CN105244445B - A kind of preparation method of hybrid heterojunctions solar cell - Google Patents
A kind of preparation method of hybrid heterojunctions solar cell Download PDFInfo
- Publication number
- CN105244445B CN105244445B CN201510790442.5A CN201510790442A CN105244445B CN 105244445 B CN105244445 B CN 105244445B CN 201510790442 A CN201510790442 A CN 201510790442A CN 105244445 B CN105244445 B CN 105244445B
- Authority
- CN
- China
- Prior art keywords
- film layer
- conductive glass
- glass substrate
- p3ht
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 40
- 239000011521 glass Substances 0.000 claims abstract description 64
- 239000000758 substrate Substances 0.000 claims abstract description 50
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 47
- 239000010408 film Substances 0.000 claims abstract description 34
- 239000010409 thin film Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 26
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 14
- 238000000151 deposition Methods 0.000 claims abstract description 10
- 238000001755 magnetron sputter deposition Methods 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 6
- 238000002207 thermal evaporation Methods 0.000 claims abstract description 6
- 238000004528 spin coating Methods 0.000 claims abstract description 5
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims abstract 13
- 229910052959 stibnite Inorganic materials 0.000 claims abstract 6
- 239000002073 nanorod Substances 0.000 claims description 46
- 239000002120 nanofilm Substances 0.000 claims description 26
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000008367 deionised water Substances 0.000 claims description 12
- 229910021641 deionized water Inorganic materials 0.000 claims description 12
- 239000002131 composite material Substances 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 238000003491 array Methods 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 238000002425 crystallisation Methods 0.000 claims description 6
- 230000008025 crystallization Effects 0.000 claims description 6
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 6
- 239000002243 precursor Substances 0.000 claims description 6
- 239000000243 solution Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 4
- DAMJCWMGELCIMI-UHFFFAOYSA-N benzyl n-(2-oxopyrrolidin-3-yl)carbamate Chemical compound C=1C=CC=CC=1COC(=O)NC1CCNC1=O DAMJCWMGELCIMI-UHFFFAOYSA-N 0.000 claims description 3
- 238000003760 magnetic stirring Methods 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- -1 polytetrafluoroethylene Polymers 0.000 claims description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 229910052731 fluorine Inorganic materials 0.000 claims description 2
- 239000011737 fluorine Substances 0.000 claims description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 claims description 2
- 235000019345 sodium thiosulphate Nutrition 0.000 claims description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 1
- CFOAUMXQOCBWNJ-UHFFFAOYSA-N [B].[Si] Chemical compound [B].[Si] CFOAUMXQOCBWNJ-UHFFFAOYSA-N 0.000 claims 1
- 239000011575 calcium Substances 0.000 claims 1
- 229910052791 calcium Inorganic materials 0.000 claims 1
- 230000008021 deposition Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000007788 liquid Substances 0.000 abstract description 4
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 238000004134 energy conservation Methods 0.000 abstract 1
- 239000012528 membrane Substances 0.000 abstract 1
- 238000004064 recycling Methods 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 13
- 230000031700 light absorption Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- JEDHEMYZURJGRQ-UHFFFAOYSA-N 3-hexylthiophene Chemical compound CCCCCCC=1C=CSC=1 JEDHEMYZURJGRQ-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229940007424 antimony trisulfide Drugs 0.000 description 2
- NVWBARWTDVQPJD-UHFFFAOYSA-N antimony(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[Sb+3].[Sb+3] NVWBARWTDVQPJD-UHFFFAOYSA-N 0.000 description 2
- 238000005234 chemical deposition Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 238000006303 photolysis reaction Methods 0.000 description 2
- 230000015843 photosynthesis, light reaction Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004098 selected area electron diffraction Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
- H10K30/35—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
- H10K30/35—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
- H10K30/352—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/80—Constructional details
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Electromagnetism (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
技术领域:Technical field:
本发明属于太阳能电池制备技术领域,涉及一种杂化异质结太阳能电池的制备方法,通过提高二氧化钛(TiO2)纳米棒阵列的光吸收范围和光生载流子迁移率、降低光生载流子的复合率,增强杂化异质结太阳能电池的光电转化性能。The invention belongs to the technical field of solar cell preparation, and relates to a method for preparing a hybrid heterojunction solar cell, which reduces the photogenerated carrier by increasing the light absorption range and photogenerated carrier mobility of titanium dioxide (TiO 2 ) nanorod arrays. The recombination rate can enhance the photoelectric conversion performance of hybrid heterojunction solar cells.
