Ser-富的接头的序列,包含在双功能蛋白酶序列的N-末端附近引入的甲型肝炎病毒3C蛋白酶(HAV)切割位点,其具有序列GGSSGSGSELRTQS (SEQ ID NO: 22),以便视需要酶分离融合伙伴与蛋白酶部分。 Fusion partners that enhance expression, purification or solubility are placed at the N-terminus of the two bifunctional protease variants. The fusion partner is designed to contain a His6 tag (located at the N- or C-terminus of the fusion partner sequence) encoding a flexible Gly-Ser-rich linker sequence comprising the Hepatitis A virus introduced near the N-terminus of the bifunctional protease sequence 3C protease (HAV) cleavage site with the sequence GGSSGSGSELRTQS (SEQ ID NO: 22) to allow enzymatic separation of the fusion partner from the protease moiety, if desired.
对表1和2中描述的编码融合蛋白酶的基因片段进行密码子优化,以用于在大肠杆菌中表达,并通过基因合成(GenScript)制备。利用本领域技术人员已知的标准克隆技术(获自GenScript),通过将合成基因片段插入pET22b载体来产生表1和2中详述的质粒构建体。 The gene fragments encoding the fusion proteases described in Tables 1 and 2 were codon-optimized for expression in E. coli and prepared by gene synthesis (GenScript). The plasmid constructs detailed in Tables 1 and 2 were generated by inserting the synthetic gene fragment into the pET22b vector using standard cloning techniques (obtained from GenScript) known to those skilled in the art.
通过小规模表达和纯化来评价融合蛋白酶变体Evaluation of fusion protease variants by small-scale expression and purification
将表达质粒转化到大肠杆菌BL21(DE3) (Novagen)中,并小规模表达。 The expression plasmid was transformed into Escherichia coli BL21(DE3) (Novagen) and expressed on a small scale.
根据制造商,利用基于42℃的热休克(Heat Shock)的程序,用质粒转化大肠杆菌BL21(DE3)。将转化的细胞铺板至LB琼脂板上,并在37℃与10 mg/L氨苄青霉素温育过夜。在30℃制备含有各转化体的含有0.5%葡萄糖和50 mg/L羧苄西林的过夜Terrific broth (TB)培养物,并使用Glas-Col振荡仪(Glas-Col)在700 rpm振荡。将各转化体的20 µL过夜培养物用于接种96深孔板(2 ml)中的含有50 mg/L羧苄西林的0.95 µL TB培养基,并使转化体在700 rpm下繁殖过夜。在37℃温育表达培养物,直到OD600达到1.5。然后将培养物冷却至20℃,利用0.3 mM IPTG进行蛋白诱导过夜。通过在1800xG离心,收获含有表达的蛋白的沉淀物。 E. coli BL21(DE3) was transformed with the plasmid using a Heat Shock based procedure at 42°C according to the manufacturer. Transformed cells were plated onto LB agar plates and incubated overnight at 37°C with 10 mg/L ampicillin. Overnight Terrific broth (TB) cultures containing 0.5% glucose and 50 mg/L carbenicillin containing each transformant were prepared at 30°C and shaken at 700 rpm using a Glas-Col shaker (Glas-Col). 20 µL of an overnight culture of each transformant was used to inoculate 0.95 µL of TB medium containing 50 mg/L carbenicillin in 96 deep well plates (2 ml), and the transformants were propagated overnight at 700 rpm. Expression cultures were incubated at 37°C until OD600 reached 1.5. The culture was then cooled to 20°C and protein induction was performed overnight with 0.3 mM IPTG. The pellet containing expressed protein was harvested by centrifugation at 1800xG.
纯化筛选:利用IMAC树脂进行小规模纯化,以评价蛋白酶的组合表达和纯化潜力以及完整性。简而言之,将250µL裂解缓冲液(50 mM NaPO4, 300 mM NaCl, 10 mM咪唑, 10mg/ml 溶菌酶, 250U/µL Benzoase和10% DDM (十二烷基麦芽糖苷))加入各沉淀物,利用冷冻/解冻循环来裂解细胞。离心除去碎片,将上清液过滤(0.45 µm)并转移至1.2 µm滤板上,其含有加了Ni2+-的Sepharose Fast Flow (由在20% EtOH中洗涤30 µL 50%浆液来制备) (GE Healthcare)。通过在400 rpm与树脂一起振荡,将上清液温育20分钟以结合蛋白,通过100xg温和离心1分钟除去溶质。通过轻轻混合,用50mM磷酸钠, 300 mM NaCl, 30 mM咪唑, pH 7.5洗涤树脂,并离心干燥。为了洗脱蛋白,将40µL洗涤缓冲液(50 mM磷酸钠, 300 mM NaCl, 300 mM咪唑)加入树脂,在400 rpm振荡10分钟,并收集含有部分纯化的酶的洗脱物。 Purification Screening: Small-scale purification using IMAC resins to evaluate combined expression and purification potential and integrity of proteases. Briefly, 250 µL of lysis buffer (50 mM NaPO4, 300 mM NaCl, 10 mM imidazole, 10mg/ml lysozyme, 250U/µL Benzoase and 10% DDM (dodecyl maltoside)) was added to each pellet , using freeze/thaw cycles to lyse cells. Debris was removed by centrifugation and the supernatant was filtered (0.45 µm) and transferred to a 1.2 µm filter plate containing Ni2+-supplemented Sepharose Fast Flow (prepared by washing 30 µL of a 50% slurry in 20% EtOH) (GE Healthcare). The supernatant was incubated for 20 minutes to bind protein by shaking with the resin at 400 rpm, and solutes were removed by gentle centrifugation at 100 xg for 1 minute. The resin was washed with 50 mM sodium phosphate, 300 mM NaCl, 30 mM imidazole, pH 7.5 by gentle mixing and dried by centrifugation. To elute the protein, 40 µL of wash buffer (50 mM sodium phosphate, 300 mM NaCl, 300 mM imidazole) was added to the resin, shaken at 400 rpm for 10 min, and the eluate containing partially purified enzyme was collected.
通过SDS-PAGE分析来自融合蛋白酶变体表达的沉淀物的全裂解物。对于表1或2中描述的所有融合蛋白酶变体,均未能观察到显著量的全长蛋白。但是,对于若干融合蛋白酶变体,观察到明显的大小不同的条带。IMAC纯化的样品的SDS-PAGE分析与这些观察结果一致,因为其也没有显示产生全长蛋白酶,更确切地,显示产生较小大小的条带。观察结果表明,在表达期间和/或捕获到IMAC树脂上后,融合蛋白酶被截短或降解。由于对若干融合蛋白酶变体观察到明显不同的条带,且表达水平似乎显著基于凝胶条带强度,所以,更确切地说,不存在全长蛋白是因为融合蛋白酶中特定位置的非所期的水解,导致融合蛋白酶的显著截短。 Whole lysates from pellets expressed by fusion protease variants were analyzed by SDS-PAGE. For all fusion protease variants described in Tables 1 or 2, no significant amount of full-length protein was observed. However, distinctly sized bands were observed for several fusion protease variants. SDS-PAGE analysis of IMAC-purified samples was consistent with these observations, as it also did not show production of the full-length protease, rather, a band of smaller size. Observations suggest that the fusion protease is truncated or degraded during expression and/or after capture onto IMAC resin. Since distinct bands were observed for several fusion protease variants, and expression levels appeared to be significantly based on gel band intensities, the absence of the full-length protein was more precisely due to undesired specific positions in the fusion protease hydrolysis, resulting in significant truncation of the fusion protease.
融合蛋白酶的fusion protease LC-MSLC-MS 分析analyze
通过质谱检测能够解释截短形式的融合蛋白酶的被观察到存在的可能的切割位点,使用MaXis Impact超高分辨飞行时间(UHR-TOF)质谱仪(Bruker Daltonics),其装备有Dionex UltiMate3000™液相色谱仪(Dionex),根据制造商的说明书,允许以一般设定在UV215 nm进行二极管阵列测量。在1.7µm孔径的Waters Aquity BEH300 C4反相1.0 X 100 mm柱上分离酶,利用的柱温为45℃,流速为0.2 ml/分钟。所用的溶剂如下: Possible cleavage sites that could account for the observed presence of truncated forms of the fusion protease were detected by mass spectrometry using a MaXis Impact ultra-high resolution time-of-flight (UHR-TOF) mass spectrometer (Bruker Daltonics) equipped with a Dionex UltiMate3000™ liquid A phase chromatograph (Dionex), according to the manufacturer's instructions, allowed diode array measurements at UV215 nm with typical settings. Enzymes were separated on a Waters Aquity BEH300 C4 reversed-phase 1.0 X 100 mm column with a pore size of 1.7 µm, using a column temperature of 45°C and a flow rate of 0.2 ml/min. The solvents used are as follows:
溶剂A:0.1%甲酸H2O溶液 Solvent A: 0.1% formic acid H2O solution
溶剂B:99.9% MeCN, 0.1%甲酸(v/v) Solvent B: 99.9% MeCN, 0.1% formic acid (v/v)
利用下列梯度进行液相色谱以分离酶消化物。 Liquid chromatography was performed using the following gradient to separate the enzymatic digests.
时间(分钟) %A %B Time (minutes) %A %B
0 90 10 0 90 10
2 90 10 2 90 10
10 10 90 10 10 90
11 10 90 11 10 90
12 90 10 12 90 10
13 90 10 13 90 10
14 50 50 14 50 50
将记录的质谱去卷积,并用Bruker Compass数据分析软件版本4.1(Bruker Daltonics)进行分析,根据制造商说明书,覆盖10.000 Da-140.000 Da的质量范围和分辨率(>10.000)。平行评价UV215 nm色谱图和总离子计数(TIC)色谱图,以确保所获的MS数据和肽的UV215 nm迹线之间一致。示出的实验确定的质量是指平均同位素质量,且质谱数据以好于200 ppm的质量精度获得。 The recorded mass spectra were deconvoluted and analyzed with Bruker Compass data analysis software version 4.1 (Bruker Daltonics), according to the manufacturer's instructions, covering the mass range and resolution (>10.000) of 10.000 Da-140.000 Da. The UV215 nm chromatogram and the total ion count (TIC) chromatogram were evaluated in parallel to ensure agreement between the acquired MS data and the UV215 nm trace of the peptide. Experimentally determined masses shown refer to average isotopic masses and mass spectral data were obtained with mass accuracy better than 200 ppm.
当分析蛋白酶12756时,检测到22241.54 Da的质量。该质量对应于His6融合伙伴(SEQ ID NO: 5)和HRV14 3C结构域(SEQ ID NO:2)的质量(计算质量22242.27 Da)。因此,在连接HRV14 3C结构域(SEQ ID NO:2)的C-末端和接头(SEQ ID NO: 3)的N-末端的Gln/Gly之间存在切割位点。这表示,3C蛋白酶能够将其自身从HRV14 3C与XaaProDAP的N-末端融合的融合蛋白酶中切除,切除方式类似于已报道的从其天然病毒多蛋白中切除的方式。This was also observed对于融合蛋白酶12757、12758、12760和12761,也观察到了这种现象,其中大小变化对应于所用的N-末端融合伙伴的大小的差异。 When protease 12756 was analyzed, a mass of 22241.54 Da was detected. This mass corresponds to the mass of the His6 fusion partner (SEQ ID NO: 5) and HRV14 3C domain (SEQ ID NO: 2) (calculated mass 22242.27 Da). Thus, there is a cleavage site between the Gln/Gly linking the C-terminus of the HRV14 3C domain (SEQ ID NO: 2) and the N-terminus of the linker (SEQ ID NO: 3). This suggests that the 3C protease is able to excise itself from the fusion protease of HRV14 3C fused to the N-terminus of XaaProDAP in a manner similar to that reported for its native viral polyprotein. This was This was also observed for fusion proteases 12757, 12758, 12760 and 12761, where the size variation corresponds to the difference in the size of the N-terminal fusion partners used.
实施例Example 22
除去remove NH2-HRV14-XaaProDAP-COOHNH2-HRV14-XaaProDAP-COOH 融合蛋白酶的fusion protease HRV14HRV14 结构域中的in the domain C-C- 末端the end Q182Q182
对于表1所示的融合蛋白酶变体,观察到片段的大小常常对应于融合伙伴加HRV14 3C结构域 序列。为了除去该切割可能性,设计了新的接头以替换开始的GS接头(SEQ ID NO:3),其位于包含His6、RL9或Trx融合伙伴的融合蛋白酶中HRV14 3C和XaaProDAP结构域之间(表1, 实施例1)。连接HRV14酶和SEQ ID NO: 3起点的Gln/Gly切割位点替换为Ser-Gly。因此,除去了HRV14 3C蛋白酶结构域中的最后一个氨基酸(Gln182),得到具有下述序列的des182-HRV14 3C:GPNTEFALSLLRKNIMTITTSKGEFTGLGIHDRVCVIPTHAQPGDDVLVNGQKIRVKDKYKLVDPENINLELTVLTLDRNEKFRDIRGFISEDLEGVDATLVVHSNNFTNTILEVGPVTMAGLINLSSTPTNRMIRYDYATKTGQCGGVLCATGKIFGIHVGGNGRQGFSAQLKKQYFVEK (SEQ ID NO: 11),且除去了接头(SEQ ID NO:3)最开始的Gly,因为该位点表示3C蛋白酶的切割位点。但是,HRV14结构域(SEQ ID NO:11)和XaaProDAP结构域之间的接头替换为SGSGGSGGSGS (SEQ ID NO:12)。新的融合蛋白酶变体示于表3: For the fusion protease variants shown in Table 1, the size of the observed fragment often corresponds to the fusion partner plus HRV14 3C domain sequence. To remove this possibility of cleavage, a new linker was designed to replace the initial GS linker (SEQ ID NO:3) between the HRV14 3C and XaaProDAP domains in fusion proteases containing His6, RL9 or Trx fusion partners (Table 1, embodiment 1). The Gln/Gly cleavage site linking the HRV14 enzyme and the start of SEQ ID NO: 3 was replaced with Ser-Gly.因此,除去了HRV14 3C蛋白酶结构域中的最后一个氨基酸(Gln182),得到具有下述序列的des182-HRV14 3C:GPNTEFALSLLRKNIMTITTSKGEFTGLGIHDRVCVIPTHAQPGDDVLVNGQKIRVKDKYKLVDPENINLELTVLTLDRNEKFRDIRGFISEDLEGVDATLVVHSNNFTNTILEVGPVTMAGLINLSSTPTNRMIRYDYATKTGQCGGVLCATGKIFGIHVGGNGRQGFSAQLKKQYFVEK (SEQ ID NO: 11), and removed the initial Gly of the linker (SEQ ID NO: 3), because this site represents the cleavage site of 3C protease. However, the linker between the HRV14 domain (SEQ ID NO: 11) and the XaaProDAP domain was replaced by SGSGGSGGSGS (SEQ ID NO: 12). The new fusion protease variants are shown in Table 3:
表 3. 编码des182HRV14 3C-XaaProDAP融合蛋白酶的pET22b质粒构建体 Table 3. pET22b plasmid construct encoding des182HRV14 3C-XaaProDAP fusion protease
按实施例1所述,进行这些构建体的小规模表达和纯化。来自IMAC纯化的样品的SDS-PAGE显示,此时对于这三种融合蛋白酶变体出现了两个清楚可见且主要的大约50-60 kDa的条带,表明全长蛋白酶被切成两个片段。按实施例1中所述,进行LC-MS分析以定位切割位点。蛋白酶20177的分析显示,该融合蛋白酶变体被切成两个大的条带,各具有51091.27 Da和59773.49 Da的质量。这些质量证实,另一个切割位点出现在XaaProDAP序列(SEQ ID NO:1)的Gln241和Gly242之间,因为测定的质量与这些片段的计算质量一致,如由蛋白酶20177氨基酸序列所推导的(分别为51092.15 Da和59772.43 Da)。通过分析表3中所示所有三个构建体的去卷积谱,清楚地观察到完全相同的切割位点,由此表明,该位点是高度敏感的,而与所用的N-末端融合伙伴无关。在评价可用的3D结构(Rigolet 等, Structure,10,pp 1384-1394)时,可以确定,切割位点存在于乳酸乳球菌XaaProDAP的催化结构域中连接两个小的α-螺旋的非常大的环(跨越大约氨基酸残基223 – 270)的中间。该环高度暴露,并因此对切割敏感,Q/G 序列表明3C蛋白酶本身负责该切割。另一个较不主要的非所需的切割位点被观察到位于融合伙伴的C-末端的HAV蛋白酶(ELRTQ / S)切割位点中的Gln/Ser位置,也可通过分析IMAC纯化的样品来检测。 Small scale expression and purification of these constructs was performed as described in Example 1. SDS-PAGE of samples from IMAC purification showed that at this point two clearly visible and predominant bands at approximately 50-60 kDa appeared for the three fusion protease variants, indicating that the full-length protease was cleaved into two fragments. LC-MS analysis was performed as described in Example 1 to map the cleavage site. Analysis of Protease 20177 showed that the fusion protease variant was cut into two large bands, each with a mass of 51091.27 Da and 59773.49 Da. These masses confirm that another cleavage site occurs between Gln241 and Gly242 of the XaaProDAP sequence (SEQ ID NO: 1), as the determined masses agree with the calculated masses of these fragments, as deduced from the protease 20177 amino acid sequence (respectively are 51092.15 Da and 59772.43 Da). By analyzing the deconvoluted spectra of all three constructs shown in Table 3, the exact same cleavage site was clearly observed, thus indicating that this site is highly sensitive, whereas the N-terminal fusion partner used irrelevant. In evaluating the available 3D structures (Rigolet et al., Structure, 10, pp 1384-1394), it was determined that the cleavage site exists in the very large α-helix linking two small α-helices in the catalytic domain of Lactococcus lactis XaaProDAP middle of the loop (spanning approximately amino acid residues 223-270). This loop is highly exposed and thus sensitive to cleavage, and the Q/G sequence suggests that the 3C protease itself is responsible for this cleavage. Another, less predominant, non-desired cleavage site was observed at the Gln/Ser position in the C-terminal HAV protease (ELRTQ/S) cleavage site of the fusion partner, which was also identified by analysis of IMAC-purified samples. detection.
实施例Example 3A3A
设计全长双功能Design Full Length Dual Function NH2-HRV14-XaaProDAP-COOHNH2-HRV14-XaaProDAP-COOH 蛋白酶protease
为了除去实施例2中XaaProDAP 序列的Gln241和Gly242之间观察到的切割位点,用Glu241和Thr242取代这两个氨基酸。选择Glu241-Thr242取代作为Gln241-Gly242的替代,因为其存在作为基于来自乳酸乳球菌的不同分离物的XaaProDAP直向同源物的同源性检索的天然氨基酸变化。由于非所需的切割还存在于融合伙伴的C-末端的HAV位点,所以将HAV位点替换为小的含GS序列。这些融合伙伴具有序列MHHHHHHGGSSGSGSGSGSGS (SEQ ID NO: 13)、MKVILLRDVPKIGKKGEIKEVSDGYARNYLIPRGFAKEYTEGLERAIKHEKEIEKRKKEREREESEKILKELKKRTHVVKVKAGEGGKIFGAVTAATVAEEISKTTGLKLDKRWFKLDKPIKELGEYSLEVSLPGGVKDTIKIRVEREEGSGSGHHHHHHGGSSGSGSGSGSGS (SEQ ID NO:14)和MHHHHHHGSGSGSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLAGGSSGSGSGSGSGS (SEQ ID NO: 15)。 To remove the cleavage site observed between Gln241 and Gly242 of the XaaProDAP sequence in Example 2, these two amino acids were substituted with Glu241 and Thr242. The Glu241-Thr242 substitution was chosen as an alternative to Gln241-Gly242 because of its presence as a natural amino acid change based on homology searches of XaaProDAP orthologs from different isolates of Lactococcus lactis. Since the undesired cleavage was also present at the HAV site at the C-terminus of the fusion partner, the HAV site was replaced with a small GS-containing sequence. These fusion partners have the sequence MHHHHHHGGSSGSGSGSGSGS (SEQ ID NO: 13), MKVILLRDVPKIGKKGEIKEVSDGYARNYLIPRGFAKEYTEGLERAIKHEKEIEKRKKEREREESEKILKELKKRTHVVKVKAGEGGKIFGAVTAATVAEEISKTTGLKLDKRWFKLDKPIKELGEYSLEVGSLPGGVKGSSHS (SEQ ID NO: 14) and MHHHHHHGSGSGSDKIIHLTDDSFDTDVLKADGAILVDFWAEWCGPCKMIAPILDEIADEYQGKLTVAKLNIDQNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLAGGSSGSGSGSGSGS (SEQ ID NO: 15).