背景技术:Background technique:
随着世界经济的快速发展,以煤、石油和天然气为主的化石能源被大量消耗,同时造成了严重的环境污染问题,研究和开发可再生的和可替代的新能源对实现人类社会的可持续发展具有重大的战略意义。太阳能具有绿色、可再生和永不枯竭的特点,是最有潜力替代化石燃料的能源。太阳能电池又称为太阳能芯片和光电池,是通过光电效应或者光化学效应直接把光能转化成电能的装置,利用太阳光直接发电的光电半导体薄片,只要被光照到,瞬间就可输出电压在有回路的情况下产生电流,在物理学上称为太阳能光伏,简称光伏。太阳能电池以光电效应工作的薄膜式太阳能电池为主流,以光化学效应工作的实施太阳能电池还处于萌芽阶段;在现有技术中,晶体硅太阳能电池存在制造工艺复杂,成本高和污染环境的问题,并且受制于其材料引发的光电效率衰退效应,稳定性不高,影响实际应用。有机-无机杂化异质结太阳能电池具有材料种类多,制备工艺简单,原料价格低廉,可制备大面积和可弯曲器件的优点,应用前景广阔。TiO2由于具有优良抗光腐蚀的能力和光电化学性能,被广泛地应用于太阳能电池、光催化和光解水制氢领域。中国专利申请号为201410641369.0的火柴状TiO2纳米颗粒和纳米棒复合阵列的制备方法公开了用水热法在透明导电玻璃衬底上制备出二氧化钛纳米棒阵列,以高纯金属Ti作为溅射靶材,通过直流磁控溅射法,在制备好的二氧化钛纳米棒顶端表面沉积Ti纳米颗粒,通过空气中的退火晶化,形成火柴状TiO2纳米颗粒和纳米棒复合阵列;相比较传统的纳米颗粒材料,该一维阵列结构可以为载流子传输提供直接通道,减少传输电阻和载流子复合,并且能够增大入射光的散射效果,提高光吸收效率。中国专利申请号为201510016012.8的有机-无机杂化太阳能电池及其制备方法公开的电池的结构中,在TiO2纳米棒阵列与p型有机聚合物聚-3-己基噻吩之间沉积了一层三苯胺,以提高空穴的迁移率。然而由于TiO2禁带宽度比较大,以上专利均存在光谱响应范围窄,太阳光利用率较低的缺点,从而导致太阳能电池的光电转换效率较低。至今还未见有人报道过既能改善TiO2纳米棒阵列异质结太阳能电池的界面接触效果,又能拓宽其光吸收范围的研究工作。因此,在采用具有高比表面积和优良电子传输性能的TiO2纳米棒阵列的同时改进杂化异质结太阳能电池的结构,能够保证杂化异质结太阳能电池具有光吸收效率高、电子-空穴的复合几率低和载流子迁移率高等优点,获得较大的电流密度和较高的光电转化效率,推进杂化异质结太阳能电池的实用化进程,具有良好的社会和经济价值,应用前景广阔。With the rapid development of the world economy, fossil energy such as coal, oil and natural gas has been consumed in large quantities, and at the same time it has caused serious environmental pollution problems. Sustained development is of great strategic significance. Solar energy is green, renewable and inexhaustible, and it is the energy source with the most potential to replace fossil fuels. Solar cells, also known as solar chips and photocells, are devices that directly convert light energy into electrical energy through the photoelectric effect or photochemical effect. The photoelectric semiconductor sheet that uses sunlight to directly generate electricity can output voltage instantly as long as it is illuminated. In the case of generating electricity, it is called solar photovoltaic in physics, or photovoltaic for short. Thin-film solar cells that work with photoelectric effect are the mainstream of solar cells, and the implementation of solar cells that work with photochemical effects is still in its infancy; in the prior art, crystalline silicon solar cells have the problems of complicated manufacturing process, high cost and environmental pollution. Moreover, due to the degradation effect of photoelectric efficiency caused by its materials, the stability is not high, which affects practical applications. Organic-inorganic hybrid heterojunction solar cells have the advantages of a wide variety of materials, simple preparation processes, low raw material prices, large-area and bendable devices, and broad application prospects. Due to its excellent photocorrosion resistance and photoelectrochemical properties, TiO 2 is widely used in the fields of solar cells, photocatalysis and hydrogen production by photolysis of water. Chinese Patent Application No. 201410641369.0 for the preparation of match-like TiO2 nanoparticles and nanorod composite arrays discloses the preparation of titanium dioxide nanorod arrays on transparent conductive glass substrates by hydrothermal method, using high-purity metal Ti as the sputtering target , by DC magnetron sputtering method, Ti nanoparticles are deposited on the top surface of the prepared titanium dioxide nanorods, and through annealing and crystallization in air, a match-like TiO 2 nanoparticle and nanorod