获得包含Q241E、G242T取代且在HRV14 3C结构域前方由接头除去了HAV位点的质粒构建体(Genscript)。设计和测试的示于表4。 A plasmid construct (Genscript) was obtained containing the Q241E, G242T substitutions with the HAV site removed by the linker in front of the HRV14 3C domain. The designs and tests are shown in Table 4.
按实施例1中所述,进行新的融合蛋白酶 构建体的小规模表达和IMAC纯化。由SDS-PAGE分析观察到,Q241E和G242T取代明显地防止了融合蛋白酶被切成两部分。对于所有三个构建体,均观察到非常强的大约100-120 kDa的凝胶条带,表明Q241E、G242T取代导致产生可溶且完整的全长融合蛋白酶,其包含HRV14 3C结构域和XaaProDAP结构域二者。在该实验中,除去ELRTQ位点(通过用GSGSG取代)的益处较不显著。 Small scale expression and IMAC purification of the novel fusion protease constructs was performed as described in Example 1. As observed by SDS-PAGE analysis, the Q241E and G242T substitutions apparently prevented the fusion protease from being cleaved into two parts. For all three constructs, very strong gel bands around 100-120 kDa were observed, indicating that the Q241E, G242T substitutions resulted in a soluble and intact full-length fusion protease comprising the HRV14 3C domain and the XaaProDAP structure domain both. In this experiment, the benefit of removing the ELRTQ site (by substituting with GSGSG) was less pronounced.
按实施例1中所述,对表4中的融合蛋白酶变体进行LC-MS,并证实了来自SDS-PAGE的观察结果。蛋白酶20986、20988和20990的测定的质量分别为110604.97 Da、127867.76 Da和122607.21 Da,它们分别与计算质量110605.18 Da、127867.23 Da和122605.91 Da一致。因此,表4中的修饰融合蛋白酶未被显著截短或降解,因为主要检测到的质量对应于全长融合蛋白酶的计算质量。 LC-MS was performed on the fusion protease variants in Table 4 as described in Example 1 and confirmed the observations from SDS-PAGE. The determined masses of proteases 20986, 20988 and 20990 were 110604.97 Da, 127867.76 Da and 122607.21 Da, respectively, which were consistent with the calculated masses of 110605.18 Da, 127867.23 Da and 122605.91 Da, respectively. Therefore, the modified fusion proteases in Table 4 were not significantly truncated or degraded, as the predominantly detected masses corresponded to the calculated masses of the full-length fusion proteases.
表 4. 编码NH2-des182HRV14 3C-XaaProDAP(Q241E,G242T)-COOH融合酶的pET22b质粒构建体 Table 4. pET22b plasmid construct encoding NH2-des182HRV14 3C-XaaProDAP(Q241E, G242T)-COOH fusion enzyme
实施例Example 3B3B
设计全长双功能Design Full Length Dual Function NH2-XaaProDAP-HRV14-COOHNH2-XaaProDAP-HRV14-COOH 蛋白酶protease
使用实施例1 and 3A中所述的通用设计、克隆和表达程序,我们还评价了是否能够获得在C-末端包含HRV14 3C的功能性可溶融合蛋白酶。评价3种融合蛋白酶的表达,其包含C-末端HRV14 3C结构域和N-末端XaaProDAP (Q241E,G242T),并使用之前说明的3个不同的N-末端标签(His6、RL9、Trx)。将HRV14 3C结构域位于C-末端的所有3个构建体表达为不溶性蛋白,如通过SDS-PAGE测定的未诱导的、诱导的、可溶的和不溶的级分(未示出详细数据)。这证实,在N-末端包含HRV14 3C蛋白酶和在C-末端包含乳酸乳球菌XaaProDAP的融合蛋白酶变体出乎意料地具有更优化的折叠动力学,其产生可溶的稳定融合蛋白酶、更易于生产且不需要任何成本禁止的折叠步骤。总之,蛋白设计的一些规格使得可以生产包含HRV14 3C和XaaProDAP蛋白酶的完整融合蛋白酶。 Using the general design, cloning and expression procedures described in Examples 1 and 3A, we also evaluated whether it was possible to obtain a functional soluble fusion protease comprising HRV14 3C at the C-terminus. The expression of 3 fusion proteases comprising the C-terminal HRV14 3C domain and the N-terminal XaaProDAP (Q241E, G242T) using 3 different N-terminal tags (His6, RL9, Trx) as described previously was evaluated. All three constructs with the HRV14 3C domain at the C-terminus were expressed as insoluble proteins as uninduced, induced, soluble and insoluble fractions as determined by SDS-PAGE (detailed data not shown). This confirms that fusion protease variants comprising HRV14 3C protease at the N-terminus and Lactococcus lactis XaaProDAP at the C-terminus unexpectedly have more optimized folding kinetics, resulting in a soluble, stable fusion protease that is easier to produce And does not require any cost prohibitive folding steps. In summary, some specifications of the protein design allowed the production of a complete fusion protease comprising the HRV14 3C and XaaProDAP proteases.
实施例Example 44
放大表达和纯化Amplified expression and purification NH2-His- des182HRV14-LLXaaProDAP (Q241E,G242T)-COOH (NH2-His- des182HRV14-LLXaaProDAP (Q241E,G242T)-COOH ( 蛋白protein 20986)20986)
为了制备更大量的全长融合蛋白酶,放大蛋白酶20986用于进一步的活性测试。 To prepare larger quantities of the full-length fusion protease, amplified protease 20986 was used for further activity testing.
在含有50 mg/L羧苄西林和0.5%葡萄糖的50 ml Terrific Broth培养基中,通过在37℃以100rpm振荡(Multitron Standard shaker, 50mm振幅, Infors HT),使含有编码蛋白酶20986的pET22b质粒的BL21(DE3)转化体(来自甘油贮备物)繁殖过夜。次日,使用7.5 ml过夜培养物接种2L振荡烧瓶中含50 mg/L羧苄西林的750 ml TB培养基,随后在37℃以100rpm温育培养物。当OD600达到约1.5时,将培养物冷却至20℃持续30分钟,然后加入0.3 mM IPTG以诱导蛋白。在20℃、100 rpm进行诱导过夜,通过4000 x g离心10分钟收获细胞。将沉淀细胞冷冻备用。 In 50 ml Terrific Broth medium containing 50 mg/L carbenicillin and 0.5% glucose, by shaking (Multitron Standard shaker, 50 mm amplitude, Infors HT) at 100 rpm at 37 °C, the pET22b plasmid containing protease 20986 BL21(DE3) transformants (from glycerol stocks) were propagated overnight. The next day, 7.5 ml of the overnight culture was used to inoculate 750 ml of TB medium containing 50 mg/L carbenicillin in a 2L shaker flask, and the culture was subsequently incubated at 37°C at 100 rpm. When the OD600 reached about 1.5, the culture was cooled to 20 °C for 30 min before adding 0.3 mM IPTG to induce protein. Induction was performed overnight at 20 °C, 100 rpm and cells were harvested by centrifugation at 4000 x g for 10 min. Freeze the pelleted cells for later use.
纯化purification His- des182HRV14-LLXaaProDAP (Q241E,G242T) (His-des182HRV14-LLXaaProDAP (Q241E,G242T) ( 蛋白protein 20986)20986)
为了获得纯化的双功能融合蛋白酶以进一步分析,进行两个连续的纯化步骤,从而纯化蛋白酶20986。 To obtain a purified bifunctional fusion protease for further analysis, protease 20986 was purified by performing two consecutive purification steps.
将14.7 g细胞沉淀物重悬于100 ml裂解缓冲液,其含有50mM磷酸钠pH 7.5和3 µL benzonase。在细胞匀浆机中于1.4 kBar破坏细胞一个循环,将细胞碎片于18.000g离心20分钟以沉淀。然后对上清液进行无菌过滤(0.45微米)。使用AKTAExpress (GE Healthcare)进行两个连续纯化步骤,完成蛋白酶20986的纯化。在捕获步骤中,在2X1 ml HisTrap crude柱(GE Healthcare)上纯化来自100 ml样品施加物的酶,其中流速为0.8 ml/分钟,并使用下述缓冲液: Resuspend 14.7 g of cell pellet in 100 ml lysis buffer containing 50 mM sodium phosphate pH 7.5 and 3 µL benzonase. Cells were disrupted for one cycle at 1.4 kBar in a cell homogenizer and the cell debris was pelleted by centrifugation at 18.000 g for 20 minutes. The supernatant was then sterile filtered (0.45 microns). Purification of Protease 20986 was accomplished using AKTAExpress (GE Healthcare) in two consecutive purification steps. In the capture step, the 2X1 ml HisTrap crude column (GE Healthcare) was purified from a 100 ml sample application with a flow rate of 0.8 ml/min and the following buffers were used:
缓冲液A:50 mM 磷酸钠, 300 mM NaCl, 10 mM 咪唑 pH 7.5 Buffer A: 50 mM Sodium Phosphate, 300 mM NaCl, 10 mM Imidazole pH 7.5
缓冲液B:50 mM 磷酸钠, 300 mM NaCl, 300 mM 咪唑 pH 7.5 Buffer B: 50 mM Sodium Phosphate, 300 mM NaCl, 300 mM Imidazole pH 7.5
缓冲液C:50 mM 磷酸钠, 300 mM NaCl, 30 mM 咪唑 pH 7.5 Buffer C: 50 mM Sodium Phosphate, 300 mM NaCl, 30 mM Imidazole pH 7.5
首先,用10倍柱体积的缓冲液平衡柱。在加了施加物后,通过使用7倍柱体积的缓冲液C洗涤来除去未结合的蛋白。使用5倍柱体积的0-100 %缓冲液B分步洗脱,以洗脱蛋白酶20986,将收集的峰贮于环中并加到120 ml HiLoad S200 16/600 (GE-Healthcare)凝胶过滤柱。进行大小分离,其中流速为1.2 ml/分钟,使用1X PBS缓冲液(磷酸缓冲盐水, pH 7.4,组成:8.05 mM Na2HPO4x2H2O, 1,96 mM KH2PO4, 140 mM NaCl, pH 7.4)。通过SDS-PAGE分析收集的主要峰级分,观察到约100 kDa预期大小的清晰条带。合并含有最多量的蛋白酶的级分,使用UV280 measurements (NanoDrop, ThermoScientific)测量的浓度为1,6 mg/ml。通过SDS-PAGE (图1)和HPLC分析来判断,估计纯度高于90%。 First, equilibrate the column with 10 column volumes of buffer. After application, unbound protein was removed by washing with 7 column volumes of buffer C. Use 5 column volumes of 0-100% buffer B to elute protease 20986, store the collected peaks in a ring and apply to 120 ml HiLoad S200 16/600 (GE-Healthcare) gel filtration column. Size separation was performed with a flow rate of 1.2 ml/min using 1X PBS buffer (phosphate-buffered saline, pH 7.4, composition: 8.05 mM Na2HPO4x2H2O, 1,96 mM KH2PO4, 140 mM NaCl, pH 7.4). The collected major peak fractions were analyzed by SDS-PAGE and a clear band of expected size around 100 kDa was observed. Pool the fractions containing the highest amount of protease using UV280 The measurements (NanoDrop, ThermoScientific) measured a concentration of 1,6 mg/ml. Purity was estimated to be greater than 90%, as judged by SDS-PAGE (Figure 1) and HPLC analysis.
实施例Example 55
含有碱性标签的模型融合蛋白的质粒构建体和表达Plasmid constructs and expression of model fusion proteins containing basic tags
为了测试双功能融合蛋白酶是否能够用于除去N-末端标签,制备了三种不同的模型融合蛋白作为蛋白底物。使用WO2008/043847中描述过的包含来自海栖热袍菌(T. maritima)的核糖体蛋白L27的碱性标签作为融合伙伴,其具有下述序列:MAHKKSGGVAKNGRDSLPKYLGVKVGDGQIVKAGNILVRQRGTRFYPGKNVGMGRDFTLFALKDGRVKFETKNNKKYVSVYEE (SEQ ID NO: 16)。设计融合蛋白,使得RL27融合伙伴可通过HRV14 3C酶除去,且剩余GP序列可通过XaaProDAP除去。 To test whether a bifunctional fusion protease could be used to remove N-terminal tags, three different model fusion proteins were prepared as protein substrates. A basic tag comprising ribosomal protein L27 from Thermotoga maritima ( T. maritima ) described in WO2008/043847 was used as a fusion partner with the following sequence: MAHKKSGGVAKNGRDSLPKYLGVKVGDGQIVKAGNILVRQRGTRFYPGKNVGMGRDFTLFALKDGRVKFETKNNKKYVSVYEE (SEQ ID NO: 16). The fusion protein was designed such that the RL27 fusion partner could be removed by the HRV14 3C enzyme and the remaining GP sequence could be removed by XaaProDAP.
使用含有HRV14切割位点的柔性接头连接碱性标签与模型肽序列,该接头具有序列SSSGGSEVLFQGP (SEQ ID NO: 17)。所用的模型肽序列为人肽YY 3-36 (PYY(3-36))、胰高血糖素和胰高血糖素样肽1 (7-37,K34R) (GLP-1(7-37,K34R)),其各自具有下述序列: The basic tag is connected to the model peptide sequence using a flexible linker containing the HRV14 cleavage site, which has the sequence SSSGGSEVLFQGP (SEQ ID NO: 17). The model peptide sequences used were human peptide YY 3-36 (PYY(3-36)), glucagon and glucagon-like peptide 1 (7-37,K34R) (GLP-1(7-37,K34R)), each having the following sequence:
PYY(3-36):IKPEAPGEDASPEELNRYYASLRHYLNLVTRQRY (SEQ ID NO: 18) PYY (3-36): IKPEAPGEDASPEELNRYYASLRHYLNLVTRQRY (SEQ ID NO: 18)
胰高血糖素:HSQGTFTSDYSKYLDSRRAQDFVQWLMNT (SEQ ID NO: 19) Glucagon: HSQGTFTSDYSKYLDSRRAQDFVQWLMNT (SEQ ID NO: 19)
GLP-1(7-37, K34R):HAEGTFTSDVSSYLEGQAAKEFIAWLVRGRG (SEQ ID NO: 20)。 GLP-1(7-37, K34R): HAEGTFTSDVSSYLEGQAAKEFIAWLVRGRG (SEQ ID NO: 20).
制备大肠杆菌表达质粒(pET22b, Novagen),使它们编码表5中详述的三个融合蛋白。 E. coli expression plasmids (pET22b, Novagen) were prepared encoding the three fusion proteins detailed in Table 5.
表 5. 使用pET22b载体的质粒构建体编码的模型融合蛋白 Table 5. Model fusion proteins encoded by plasmid constructs using the pET22b vector
通过基因合成来产生针对大肠杆菌进行了密码子优化且跨越整个融合蛋白的基因片段,并使用标准克隆技术(获自GenScript)将其连接到pET22b载体的克隆位点中。 A codon-optimized E. coli gene fragment spanning the entire fusion protein was generated by gene synthesis and ligated into the cloning site of the pET22b vector using standard cloning techniques (obtained from GenScript).
表达模型融合蛋白Expression model fusion protein
基本上按实施例4中对于蛋白酶20986所述,进行RL27_EVLFQGP_PYY(3-36)的表达。简而言之,如下表达RL27_EVLFQGP_胰高血糖素和RL27_EVLFQGP_GLP-1(7-37,K34R):用质料转化大肠杆菌BL21(DE3),铺板到含有100 mg/L氨苄青霉素的LB琼脂板上,将过夜培养物溶解于10 ml LB培养物中,并用于接种振荡烧瓶中的含有50mg/ml羧苄西林的750 ml LB。将振荡烧瓶以100 rpm于37℃温育。当OD600达到0.4时,通过加入0.3 mM IPTG来诱导蛋白表达,并通过在37℃温育3小时后离心来收获细胞。Expression of RL27_EVLFQGP_PYY(3-36) was performed essentially as described in Example 4 for protease 20986. Briefly, RL27_EVLFQGP_glucagon and RL27_EVLFQGP_GLP-1(7-37,K34R) were expressed as follows: E. coli BL21(DE3) was transformed with the material, plated onto LB agar plates containing 100 mg/L ampicillin, The overnight culture was dissolved in 10 ml LB culture and used to inoculate 750 ml LB containing 50 mg/ml carbenicillin in shake flasks. The shaker flask was incubated at 37°C at 100 rpm. When OD600 reached 0.4, protein expression was induced by adding 0.3 mM IPTG, and cells were harvested by centrifugation after incubation at 37°C for 3 hours.
纯化模型融合蛋白Purification of model fusion proteins
简而言之,通过阳离子交换色谱从得自细胞破坏的上清液捕获融合蛋白,这基本上按照现有描述(WO2008/043847),使用AKTA Express上的SP FF HiTrap 5 ml (GE Healthcare)柱,流速为4 ml/分钟,缓冲液如下: Briefly, fusion proteins were captured by cation exchange chromatography from supernatants obtained from cell disruption essentially as described (WO2008/043847) using SP FF HiTrap 5 ml (GE Healthcare) columns on AKTA Express , the flow rate is 4 ml/min, and the buffer is as follows:
缓冲液A:50mM 磷酸钠, pH 7.0 Buffer A: 50mM sodium phosphate, pH 7.0
缓冲液B:50mM 磷酸钠, 1000mM NaCl, pH 7.0。 Buffer B: 50mM sodium phosphate, 1000mM NaCl, pH 7.0.
简而言之,在加样和洗涤步骤之后,使用缓冲液B从柱上洗脱融合蛋白。为了提高下述捕获的纯度,基本上按实施例4中所述通过凝胶过滤来纯化蛋白,不同在于使用S75 16/600分离柱(GE-Healthcare)。纯化的蛋白经SDS-PAGE分析评价,正确的完整质量由LC-MS核实。UV280用于测定融合蛋白的浓度。 Briefly, after the loading and washing steps, the fusion protein was eluted from the column using Buffer B. To increase the purity of the capture described below, the protein was purified by gel filtration essentially as described in Example 4, except that a S75 16/600 separation column (GE-Healthcare) was used. Purified protein was evaluated by SDS-PAGE analysis and correct intact mass was verified by LC-MS. UV280 was used to determine the concentration of the fusion protein.
实施例Example 66
利用蛋白酶using protease 2098620986 和作为模型蛋白底物的and as model protein substrates RL27_EVLFQGP_PYY(3-36)RL27_EVLFQGP_PYY(3-36) 的酶反应enzyme reaction
将浓缩物RL27-HRV14-PYY(3-36)调整至1X PBS, pH 7.4中的0.5 mg/ml浓度。在22 µl反应体积中建立酶反应,使用PBS, pH 7.4作为酶反应缓冲液。分别使用1:20或1:40的酶底物摩尔比,建立蛋白酶20986与RL27-EVLFQGP-PYY(3-36)底物的温育,在37℃进行反应3小时(如表6所示)。在该实验中还包括WO2008/043847中描述的纯化HRV14 3C蛋白酶变体,其具有N-末端标签(核糖体L9,来自海栖热袍菌)。该蛋白酶称为RL9-HRV14 3C,以与蛋白酶20986相同的摩尔比使用,但是仅具有HRV14 3C活性。RL9-HRV14 3C具有下述序列:MKVILLRDVPKIGKKGEIKEVSDGYARNYLIPRGFAKEYTEGLERAIKHEKEIEKRKKEREREESEKILKELKKRTHVVKVKAGEGGKIFGAVTAATVAEEISKTTGLKLDKRWFKLDKPIKELGEYSLEVSLPGGVKDTIKIRVEREESSSGSSGSSGSSGPNTEFALSLLRKNIMTITTSKGEFTGLGIHDRVCVIPTHAQPGDDVLVNGQKIRVKDKYKLVDPENINLELTVLTLDRNEKFRDIRGFISEDLEGVDATLVVHSNNFTNTILEVGPVTMAGLINLSSTPTNRMIRYDYATKTGQCGGVLCATGKIFGIHVGGNGRQGFSAQLKKQYFVEKQ (SEQ ID NO: 21)。作为阴性对照,还在不含蛋白酶的反应缓冲液中温育RL27-HRV14-PYY(3-36)底物。通过在LC-MS分析之前加入>0.5 M AcOH,终止酶反应。 Adjust concentrate RL27-HRV14-PYY(3-36) to 1X PBS, pH 0.5 mg/ml concentration in 7.4. Set up the enzyme reaction in a 22 µl reaction volume, using PBS, pH 7.4 as the enzyme reaction buffer. Using the enzyme substrate molar ratio of 1:20 or 1:40 respectively, the incubation of protease 20986 and RL27-EVLFQGP-PYY(3-36) substrate was established, and the reaction was carried out at 37°C for 3 hours (as shown in Table 6) . The purified HRV14 3C protease variant described in WO2008/043847 with an N-terminal tag (ribosomal L9 from Thermotoga maritima) was also included in this experiment. This protease, called RL9-HRV14 3C, was used in the same molar ratio as Protease 20986, but only had HRV14 3C activity. RL9-HRV14 3C具有下述序列:MKVILLRDVPKIGKKGEIKEVSDGYARNYLIPRGFAKEYTEGLERAIKHEKEIEKRKKEREREESEKILKELKKRTHVVKVKAGEGGKIFGAVTAATVAEEISKTTGLKLDKRWFKLDKPIKELGEYSLEVSLPGGVKDTIKIRVEREESSSGSSGSSGSSGPNTEFALSLLRKNIMTITTSKGEFTGLGIHDRVCVIPTHAQPGDDVLVNGQKIRVKDKYKLVDPENINLELTVLTLDRNEKFRDIRGFISEDLEGVDATLVVHSNNFTNTILEVGPVTMAGLINLSSTPTNRMIRYDYATKTGQCGGVLCATGKIFGIHVGGNGRQGFSAQLKKQYFVEKQ (SEQ ID NO: 21). As a negative control, the RL27-HRV14-PYY(3-36) substrate was also incubated in protease-free reaction buffer. Enzyme reactions were terminated by adding >0.5 M AcOH prior to LC-MS analysis.