composite array is formed; compared with the traditional nanoparticle material, the one-dimensional array structure can provide a direct channel for carrier transmission, reduce transmission resistance and carrier recombination, and can increase the scattering effect of incident light and improve light absorption efficiency. In the structure of the battery disclosed in the Chinese patent application number 201510016012.8 of the organic-inorganic hybrid solar cell and its preparation method, a layer of three aniline to enhance hole mobility. However, due to the relatively large band gap of TiO 2 , the above patents all have the disadvantages of narrow spectral response range and low utilization rate of sunlight, resulting in low photoelectric conversion efficiency of solar cells. So far, no one has reported the research work that can not only improve the interface contact effect of TiO 2 nanorod array heterojunction solar cells, but also broaden its light absorption range. Therefore, improving the structure of hybrid heterojunction solar cells while adopting TiO2 nanorod arrays with high specific surface area and excellent electron transport performance can ensure that hybrid heterojunction solar cells have high light absorption efficiency, electron-space With the advantages of low recombination probability of holes and high carrier mobility, it can obtain higher current density and higher photoelectric conversion efficiency, and promote the practical process of hybrid heterojunction solar cells, which has good social and economic value. bright future.
发明内容:Invention content:
本发明的目的在于克服现有技术存在的缺点,寻求设计一种杂化异质结太阳能电池的制备方法,旨在提高TiO2纳米棒阵列的光吸收范围和光生载流子迁移率,降低光生载流子的复合率,从而提高杂化异质结太阳能电池的电流密度和光电转化性能。The purpose of the present invention is to overcome the shortcomings of the prior art, and seek to design a preparation method for hybrid heterojunction solar cells, aiming to improve the light absorption range and photogenerated carrier mobility of TiO2 nanorod arrays, and reduce the photogenerated energy. The recombination rate of carriers can improve the current density and photoelectric conversion performance of hybrid heterojunction solar cells.
为了实现上述目的,本发明涉及的杂化异质结太阳能电池的制备方法包括制备导电玻璃基底、制备有序TiO2纳米棒阵列薄膜层、制备三硫化二锑(Sb2S3)纳米薄膜层、制备3-己基噻吩(P3HT)纳米薄膜层和制备银(Ag)薄膜电极五个步骤:In order to achieve the above object, the preparation method of the hybrid heterojunction solar cell involved in the present invention includes preparing a conductive glass substrate, preparing an ordered TiO 2 nanorod array thin film layer, and preparing an antimony trisulfide (Sb 2 S 3 ) nano thin film layer , Preparation of 3-hexylthiophene (P3HT) nano film layer and preparation of silver (Ag) film electrode five steps:
(1)、制备导电玻璃基底:将厚度为0.8-2mm的导电玻璃裁剪成尺寸为1-4cm×1-4cm的正方形或长方形,依次用丙酮、乙醇和去离子水超声清洗后用氮气吹干,完成导电玻璃基底的制备;(1) Prepare the conductive glass substrate: Cut the conductive glass with a thickness of 0.8-2mm into a square or rectangle with a size of 1-4cm×1-4cm, clean it sequentially with acetone, ethanol and deionized water, and blow it dry with nitrogen , completing the preparation of the conductive glass substrate;