使用use RL27_HRV14_PYY(3-36) RL27_HRV14_PYY(3-36) 作为融合蛋白模型底物的蛋白酶Proteases as Model Substrates for Fusion Proteins 2098620986 结果result
基本上按实施例1中所述进行酶反应的LC-MS分析,区别仅在于具有1.7 µm孔径的C18 Aquity BEH300 C4反相1.0 X 100 mm柱用于确保充分分离和分辨所评价的较小肽。根据制造商说明书,将仪器调整至用于质量范围(2000-17000 Da)和分辨率(>20.000)的设定。平行评价UV215 nm色谱图和总离子计数(TIC)色谱图,以确保所得MS数据和肽的UV215 nm迹线之间的一致。下述实施例中示出的实验测定的质量是指最富余的质量,例如基于所检测的蛋白的同位素的天然丰度而具有最具代表性的同位素分布的分子质量。下面,利用小于100 ppm的质量精度获得质谱数据。 LC-MS analysis of the enzyme reaction was performed essentially as described in Example 1 except that a C18 Aquity BEH300 C4 reversed-phase 1.0 X 100 mm column with a 1.7 µm pore size was used to ensure adequate separation and resolution of the smaller peptides evaluated . According to the manufacturer's instructions, adjust the instrument for the mass range (2000-17000 Da) and resolution (>20.000) settings. The UV215 nm chromatograms and total ion count (TIC) chromatograms were evaluated in parallel to ensure agreement between the obtained MS data and the UV215 nm traces of the peptides. The experimentally determined masses shown in the Examples below refer to the most abundant masses, eg, molecular masses with the most representative isotopic distribution based on the natural abundance of the isotopes of the detected protein. Next, mass spectral data were acquired with a mass accuracy of less than 100 ppm.
去卷积质谱的分析显示,RL27_EVLFQGP_PYY(3-36)融合蛋白(对照不含酶)质量为14354.17 Da。这与不含起始甲硫氨酸的融合蛋白的计算质量(14354.5 Da)一致。 The analysis of deconvoluted mass spectrometry showed that the mass of RL27_EVLFQGP_PYY(3-36) fusion protein (control without enzyme) was 14354.17 Da. This is consistent with the calculated mass of the fusion protein without the starting methionine (14354.5 Da).
不同反应的结果示于表6。 The results of the different reactions are shown in Table 6.
表 6 :酶反应,使用来自实施例4的蛋白酶20986和作为底物的RL27_EVLFQGP_PYY(3-36),均在37℃下温育3小时。示出反应1-4的去卷积质谱中检测到的实验确定的主要峰。 Table 6 : Enzyme reactions using protease 20986 from example 4 and RL27_EVLFQGP_PYY(3-36) as substrate, both incubated at 37°C for 3 hours. The experimentally determined major peaks detected in the deconvoluted mass spectra of reactions 1-4 are shown.
反应1显示,融合蛋白的完全加工在1:20的酶底物摩尔比且37℃温育小时的酶处理之后获得(图2)。观察到的主要检测质量是4049.9 Da,其对应于成熟PYY(3-36) (峰#1)和释放的标签(峰#2)的质量。未观察到剩余的融合蛋白,但是观察到强度小于峰#1的10%的峰,其对应于GP-PYY(3-36)。反应2显示,1:40酶底物比导致约一半的GP-PYY(3-36)加工成成熟PYY(3-36) (图3)。反应3 (图4)和(图5)显示,反应1和2中观察到的由GP-PYY(3-36)除去Gly-Pro是蛋白酶20986的XaaProDAP部分特异性的,因为仅含有HRV14 3C结构域的RL9-HRV14 3C蛋白酶只能够释放GP-PYY(3-36)。 Reaction 1 showed that complete processing of the fusion protein was obtained after enzyme treatment at an enzyme substrate molar ratio of 1:20 and incubation at 37° C. for 1 hour ( FIG. 2 ). The observed major detected mass was 4049.9 Da, which corresponds to the mass of mature PYY(3-36) (peak #1) and released tag (peak #2). No remaining fusion protein was observed, but a peak less than 10% of peak #1 intensity was observed, which corresponds to GP-PYY(3-36). Reaction 2 showed that a 1:40 enzyme substrate ratio resulted in approximately half of GP-PYY(3-36) being processed into mature PYY(3-36) (Figure 3). Reactions 3 (Fig. 4) and (Fig. 5) show that the removal of Gly-Pro by GP-PYY(3-36) observed in reactions 1 and 2 is specific for the XaaProDAP portion of protease 20986, as it only contains the HRV14 3C structure Domain RL9-HRV14 3C protease is only able to release GP-PYY(3-36).
实验显示,可通过双功能融合蛋白酶释放完全成熟的PYY(3-36)肽(4050 Da),由此实现了本发明的构想。 Experiments have shown that the fully mature PYY(3-36) peptide (4050 Da) can be released by the bifunctional fusion protease, thereby realizing the idea of the present invention.
实施例Example 77
包含来自其它物种的备选Include alternatives from other species 3C3C 和and XaaProDAPXaaProDAP 结构域的全长双功能融合蛋白酶设计Full-length bifunctional fusion protease design of domains
为了证实其它3C蛋白酶和XaaProDAP酶可融合以获得性质与对蛋白酶20986所观察到的相同的功能性融合蛋白酶,使用来自人柯萨奇病毒B3的3C蛋白酶序列(CVB3 3C)或来自猪链球菌(Streptococcus suis)的XaaProDAP (猪链球菌XaaProDAP)替换HRV14 3C和乳酸乳球菌XaaProDAP (LLXaaProDAP)序列,并产生新的融合蛋白酶变体。与来自人鼻病毒14 3C的3C蛋白酶序列一样,人柯萨奇病毒B3 3C蛋白酶序列也包含C-末端Q,其缺失以获得具有下述序列的CVB3 3C(des183): To demonstrate that other 3C proteases and XaaProDAP enzymes can be fused to obtain functional fusion proteases with the same properties as observed for protease 20986, the 3C protease sequence from human Coxsackievirus B3 (CVB3 3C) or from Streptococcus suis ( Streptococcus suis ) XaaProDAP (Streptococcus suis XaaProDAP) replaces HRV14 3C and Lactococcus lactis XaaProDAP (LLXaaProDAP) sequences and generates new fusion protease variants. Like the 3C protease sequence from human rhinovirus 14 3C, the human Coxsackievirus B3 3C protease sequence also contains a C-terminal Q, which is deleted to obtain CVB3 3C(des183) with the following sequence:
GPAFEFAVAMMKRNSSTVKTEYGEFTMLGIYDRWAVLPRHAKPGPTILMNDQEVGVLDAKELVDKDGTNLELTLLKLNRNEKFRDIRGFLAKEEVEVNEAVLAINTSKFPNMYIPVGQVTEYGFLNLGGTPTKRMLMYNFPTRAGQCGGVLMSTGKVLGIHVGGNGHQGFSAALLKHYFNDE(SEQ ID NO: 23)。 GPAFEFAVAMMKRNSSTVKTEYGEFTMLGIYDRWAVLPRHAKPGPTILMNDQEVGVLDAKELVDKDGTNLELTLLKLNRNEKFRDIRGFLAKEEEVEVNEAVLAINTSKFPNMYIPVGQVTEYGFLNLGGTPTKRMLMYNFPTRAGQCGGVLMSTGKVLGIHVGGNGHQGFSAALLKHYFNDE(SEQ ID NO: 23).
在猪链球菌XaaProDAP序列的Q212-G213位置观察到QG位点,其接近对乳酸乳球菌序列所测定的3C切割位点(Q241-G242)。引入Glu212-Thr213取代以防止任何潜在的3C切割,由此得到下述序列:MRFNQFSFIKKETSVYLQELDTLGFQLIPDASSKTNLETFVRKCHFLTANTDFALSNMIAEWDTDLLTFFQSDRELTDQIFYQVAFQLLGFVPGMDYTDVMDFVEKSNFPIVYGDIIDNLYQLLNTRTKSGNTLIDQLVSDDLIPEDNHYHFFNGKSMATFSTKNLIREVVYVETPVDTAGTGQTDIVKLSILRPHFDGKIPAVITNSPYHETVNDVASDKALHKMEGELAEKQVGTIQVKQASITKLDLDQRNLPVSPATEKLGHITSYSLNDYFLARGFASLHVSGVGTLGSTGYMTSGDYQQVEGYKAVIDWLNGRTKAYTDHTRSLEVKADWANGKVATTGLSYLGTMSNALATTGVDGLEVIIAEAGISSWYDYYRENGLVTSPGGYPGEDLDSLTALTYSKSLQAGDFLRNKAAYEKGLAAERAALDRTSGDYNQYWHDRNYLLHADRVKCEVVFTHGSQDWNVKPIHVWNMFHALPSHIKKHLFFHNGAHVYMNNWQSIDFRESMNALLSQKLLGYENNYQLPTVIWQDNSGEQTWTTLDTFGGENETVLPLGTGSQTVANQYTQEDFERYGKSYSAFHQDLYAGKANQISIELPVTEGLLLNGQVTLKLRVASSVAKGLLSAQLLDKGNKKRLAPIPAPKARLSLDNGRYHAQENLVELPYVEMPQRLVTKGFMNLQNRTDLMTVEEVVPGQWMNLTWKLQPTIYQLKKGDVLELILYTTDFECTVRDNSQWQIHLDLSQSQLILPH (SEQ ID NO: 24)。 A QG site was observed at position Q212-G213 of the S. suis XaaProDAP sequence, which is close to the 3C cleavage site (Q241-G242) determined for the L. lactis sequence.引入Glu212-Thr213取代以防止任何潜在的3C切割,由此得到下述序列:MRFNQFSFIKKETSVYLQELDTLGFQLIPDASSKTNLETFVRKCHFLTANTDFALSNMIAEWDTDLLTFFQSDRELTDQIFYQVAFQLLGFVPGMDYTDVMDFVEKSNFPIVYGDIIDNLYQLLNTRTKSGNTLIDQLVSDDLIPEDNHYHFFNGKSMATFSTKNLIREVVYVETPVDTAGTGQTDIVKLSILRPHFDGKIPAVITNSPYHETVNDVASDKALHKMEGELAEKQVGTIQVKQASITKLDLDQRNLPVSPATEKLGHITSYSLNDYFLARGFASLHVSGVGTLGSTGYMTSGDYQQVEGYKAVIDWLNGRTKAYTDHTRSLEVKADWANGKVATTGLSYLGTMSNALATTGVDGLEVIIAEAGISSWYDYYRENGLVTSPGGYPGEDLDSLTALTYSKSLQAGDFLRNKAAYEKGLAAERAALDRTSGDYNQYWHDRNYLLHADRVKCEVVFTHGSQDWNVKPIHVWNMFHALPSHIKKHLFFHNGAHVYMNNWQSIDFRESMNALLSQKLLGYENNYQLPTVIWQDNSGEQTWTTLDTFGGENETVLPLGTGSQTVANQYTQEDFERYGKSYSAFHQDLYAGKANQISIELPVTEGLLLNGQVTLKLRVASSVAKGLLSAQLLDKGNKKRLAPIPAPKARLSLDNGRYHAQENLVELPYVEMPQRLVTKGFMNLQNRTDLMTVEEVVPGQWMNLTWKLQPTIYQLKKGDVLELILYTTDFECTVRDNSQWQIHLDLSQSQLILPH (SEQ ID NO: 24).
设计三个新的融合蛋白酶变体,其包含新的3C和XaaProDAP直向同源物,并使用相同的His6融合伙伴(SEQ ID NO:13)和相同的实施例3所示的间插接头(SEQ ID NO: 12)。蛋白酶28994包含实施例3A中对蛋白酶20986所说明的乳酸乳球菌XaaProDAP序列,但是N-末端HRV14 3C结构域替换为来自人柯萨奇病毒B3的3C结构域(CVB3 3C)。蛋白酶28996包含N-末端的对蛋白酶20986所说明的HRV14 3C序列和C-末端的猪链球菌XaaProDAP序列。蛋白酶28997是全新的融合蛋白酶,其中两个结构域均替换为3C和XaaProDAP蛋白酶的直向同源物,由此蛋白酶包含N-末端的CVB3 3C序列和C-末端的猪链球菌XaaProDAP序列。 Three new fusion protease variants were designed, comprising new 3C and XaaProDAP orthologs, and using the same His6 fusion partner (SEQ ID NO: 13) and the same intervening linker shown in Example 3 ( SEQ ID NO: 12). Protease 28994 comprised the L. lactis XaaProDAP sequence described for Protease 20986 in Example 3A, but with the N-terminal HRV14 3C domain replaced by the 3C domain from human Coxsackievirus B3 (CVB3 3C). Protease 28996 contains the HRV14 3C sequence described for Protease 20986 at the N-terminus and the S. suis XaaProDAP sequence at the C-terminus. Protease 28997 is a novel fusion protease in which both domains are replaced with orthologs of 3C and XaaProDAP proteases, whereby the protease contains the N-terminal CVB3 3C sequence and the C-terminal S. suis XaaProDAP sequence.
由GenScript获得质粒构建体,其使用pET22b载体骨架且包含新的融合蛋白酶。编码设计的融合蛋白酶变体的序列组合示于表7。 A plasmid construct using the pET22b vector backbone and containing the new fusion protease was obtained from GenScript. The sequence combinations encoding the designed fusion protease variants are shown in Table 7.
表 7. 编码融合蛋白酶变体的pET22b质粒构建体,各变体包含N-末端HRV14 3C或CVB3 3C和C-末端乳酸乳球菌XaaProDAP(Q241E,G242T)或猪链球菌XaaProDAP(Q212E,G213T)的组合 Table 7. PET22b plasmid constructs encoding fusion protease variants, each variant comprising N-terminal HRV14 3C or CVB3 3C and C-terminal L. lactis XaaProDAP (Q241E, G242T) or S. suis XaaProDAP (Q212E, G213T) combination
按实施例1中所述,进行新的融合蛋白酶构建体的小规模表达和IMAC纯化,显示所有三个新的蛋白酶得到可溶的完整融合蛋白酶,其包含新的3C和XaaProDAP直向同源物序列。 Small-scale expression and IMAC purification of the novel fusion protease constructs as described in Example 1 showed that all three novel proteases resulted in soluble intact fusion proteases comprising the novel 3C and XaaProDAP orthologs sequence.
按实施例1中所述,通过IMAC纯化的融合蛋白酶变体的LC-MS分析来测定完整质量,结果证实了SDS-PAGE的观察结果。蛋白酶28994、28996和28997的测定质量分别为107797.8 Da、107687.2 Da和107964.2 Da,其分别与计算质量107798.1 Da、107687.4 Da和107964.8 Da高度一致。因此,如对蛋白酶20986所观察到的,新的蛋白酶未显著被截短或降解,因为检测到的主要峰质量对应于全长融合蛋白酶的计算质量。因此,所有的蛋白酶20986、28994、28996和28997均不具有能够损害两种蛋白水解活性组成中的至少一种的自我切割活性。总之,使用具有明显不同的氨基酸序列的小RNA病毒3C和XaaProDAP酶的其它直向同源物,进一步证实了本发明制备功能性3C/XaaProDAP融合蛋白酶的构想。 Intact masses were determined by LC-MS analysis of IMAC purified fusion protease variants as described in Example 1, and the results confirmed the observations by SDS-PAGE. The measured masses of proteases 28994, 28996 and 28997 are 107797.8 Da, 107687.2 Da and 107964.2 Da, respectively, which are highly consistent with the calculated masses of 107798.1 Da, 107687.4 Da and 107964.8 Da, respectively. Thus, the new protease was not significantly truncated or degraded as observed for protease 20986, as the detected mass of the main peak corresponds to the calculated mass of the full-length fusion protease. Thus, all proteases 20986, 28994, 28996 and 28997 do not have self-cleavage activity capable of damaging at least one of the two proteolytically active components. In conclusion, the concept of the present invention to produce a functional 3C/XaaProDAP fusion protease was further confirmed using picornavirus 3C and other orthologs of the XaaProDAP enzymes with distinct amino acid sequences.
实施例Example 88
放大表达和纯化包含新的Amplified expression and purification containing new 3C3C 和and XaaProDAPXaaProDAP 结构域的蛋白酶domain protease 2899428994 、, 2899628996 和and 2899728997
按实施例4中所述,使用BL21(DE3)作为表达宿主表达蛋白酶28994、28996和28997。基本上按实施例4中所述进行纯化,利用IMAC步骤捕获,然后是凝胶过滤步骤。通过实施例4中所述的两步方案,成功纯化了所有的蛋白酶28994、28996和28997。按SDS-PAGE凝胶检查和LC-MS分析期间来自RP分离HPLC的UV215 nm概况评价来判断,估计纯度至少90%。按实施例1中所述进行MS分析,显示蛋白酶28994的估计质量为107797.8 Da,与预期质量(110798.1 Da, 平均同位素质量)非常一致。蛋白酶28996的质量为107686.9 Da,与预期质量(107687.4 Da, 平均同位素质量)非常一致,且蛋白酶28997的测定质量为107964.8 Da,与预期质量(107964.8, 平均同位素质量)一致。进行UV280吸光度测量,以测定融合蛋白浓度(NanoDrop)。 Proteases 28994, 28996 and 28997 were expressed as described in Example 4 using BL21(DE3) as the expression host. Purification was performed essentially as described in Example 4, using an IMAC step capture followed by a gel filtration step. All proteases 28994, 28996 and 28997 were successfully purified by the two-step protocol described in Example 4. Purity was estimated to be at least 90%, as judged by SDS-PAGE gel inspection and UV215 nm profile evaluation from RP separation HPLC during LC-MS analysis. MS analysis as described in Example 1 showed an estimated mass of Protease 28994 of 107797.8 Da, which was in good agreement with the expected mass (110798.1 Da, average isotopic mass). Protease 28996 had a mass of 107686.9 Da, which was in good agreement with the expected mass (107687.4 Da, average isotopic mass), and Protease 28997 had a measured mass of 107964.8 Da, which was in good agreement with the expected mass (107964.8, average isotopic mass). UV280 absorbance measurements were performed to determine fusion protein concentration (NanoDrop).
实施例Example 99
利用蛋白酶using protease 2098620986 、, 2899428994 、, 2899628996 和and 2899728997 的酶反应enzyme reaction
在30 µl反应体积中建立酶反应,使用1 X PBS, pH 7.4作为酶反应缓冲液。用于评价切割特异性的模型蛋白底物包含融合蛋白,其被酶正确加工后应当产生人PYY(3-36)(SEQ ID NO: 18)、野生型胰高血糖素(SEQ ID NO: 19)和GLP-1(7-37, K34R)(SEQ ID NO: 20)。将模型蛋白底物的浓度调整为0.5 mg/ml,这使用1XPBS, pH 7.4,如实施例6中所述。在酶底物比以及酶反应持续时间和温度方面评价反应条件的变化。包括对照,其不包含酶(1x PBS pH 7,4)或包含RL9-HRV14 3C (SEQ ID NO.21)。在实验结束时通过加入>0.5 M AcOH来终止反应。使用实施例6中所述的条件和通用设定,进行酶反应的LC-MS分析。 Set up the enzyme reaction in a 30 µl reaction volume, using 1 X PBS, pH 7.4 as the enzyme reaction buffer. Model protein substrates for evaluating cleavage specificity include fusion proteins that, when properly processed by the enzyme, should yield human PYY(3-36) (SEQ ID NO: 18), wild-type glucagon (SEQ ID NO: 19) and GLP-1 (7-37, K34R) (SEQ ID NO: 20). The concentration of the model protein substrate was adjusted to 0.5 mg/ml using 1XPBS, pH 7.4, as described in Example 6. Changes in reaction conditions were evaluated in terms of enzyme substrate ratio as well as enzyme reaction duration and temperature. Controls containing no enzyme (1x PBS pH 7,4) or RL9-HRV14 3C (SEQ ID NO. 21 ) were included. The reaction was terminated by adding >0.5 M AcOH at the end of the experiment. Using the conditions and general settings described in Example 6, LC-MS analysis of the enzymatic reactions was performed.