(2)、制备有序TiO2纳米棒阵列薄膜层:将0.2-0.4ml钛源、10-15ml质量百分比浓度为37%的盐酸(HCl)水溶液和20ml去离子水在磁力搅拌下混合均匀,得到20-30ml的TiO2前驱体溶液,将导电玻璃基底和TiO2前驱体溶液置于容积为50ml和内衬为聚四氟乙烯的不锈钢反应釜中,在90-150℃的条件下进行一步低温水热反应2-24h后将导电玻璃基底取出,再用去离子水清洗导电玻璃基底后在60-150℃的空气中干燥,得到包裹有有序TiO2纳米棒阵列薄膜层的导电玻璃基底,完成有序TiO2纳米棒阵列薄膜层的制备;(2), preparation of ordered TiO nanorod array thin film layer: 0.2-0.4ml titanium source, 10-15ml mass percentage concentration are 37 % hydrochloric acid (HCl) aqueous solution and 20ml deionized water mix under magnetic stirring, To obtain 20-30ml of TiO2 precursor solution, place the conductive glass substrate and TiO2 precursor solution in a stainless steel reaction kettle with a volume of 50ml and lined with polytetrafluoroethylene, and conduct a step at 90-150°C After low-temperature hydrothermal reaction for 2-24 hours, take out the conductive glass substrate, wash the conductive glass substrate with deionized water, and dry it in the air at 60-150°C to obtain a conductive glass substrate wrapped with an ordered TiO2 nanorod array film layer , to complete the preparation of ordered TiO2 nanorod array film layer;
(3)、制备Sb2S3纳米薄膜层:将体积为30mL和浓度为0.01-0.04mol/L的三氯化锑(SbCl3)与体积为30mL和浓度为0.1-0.4mol/L的硫代硫酸钠(Na2S2O3)倒入烧杯中混合均匀,采用常规的化学液相沉积法将步骤(2)得到的导电玻璃基底置于烧杯中在0℃的条件下沉积1-5h,取出导电玻璃基底并用去离子水清洗后在氮气气氛中烘干,然后将导电玻璃基底置于250-400℃条件下的氮气气氛中退火晶化1-3h,得到包裹有TiO2/Sb2S3复合纳米棒阵列薄膜层的导电玻璃基底,完成Sb2S3纳米薄膜层的制备;(3), preparation of Sb 2 S 3 nano film layer: antimony trichloride (SbCl 3 ) with a volume of 30 mL and a concentration of 0.01-0.04 mol/L and sulfur with a volume of 30 mL and a concentration of 0.1-0.4 mol/L Sodium sulfite (Na 2 S 2 O 3 ) is poured into a beaker and mixed evenly, and the conductive glass substrate obtained in step (2) is placed in a beaker by conventional chemical liquid deposition method and deposited at 0°C for 1-5h , take out the conductive glass substrate and wash it with deionized water, then dry it in a nitrogen atmosphere, then place the conductive glass substrate in a nitrogen atmosphere at 250-400°C for annealing and crystallization for 1-3 hours, and obtain a TiO 2 /Sb 2 coated Conductive glass substrate of S 3 composite nanorod array film layer, and complete the preparation of Sb 2 S 3 nano film layer;
(4)、制备P3HT纳米薄膜层:采用常规的旋转涂膜法在步骤(4)制得的导电玻璃基底的表面沉积一层P3HT在150℃条件下退火0.5-2h,得到包裹有TiO2/Sb2S3/P3HT复合纳米棒阵列薄膜层的导电玻璃基底,完成P3HT纳米薄膜层的制备;(4) Preparation of P3HT nano film layer: a layer of P3HT is deposited on the surface of the conductive glass substrate prepared in step (4) by conventional spin coating method and annealed at 150°C for 0.5-2h to obtain TiO 2 / The conductive glass substrate of the Sb 2 S 3 /P3HT composite nanorod array film layer, and the preparation of the P3HT nano film layer is completed;
(5)、制备Ag薄膜电极:在真空条件下使用常规的热蒸镀法或磁控溅射法在步骤(4)制得的导电玻璃基底的表面镀Ag电极,得到TiO2/Sb2S3/P3HT杂化异质结太阳能电池。(5), preparation of Ag thin-film electrodes: under vacuum conditions, use conventional thermal evaporation or magnetron sputtering to plate Ag electrodes on the surface of the conductive glass substrate prepared in step (4), to obtain TiO 2 /Sb 2 S 3 /P3HT hybrid heterojunction solar cells.
本发明涉及的导电玻璃包括FTO导电玻璃和ITO导电玻璃,FTO导电玻璃是掺杂氟的二氧化锡(SnO2)的透明导电玻璃;ITO导电玻璃是在钠钙基或硅硼基基片玻璃上镀一层氧化铟锡膜加工制成。The conductive glass that the present invention relates to comprises FTO conductive glass and ITO conductive glass, and FTO conductive glass is the transparent conductive glass of tin dioxide (SnO 2 ) doped with fluorine; It is made by coating a layer of indium tin oxide film.
本发明涉及的钛源包括钛酸异丙酯(TTIP)和钛酸丁酯(TBT)。The titanium sources involved in the present invention include isopropyl titanate (TTIP) and butyl titanate (TBT).
本发明涉及的P3HT是p型P3HT。The P3HT involved in the present invention is p-type P3HT.