作为模型蛋白底物的as model protein substrates RL27_EVLFQGP_PYY(3-36)RL27_EVLFQGP_PYY(3-36)
分别使用1:20或1:100的酶底物摩尔比,建立蛋白酶28994、28996和28997与RL27-EVLFQGP-PYY(3-36)底物的温育,在37℃行反应3小时(如表8中所示)。通过LC-MS分析完整质量显示,当使用1:20的酶底物摩尔比时,蛋白酶28994、28996和28997在37℃温育3小时后能够将RL27_EVLFQGP_PYY(3-36)彻底加工成成熟的PYY(3-36) (SEQ ID NO: 18) (如实施例6中对20986所观察到的)。在1:100的酶底物比时,检测到较少量的PYY(3-36)以及GP-PYY(3-36) (反应6、8和10),反应不总是彻底的,因为检测到了完整融合蛋白。在1:100的比时,蛋白酶28996和28997提供最有效的切割,具有最低量的剩余GP-PYY(3-36),相对强度分别为成熟PYY(3-36)峰强度的约25%或约50%。含有RL9-HRV14 3C (SEQ ID NO.21)的对照仅得到GP_PYY(3-36)峰,显示XaaProDAP结构域负责完成反应以产生PYY(3-36)的天然N-末端,而不添加酶仅产生未加工的融合蛋白。实验显示,组合来自人鼻病毒或人柯萨奇病毒的3C蛋白酶与来自乳酸乳球菌或猪链球菌的XaaProDAP的不同融合蛋白酶变体可成功用于将RL27_EVLFQGP_PYY(3-36)加工成成熟PYY(3-36),其中Ile是正确的N-末端氨基酸残基。 Using the enzyme substrate molar ratio of 1:20 or 1:100 respectively, the incubation of protease 28994, 28996 and 28997 with the RL27-EVLFQGP-PYY (3-36) substrate was established, and the reaction was carried out at 37°C for 3 hours (as shown in Table 8). Intact mass analysis by LC-MS revealed that proteases 28994, 28996 and 28997 were able to completely process RL27_EVLFQGP_PYY(3-36) into mature PYY after incubation at 37°C for 3 hours when using an enzyme-substrate molar ratio of 1:20 (3-36) (SEQ ID NO: 18) (as observed for 20986 in Example 6). At an enzyme-substrate ratio of 1:100, lesser amounts of PYY(3-36) and GP-PYY(3-36) were detected (reactions 6, 8 and 10), and the reactions were not always complete because the detection to the complete fusion protein. At a ratio of 1:100, proteases 28996 and 28997 provided the most efficient cleavage with the lowest amount of remaining GP-PYY(3-36), with relative intensities of about 25% or About 50%. Contains RL9-HRV14 3C (SEQ ID The control of NO.21) only got GP_PYY(3-36) peak, showing that the XaaProDAP domain is responsible for completing the reaction to generate the natural N-terminus of PYY(3-36), and only unprocessed fusion protein was generated without adding enzyme. Experiments showed that combining different fusion protease variants of 3C protease from human rhinovirus or human Coxsackievirus with XaaProDAP from L. lactis or S. suis could be successfully used to process RL27_EVLFQGP_PYY(3-36) into mature PYY( 3-36), wherein Ile is the correct N-terminal amino acid residue.
表 8 :酶反应,使用来自实施例8的蛋白酶28994、28996和28997和作为底物的L27_EVLFQGP_PYY(3-36),均37℃下温育3小时。示出反应5-10的去卷积质谱中检测到的实验测定的主要峰。 Table 8 : Enzyme reactions using proteases 28994, 28996 and 28997 from Example 8 and L27_EVLFQGP_PYY(3-36) as substrate, both incubated at 37°C for 3 hours. The experimentally determined major peaks detected in the deconvoluted mass spectra of reactions 5-10 are shown.
作为模型蛋白底物的as model protein substrates RL27_EVLFQGP_RL27_EVLFQGP_ 胰高血糖素Glucagon
如上所述,建立蛋白酶20986、28994、28996和28997与RL27-EVLFQGP-胰高血糖素底物的温育。通过LC-MS分析完整质量显示,蛋白酶20986、28994、28996和28997均能够将RL27_EVLFQGP_胰高血糖素加工成成熟胰高血糖素,其中在总体效率和特异性方面观察到差异,使用1:100或1:500酶底物比以及使用4℃或37℃温育温度(图6-9)。对于蛋白酶20986、28996,1:500的酶底物比和4℃的温育温度(表9, 反应11和16))提供最优化的切割条件,其中彻底加工了融合蛋白且没有显著的非特异性切割(图6和8)。释放的胰高血糖素的测定质量与人野生型胰高血糖素的计算质量3482.8 Da一致(峰#1)。蛋白酶28994和28997的效率较差,在测试的条件下没有彻底加工全部的融合蛋白(对于蛋白酶28994),低强度的峰(峰 #3和#4)表示非常有限的非特异性切割(表9, 反应13(图7) 14和17(图9))。含有RL9-HRV14 3C (SEQ ID NO.21)的对照仅产生GP_胰高血糖素(反应18, 图10),显示 XaaProDAP 结构域负责完成反应以产生胰高血糖素 (SEQ ID NO: 19)的天然N-末端组氨酸。不添加酶仅产生未加工的融合蛋白,测定质量与不含起始甲硫氨酸的RL27_EVLFQGP_胰高血糖素的计算质量13787.1 Da一致。这表明,组合来自人鼻病毒或人柯萨奇病毒的小RNA病毒3C蛋白酶与来自乳酸乳球菌或猪链球菌的XaaProDAP的不同融合蛋白酶变体可被成功优化,以将RL27_EVLFQGP_胰高血糖素加工成成熟的胰高血糖素,其中His为正确的N-末端氨基酸残基,且不产生或产生极少的融合蛋白相关杂质。 Incubations of proteases 20986, 28994, 28996 and 28997 with RL27-EVLFQGP-glucagon substrate were established as described above. Intact mass analysis by LC-MS revealed that proteases 20986, 28994, 28996 and 28997 were all able to process RL27_EVLFQGP_glucagon into mature glucagon, where differences were observed in overall efficiency and specificity, using 1:100 Or 1:500 enzyme substrate ratio and use 4°C or 37°C incubation temperature (Figure 6-9). For proteases 20986, 28996, an enzyme substrate ratio of 1:500 and an incubation temperature of 4°C (Table 9, Reactions 11 and 16)) provided optimized cleavage conditions in which the fusion protein was fully processed without significant non-specificity Cut (Figures 6 and 8). The measured mass of released glucagon was consistent with the calculated mass of human wild-type glucagon of 3482.8 Da (peak #1). Proteases 28994 and 28997 were less efficient, the entire fusion protein was not fully processed (for Protease 28994) under the conditions tested, and low intensity peaks (peaks #3 and #4) indicated very limited non-specific cleavage (Table 9, Reaction 13 (Figure 7) 14 and 17 (Figure 9)). A control containing RL9-HRV14 3C (SEQ ID NO.21) produced only GP_glucagon (reaction 18, Figure 10), showing that the XaaProDAP domain is responsible for completing the reaction to produce glucagon (SEQ ID NO: 19) The natural N-terminal histidine. No added enzyme yielded only the unprocessed fusion protein, with a measured mass consistent with the calculated mass of 13787.1 Da for RL27_EVLFQGP_Glucagon without the starting methionine. This suggests that combining different fusion protease variants of picornavirus 3C protease from human rhinovirus or human coxsackievirus with XaaProDAP from L. lactis or S. suis can be successfully optimized to convert RL27_EVLFQGP_glucagon Processed to mature glucagon, where His is the correct N-terminal amino acid residue, with little or no fusion protein-related impurities.
表 9. 酶反应,使用蛋白酶20986、28994、28996和28997以及作为底物的RL27_EVLFQGP_胰高血糖素,在4℃温育过夜。示出反应11-18的去卷积质谱中检测到的实验测定的主要峰。 Table 9. Enzyme reactions using proteases 20986, 28994, 28996 and 28997 and RL27_EVLFQGP_glucagon as substrate, incubated overnight at 4°C. The experimentally determined major peaks detected in the deconvoluted mass spectra of reactions 11-18 are shown.
作为模型蛋白底物的as model protein substrates RL27_EVLFQGP_GLP-1(7-37,K34R)RL27_EVLFQGP_GLP-1 (7-37, K34R)
如上所述,建立蛋白酶20986、28994、28996和28997与RL27_EVLFQGP_GLP-1(7-37,K34R)底物的温育。通过LC-MS分析完整质量显示,蛋白酶20986、28994、28996和28997均能够将RL27_EVLFQGP_GLP-1完全加工成成熟GLP-1(7-37,K34R),测定分子量对应于计算质量3382,7 Da (表10, 图11-14)。在总体效率和特异性方面观察到微小的差异,使用1:100或1:500的酶底物比以及4℃或37℃作为温育温度。观察到的非特异性片段主要是GLP-1(9-37, K34R) (计算质量3174,6 Da),其中由GLP-1序列除去了额外的二肽。在该实验设定中,最佳切割条件在4℃获得,其中彻底加工融合蛋白且具有非常有限的或不具有非特异性切割。蛋白酶28994效率较差(反应21 (图12)和22, 表10),因为在温育后观察到剩余的融合蛋白。蛋白酶28996提供融合蛋白的彻底加工,并释放成熟GLP-1(7-37, K34R),其中利用37℃ 3h未观察到非特异性切割(未示出)。 Incubation of proteases 20986, 28994, 28996 and 28997 with RL27_EVLFQGP_GLP-1 (7-37, K34R) substrate was established as described above. Intact mass analysis by LC-MS showed that proteases 20986, 28994, 28996 and 28997 were all able to fully process RL27_EVLFQGP_GLP-1 into mature GLP-1(7-37,K34R), with a determined molecular weight corresponding to a calculated mass of 3382,7 Da (Table 10, Figures 11-14). Minor differences were observed in overall efficiency and specificity, using enzyme substrate ratios of 1:100 or 1:500 and incubation temperatures of 4°C or 37°C. The observed non-specific fragment was mainly GLP-1(9-37, K34R) (calculated mass 3174,6 Da), from which the extra dipeptide was removed from the GLP-1 sequence. In this experimental setup, optimal cleavage conditions were obtained at 4°C, where the fusion protein was fully processed with very limited or no non-specific cleavage. Protease 28994 was less efficient (reactions 21 (Figure 12) and 22, Table 10) as residual fusion protein was observed after incubation. Protease 28996 provided complete processing of the fusion protein and released mature GLP-1(7-37, K34R), where no non-specific cleavage was observed with 37°C for 3h (not shown).