本发明制备的杂化异质结太阳能电池具有光电转化效率高,使用寿命长,能量转化效率高和电能稳定的优点;在杂化异质结太阳能电池上添加界面修饰层以提高其光电转换性能,对推动杂化异质结太阳能电池的实用化进程有重要意义。The hybrid heterojunction solar cell prepared by the invention has the advantages of high photoelectric conversion efficiency, long service life, high energy conversion efficiency and stable electric energy; an interface modification layer is added to the hybrid heterojunction solar cell to improve its photoelectric conversion performance , which is of great significance to promote the practical process of hybrid heterojunction solar cells.
本发明与现有技术相比,采用一步低温水热法制备有序TiO2纳米棒阵列薄膜层,再采用简便易行的化学液相沉积法在有序TiO2纳米棒阵列薄膜层的表面沉积Sb2S3形成Sb2S3纳米薄膜层,然后采用旋转涂膜法在Sb2S3纳米薄膜层的表面沉积P3HT形成P3HT纳米薄膜层,最后采用热蒸镀法或磁控溅射法在P3HT纳米薄膜层的表面镀Ag电极,制备得到TiO2/Sb2S3/P3HT无机-有机杂化异质结太阳能电池;其工艺简单可控,原理科学合理,能耗和生产成本低,操作性强,使用环境友好,能够回收再利用,易于大规模生产和推广使用,对环保有重要的积极意义。Compared with the prior art, the present invention adopts a one-step low-temperature hydrothermal method to prepare ordered TiO2 nanorod array thin film layer, and then adopts a simple and easy chemical liquid phase deposition method to deposit on the surface of ordered TiO2 nanorod array thin film layer Sb 2 S 3 forms a Sb 2 S 3 nanometer film layer, and then uses the spin coating method to deposit P3HT on the surface of the Sb 2 S 3 nanometer film layer to form a P3HT nanometer film layer, and finally adopts thermal evaporation or magnetron sputtering on the surface of the Sb 2 S 3 nanometer film layer. The surface of the P3HT nano film layer is plated with Ag electrodes to prepare TiO 2 /Sb 2 S 3 /P3HT inorganic-organic hybrid heterojunction solar cells; the process is simple and controllable, the principle is scientific and reasonable, the energy consumption and production cost are low, and the operation Strong, environmentally friendly, can be recycled and reused, easy to mass production and promotion of use, and has important positive significance for environmental protection.
附图说明:Description of drawings:
图1为本发明制备的杂化异质结太阳能电池的结构原理示意图。Fig. 1 is a schematic diagram of the structure and principle of the hybrid heterojunction solar cell prepared in the present invention.
图2为本发明实施例1制备的FTO导电玻璃基底和有序TiO2纳米棒阵列薄膜层的XRD图谱,有序TiO2纳米棒阵列薄膜层为金红石型。Fig. 2 is the XRD spectrum of the FTO conductive glass substrate and the ordered TiO2 nanorod array thin film layer prepared in Example 1 of the present invention, and the ordered TiO2 nanorod array thin film layer is rutile type.
图3为本发明实施例制备的有序TiO2纳米棒阵列薄膜层的扫描电镜照片(a)和能谱图(b)。Fig. 3 is a scanning electron micrograph (a) and an energy spectrum (b) of an ordered TiO 2 nanorod array film layer prepared in an embodiment of the present invention.
图4为本发明实施例1制备的有序TiO2纳米棒阵列薄膜层的低倍透射电镜照片和选区电子衍射图,有序TiO2纳米棒阵列薄膜层为单晶金红石型。Figure 4 is a low magnification transmission electron microscope photograph and a selected area electron diffraction pattern of the ordered TiO2 nanorod array thin film layer prepared in Example 1 of the present invention, and the ordered TiO2 nanorod array thin film layer is a single crystal rutile type.
图5为本发明实施例7制备的有序TiO2纳米棒阵列薄膜层在FTO导电玻璃基底上的扫描电镜照片,其中a、c和d为俯视图,b为45°斜视图。Figure 5 is a scanning electron micrograph of the ordered TiO nanorod array film layer prepared in Example 7 of the present invention on the FTO conductive glass substrate, wherein a, c and d are top views, and b is a 45° oblique view.
图6为本发明实施例8、实施例9和实施例10制备的有序TiO2纳米棒阵列薄膜层在FTO导电玻璃基底上的扫描电镜照片,其中a和c为仰视图,b和d为45°斜视图。Fig. 6 is the scanning electron micrograph of ordered TiO nanorod array thin film layer on the FTO conductive glass substrate prepared by embodiment 8, embodiment 9 and embodiment 10 of the present invention, wherein a and c are bottom views, b and d are 45° oblique view.
图7为本发明实施例14制备的Sb2S3纳米薄膜层的扫描电镜照片,其中a和c为仰视图,b和d为截面图。Fig. 7 is a scanning electron micrograph of the Sb 2 S 3 nano film layer prepared in Example 14 of the present invention, wherein a and c are bottom views, and b and d are cross-sectional views.
具体实施方式:Detailed ways:
下面通过实施例并结合附图对本发明作进一步说明。The present invention will be further described below by way of embodiments and in conjunction with the accompanying drawings.
实施例1:Example 1:
本实施例涉及的杂化异质结太阳能电池的制备方法包括制备导电玻璃基底、制备有序TiO2纳米棒阵列薄膜层、制备三硫化二锑(Sb2S3)纳米薄膜层、制备3-己基噻吩(P3HT)纳米薄膜层和制备银(Ag)薄膜电极五个步骤:The preparation method of the hybrid heterojunction solar cell involved in this example includes preparing a conductive glass substrate, preparing an ordered TiO 2 nanorod array thin film layer, preparing an antimony trisulfide (Sb 2 S 3 ) nano thin film layer, preparing a 3- Hexylthiophene (P3HT) nano film layer and five steps for preparing silver (Ag) film electrode:
(1)、制备导电玻璃基底:将厚度为0.8mm的FTO透明导电玻璃裁剪成尺寸为1cm×1cm的正方形,依次用丙酮、乙醇和去离子水超声清洗后用氮气吹干,完成导电玻璃基底的制备;(1) Preparation of conductive glass substrate: Cut the FTO transparent conductive glass with a thickness of 0.8mm into a square with a size of 1cm×1cm, ultrasonically clean it with acetone, ethanol and deionized water in turn, and dry it with nitrogen to complete the conductive glass substrate the preparation of
(2)、制备有序TiO2纳米棒阵列薄膜层:将0.2ml的TTIP、10ml质量百分比为37%的盐酸(HCl)水溶液和20ml去离子水在磁力搅拌下混合均匀,得到30ml的TiO2前驱体溶液,将导电玻璃基底和TiO2前驱体溶液置于容积为50ml和内衬为聚四氟乙烯的不锈钢反应釜中,在130℃的条件下进行一步低温水热反应15h后将导电玻璃基底取出,用去离子水清洗导电玻璃基底后在60℃的空气中干燥,得到包裹有有序TiO2纳米棒阵列薄膜层的导电玻璃基底,完成有序TiO2纳米棒阵列薄膜层的制备;(2), preparation of ordered TiO nanorod array thin film layer: the TTIP of 0.2ml , 10ml mass percent are 37% hydrochloric acid (HCl) aqueous solution and 20ml deionized water mix under magnetic stirring, obtain the TiO of 30ml 2 Precursor solution, the conductive glass substrate and TiO 2 precursor solution were placed in a stainless steel reactor with a volume of 50ml and lined with polytetrafluoroethylene, and a low-temperature hydrothermal reaction was carried out at 130°C for 15 hours. Take out the substrate, wash the conductive glass substrate with deionized water and dry it in the air at 60°C to obtain a conductive glass substrate wrapped with an ordered TiO2 nanorod array film layer, and complete the preparation of the ordered TiO2 nanorod array film layer;
(3)、制备Sb2S3纳米薄膜层:将体积为30mL和浓度为0.025mol/L的三氯化锑(SbCl3)与体积为30mL和浓度为0.25mol/L的硫代硫酸钠(Na2S2O3)倒入烧杯中混合均匀,采用常规的化学液相沉积法将步骤(2)得到的导电玻璃基底置于烧杯中在0℃的条件下沉积2h,取出导电玻璃基底并用去离子水清洗后在氮气气氛中烘干,然后将导电玻璃基底置于250℃条件下的氮气气氛中退火晶化1h,得到包裹有TiO2/Sb2S3复合纳米棒阵列薄膜层的导电玻璃基底,完成Sb2S3纳米薄膜层的制备;(3), preparation of Sb 2 S 3 nano film layer: the volume is 30mL and concentration is 0.025mol/L antimony trichloride (SbCl 3 ) and volume is 30mL and concentration is 0.25mol/L sodium thiosulfate ( Na 2 S 2 O 3 ) was poured into a beaker and mixed evenly, and the conductive glass substrate obtained in step (2) was deposited in a beaker for 2 hours at 0°C by conventional chemical liquid deposition method, and the conductive glass substrate was taken out and used After cleaning with deionized water, dry in a nitrogen atmosphere, and then place the conductive glass substrate in a nitrogen atmosphere at 250°C for annealing and crystallization for 1 h, and obtain a conductive glass substrate wrapped with a thin film layer of TiO 2 /Sb 2 S 3 composite nanorod arrays. Glass substrate, complete the preparation of Sb 2 S 3 nano film layer;