最有效的反应获自蛋白酶20986,其优化切割条件使用1:500的酶底物比以及4℃温育过夜,没有可检测的来自非特异性或不完全加工的片段分布(反应20, 图11)。蛋白酶28996和28997获得类似结果(反应23 (图13) & 25(图14)),其几乎排它性地产生完全加工的成熟GLP-1(7-37,K34R),使用1:100的酶底物比以及4℃温育过夜,而在以1:500的比温育后,可检测到少但可检测到的量的未加工的GP-GLP-1(7-37,K34R) (成熟峰强度的约10%) (反应24 & 26))。含有RL9-HRV14 3C (SEQ ID NO:21)的对照仅产生预期的GP_GLP-1(7-37,K34R) (反应27, 图15),显示融合蛋白酶的XaaProDAP酶结构域负责提供GLP-1中的天然N-末端组氨酸(7-37, K34R)。不添加酶仅产生未加工的融合蛋白,测定质量与计算质量13688.1 Da一致,对应于不含起始甲硫氨酸的RL27_EVLFQGP_GLP-1(7-37,K34R)。因此,组合来自人鼻病毒或人柯萨奇病毒的小RNA病毒3C蛋白酶与来自乳酸乳球菌或猪链球菌的XaaProDAP的不同融合蛋白酶变体可被优化,以将RL27_EVLFQGP_GLP-1(7-37,K34R)加工成成熟的GLP-1(7-37,K34R) (SEQ ID NO:20),其中His为正确的N-末端且不产生或产生非常有限的融合蛋白相关杂质。 The most efficient reaction was obtained from Protease 20986 with optimized cleavage conditions using an enzyme substrate ratio of 1:500 and overnight incubation at 4°C with no detectable distribution of fragments from non-specific or incomplete processing (Reaction 20, Figure 11) . Similar results were obtained with proteases 28996 and 28997 (reactions 23 (Figure 13) & 25 (Figure 14)), which almost exclusively produced fully processed mature GLP-1(7-37, K34R), using a 1:100 ratio of enzyme Substrate ratio and overnight incubation at 4°C, while a small but detectable amount of unprocessed GP-GLP-1(7-37,K34R) (mature ~10% of the peak intensity) (reactions 24 & 26)). Contains RL9-HRV14 3C (SEQ ID NO:21) control produced only the expected GP_GLP-1(7-37,K34R) (reaction 27, Figure 15), showing that the XaaProDAP enzyme domain of the fusion protease is responsible for supplying the native N-terminal histidine in GLP-1 (7-37, K34R). No addition of enzyme yielded only the unprocessed fusion protein, with a measured and calculated mass of 13688.1 Da, corresponding to RL27_EVLFQGP_GLP-1 (7-37, K34R) without the starting methionine. Therefore, different fusion protease variants combining picornavirus 3C protease from human rhinovirus or human coxsackievirus with XaaProDAP from L. lactis or S. suis can be optimized to convert RL27_EVLFQGP_GLP-1(7-37, K34R) into mature GLP-1 (7-37, K34R) (SEQ ID NO:20) with His as the correct N-terminus and with no or very limited fusion protein-associated impurities.
表 10. 酶反应,使用蛋白酶20986、28994、28996和28997以及作为底物的RL27_EVLFQGP_GLP-1(7-37,K34R),4℃温育过夜。示出反应19-27的去卷积质谱中检测到的实验测定的主要峰。 Table 10. Enzyme reactions using proteases 20986, 28994, 28996 and 28997 and RL27_EVLFQGP_GLP-1 (7-37, K34R) as substrate, incubated overnight at 4°C. The experimentally determined major peaks detected in the deconvoluted mass spectra of reactions 19-27 are shown.
虽然在此阐述和说明了本发明的一些特征,但是本领域技术人员现在会想到许多改变、替换、变化和等效物。因此,应当理解所附权利要求旨在覆盖落入本发明的真正精神范围内的所有这种改变和变化。 While certain features of the invention have been illustrated and described herein, many changes, substitutions, changes and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such changes and changes as fall within the true spirit of the invention.
Claims (15)
Applications Claiming Priority (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13169173.5 | 2013-05-24 | ||
EP13169173 | 2013-05-24 | ||
EP13171191 | 2013-06-10 | ||
EP13171191.3 | 2013-06-10 | ||
US201361834100P | 2013-06-12 | 2013-06-12 | |
US61/834100 | 2013-06-12 | ||
EP13194053 | 2013-11-22 | ||
EP13194053.8 | 2013-11-22 | ||
US201361909412P | 2013-11-27 | 2013-11-27 | |
US61/909412 | 2013-11-27 | ||
PCT/EP2014/060696 WO2014187974A1 (en) | 2013-05-24 | 2014-05-23 | Fusion protease |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105247067A true CN105247067A (en) | 2016-01-13 |
Family
ID=51932984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480029964.7A Withdrawn CN105247067A (en) | 2013-05-24 | 2014-05-23 | fusion protease |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160122793A1 (en) |
EP (1) | EP3004369A1 (en) |
JP (1) | JP2016518855A (en) |
CN (1) | CN105247067A (en) |
WO (2) | WO2014187960A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110128540A (en) * | 2019-04-18 | 2019-08-16 | 江南大学 | A broad-spectrum secondary antibody based on a portable blood glucose meter |
CN112011497A (en) * | 2020-08-28 | 2020-12-01 | 上海交通大学 | Recombinant lactococcus lactis secreting and expressing swine-derived enterotoxigenic escherichia coli K88-resistant pilus single-chain antibody and preparation method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160060310A1 (en) * | 2014-08-27 | 2016-03-03 | Daewoong Jo | Development of Protein-Based Biotherapeutics That Penetrates Cell-Membrane and Induces Anti-Hepatocellular Carcinoma Effect - Improved Cell-Permeable Suppressor of Cytokine Signaling (iCP-SOCS3) Proteins, Polynucleotides Encoding the Same, and Anti-Hepatocellular Carcinoma Compositions Comprising the Same |
CN110592057B (en) * | 2019-09-27 | 2022-01-28 | 昆明理工大学 | Chimeric lyase ILTphg and polynucleotides encoding same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1200773A (en) * | 1980-02-29 | 1986-02-18 | William J. Rutter | Expression linkers |
US4769326A (en) * | 1980-02-29 | 1988-09-06 | The Regents Of The University Of California | Expression linkers |
NZ236819A (en) * | 1990-02-03 | 1993-07-27 | Max Planck Gesellschaft | Enzymatic cleavage of fusion proteins; fusion proteins; recombinant dna and pharmaceutical compositions |
-
2014
- 2014-05-23 EP EP14726158.0A patent/EP3004369A1/en not_active Withdrawn
- 2014-05-23 WO PCT/EP2014/060669 patent/WO2014187960A1/en not_active Application Discontinuation
- 2014-05-23 CN CN201480029964.7A patent/CN105247067A/en not_active Withdrawn
- 2014-05-23 US US14/889,993 patent/US20160122793A1/en not_active Abandoned
- 2014-05-23 JP JP2016514440A patent/JP2016518855A/en not_active Withdrawn
- 2014-05-23 WO PCT/EP2014/060696 patent/WO2014187974A1/en active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110128540A (en) * | 2019-04-18 | 2019-08-16 | 江南大学 | A broad-spectrum secondary antibody based on a portable blood glucose meter |
CN110128540B (en) * | 2019-04-18 | 2021-12-14 | 江南大学 | A secondary antibody based on a portable blood glucose meter |
CN112011497A (en) * | 2020-08-28 | 2020-12-01 | 上海交通大学 | Recombinant lactococcus lactis secreting and expressing swine-derived enterotoxigenic escherichia coli K88-resistant pilus single-chain antibody and preparation method thereof |
CN112011497B (en) * | 2020-08-28 | 2022-06-07 | 上海交通大学 | Recombinant lactococcus lactis for secretory expression of swine-derived enterotoxigenic escherichia coli K88 pilus single-chain antibody and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
EP3004369A1 (en) | 2016-04-13 |
WO2014187960A1 (en) | 2014-11-27 |
JP2016518855A (en) | 2016-06-30 |
US20160122793A1 (en) | 2016-05-05 |
WO2014187974A1 (en) | 2014-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12054541B2 (en) | Split inteins, conjugates and uses thereof | |
Yadav et al. | An insight into fusion technology aiding efficient recombinant protein production for functional proteomics | |
JP5823483B2 (en) | Processing enzyme fused to a basic protein tag | |
CN107406483B (en) | Microbial transglutaminase, substrates thereof, and methods of use thereof | |
JP2019506163A (en) | Split intein with exceptional splicing activity | |
CN116199733A (en) | Methods and products for fusion protein synthesis | |
US20110189754A1 (en) | Fusion protein comprising an e. coli chaperone protein and a human chaperone protein | |
CN109072203B (en) | Mirror image nucleic acid replication system | |
CN105247067A (en) | fusion protease | |
ES2321058T7 (en) | Purification of recombinant proteins fused with multiple epitopes | |
Malik et al. | A novel fusion protein system for the production of native human pepsinogen in the bacterial periplasm | |
EP1527181A1 (en) | Staphylococcal nuclease fusion proteins for the production of recombinant peptides | |
JP2024513126A (en) | Polypeptides that interact with peptide tags at their loops or ends and their uses | |
JP2010071744A (en) | Method and kit for screening compound | |
JP4891581B2 (en) | Polypeptide production method and kit | |
CN101381739B (en) | A periplasmic secretion fusion expression type pre-T vector and its preparation and application | |
JP5020487B2 (en) | Novel DNA for expression of fusion protein and method for producing protein using the DNA | |
JP2018000174A (en) | Polynucleotide encoding human fcrn and method for producing human fcrn using the polynucleotide | |
US20140065673A1 (en) | Membrane protein expression vector comprising major envelope protein p9 of systovirus phi12 as a fusion partner and method for producing membrane protein using the same | |
EP2558482B1 (en) | Engineered plant cysteine proteases and their uses | |
Ramesh | Engineering Substrate Specificity of Mammalian Proteases | |
KR20210079235A (en) | Method for enhancing soluble expression of target proteins by using fusion protein of whep domain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20160113 |
|
WW01 | Invention patent application withdrawn after publication |