(4)、制备P3HT纳米薄膜层:采用常规的旋转涂膜法在步骤(4)制得的导电玻璃基底的表面沉积一层p型P3HT在150℃条件下退火1h,得到包裹有TiO2/Sb2S3/P3HT复合纳米棒阵列薄膜层的导电玻璃基底,完成P3HT纳米薄膜层的制备;(4) Preparation of P3HT nano-film layer: Deposit a layer of p-type P3HT on the surface of the conductive glass substrate prepared in step (4) by conventional spin-coating method and anneal at 150°C for 1h to obtain TiO 2 / The conductive glass substrate of the Sb 2 S 3 /P3HT composite nanorod array film layer, and the preparation of the P3HT nano film layer is completed;
(5)、制备Ag薄膜电极:在真空条件下使用常规的热蒸镀法或磁控溅射法在步骤(4)制得的导电玻璃基底的表面镀Ag电极,得到TiO2/Sb2S3/P3HT杂化异质结太阳能电池。(5), preparation of Ag thin-film electrodes: under vacuum conditions, use conventional thermal evaporation or magnetron sputtering to plate Ag electrodes on the surface of the conductive glass substrate prepared in step (4), to obtain TiO 2 /Sb 2 S 3 /P3HT hybrid heterojunction solar cells.
本实施例涉及的杂化异质结太阳能电池的制备方法的原理是:具有良好抗光腐蚀和光电化学性能的TiO2广泛应用于太阳能电池、光催化和光解水制氢的领域,以TTIP或TBT为钛源,水为溶剂,使用盐酸控制钛源水解速度,通过控制不同的生长温度和时间,在ITO或FTO导电玻璃基底上采用一步低温水热法制备得到长度、直径和密度可控的一维结构的有序TiO2纳米棒阵列薄膜层,比表面积较大,有利于吸收太阳光,同时,能够为电子传输提供有效路径,降低电子-空穴对的复合概率,提高光电转换效率;但是,TiO2禁带宽度较大,光谱响应范围较窄,太阳光利用率较低,Sb2S3是光催化剂,能够吸收可见光,在600nm波长处具有较高的光吸收系数,光生载流子在其表面具有较高的迁移率,Sb2S3吸光后产生的电子空穴对被迅速分离。采用化学液相沉积法在有序TiO2纳米棒阵列薄膜层的表面沉积Sb2S3纳米薄膜层;Sb2S3通过提高有序TiO2纳米棒阵列薄膜层表面光生载流子的迁移率、加速电子空穴对的分离、降低光生载流子复合速率、拓宽光吸收范围和增加光吸收效率来达到提高杂化异质结太阳能电池的光电转换效率的目的;然后采用旋转涂膜法将P3HT沉积于Sb2S3纳米薄膜层上形成P3HT纳米薄膜层,P3HT纳米薄膜层能够减少光的流失;最后采用热蒸镀法或磁控溅射法在P3HT纳米薄膜层的表面镀Ag薄膜电极,形成杂化异质结太阳能电池。The principle of the preparation method of the hybrid heterojunction solar cell involved in this embodiment is: TiO with good photocorrosion resistance and photoelectrochemical properties is widely used in the fields of solar cells, photocatalysis and photolysis of water to produce hydrogen. TBT is the titanium source, water is the solvent, and hydrochloric acid is used to control the hydrolysis rate of the titanium source. By controlling different growth temperatures and times, a one-step low-temperature hydrothermal method is used on an ITO or FTO conductive glass substrate to obtain a carbon fiber with controllable length, diameter and density. The ordered TiO2 nanorod array film layer with one-dimensional structure has a large specific surface area, which is conducive to absorbing sunlight. At the same time, it can provide an effective path for electron transmission, reduce the recombination probability of electron-hole pairs, and improve photoelectric conversion efficiency; However, TiO 2 has a large band gap, a narrow spectral response range, and a low utilization rate of sunlight. Sb 2 S 3 is a photocatalyst that can absorb visible light and has a high light absorption coefficient at 600nm wavelength. The electrons have high mobility on its surface, and the electron-hole pairs generated after Sb 2 S 3 absorbs light are quickly separated. Sb 2 S 3 nano film layer was deposited on the surface of ordered TiO 2 nanorod array film layer by chemical liquid deposition method; Sb 2 S 3 improved the mobility of photogenerated carriers on the surface of ordered TiO 2 nanorod array film layer , accelerate the separation of electron-hole pairs, reduce the recombination rate of photogenerated carriers, broaden the light absorption range and increase the light absorption efficiency to achieve the purpose of improving the photoelectric conversion efficiency of hybrid heterojunction solar cells; P3HT is deposited on the Sb 2 S 3 nano film layer to form a P3HT nano film layer. The P3HT nano film layer can reduce the loss of light; finally, the surface of the P3HT nano film layer is plated with Ag film electrodes by thermal evaporation or magnetron sputtering. , forming a hybrid heterojunction solar cell.
本实施例制备的有序TiO2纳米棒阵列薄膜层分布均匀有序,密度较大,直径为75-90nm,长度为0.8-1.1μm,Sb2S3纳米薄膜层的厚度为250nm。The ordered TiO 2 nanorod array thin film layer prepared in this example is uniformly distributed and dense, with a diameter of 75-90 nm and a length of 0.8-1.1 μm, and a thickness of the Sb 2 S 3 nano thin film layer of 250 nm.
本实施例制备的杂化异质结太阳能电池具有光电转化效率高,使用寿命长,能量转化效率高和电能稳定等优点;在杂化异质结太阳能电池上添加界面修饰层以提高其光电转换性能,对推动杂化异质结太阳能电池的实用化进程有重要意义。The hybrid heterojunction solar cell prepared in this example has the advantages of high photoelectric conversion efficiency, long service life, high energy conversion efficiency and stable electric energy; an interface modification layer is added to the hybrid heterojunction solar cell to improve its photoelectric conversion Performance is of great significance to promote the practical process of hybrid heterojunction solar cells.
实施例2:Example 2:
本实施例的工艺步骤同实施例1,不同之处在于步骤(1)中的FTO透明导电玻璃的厚度为2mm,裁剪成的尺寸为4×4cm的正方形,制备的有序TiO2纳米棒阵列薄膜层分布均匀有序,密度较大,直径为75-90nm,长度为0.8-1.1μmThe processing step of the present embodiment is the same as that of embodiment 1, and the difference is that the thickness of the FTO transparent conductive glass in the step (1) is 2 mm, and the size cut into is a square of 4 × 4 cm, and the ordered TiO nanorod array prepared The distribution of film layers is uniform and orderly, the density is relatively high, the diameter is 75-90nm, and the length is 0.8-1.1μm
实施例3:Example 3:
本实施例的工艺步骤同实施例1,不同之处在于步骤(2)中TTIP体积为0.4ml、质量百分比为37%的盐酸(HCl)水溶液的体积为15ml,制备的有序TiO2纳米棒阵列薄膜层分布均匀有序,密度较小,直径为80-95nm,长度为0.9-1.2μm。The processing step of the present embodiment is the same as embodiment 1, and the difference is that in the step (2), the TTIP volume is 0.4ml, and the volume of the hydrochloric acid (HCl) aqueous solution of 37% by mass is 15ml, and the ordered TiO prepared nanorods The thin film layer of the array is distributed evenly and orderly, the density is small, the diameter is 80-95nm, and the length is 0.9-1.2μm.
实施例4:Example 4:
本实施例的工艺步骤同实施例1,不同之处在于步骤(2)中的一步低温水热反应的温度为90℃,时间为2h,制备的有序TiO2纳米棒阵列薄膜层分布均匀有序,密度较小,直径为15-20nm,长度为0.10-0.15μm。The process step of this embodiment is the same as that of Example 1, except that the temperature of the one-step low-temperature hydrothermal reaction in step (2) is 90°C, and the time is 2h, and the ordered TiO nanorod array thin film layers are evenly distributed and Sequence, less dense, 15-20nm in diameter, 0.10-0.15μm in length.
实施例5:Example 5:
本实施例的工艺步骤同实施例1,不同之处在于步骤(2)中的一步低温水热反应的温度为90℃,时间为18h,制备的有序TiO2纳米棒阵列薄膜层分布均匀有序,密度较小,直径为90-110nm,长度为0.75-1μm。The process steps of this embodiment are the same as those of Example 1, except that the temperature of the one-step low-temperature hydrothermal reaction in step (2) is 90°C, and the time is 18h, and the prepared ordered TiO nanorod array film layer is evenly distributed and Sequence, less dense, 90-110nm in diameter, 0.75-1μm in length.
实施例6:Embodiment 6:
本实施例的工艺步骤同实施例1,不同之处在于步骤(2)中的一步低温水热反应的温度为90℃,时间为24h,制备的有序TiO2纳米棒阵列薄膜层分布均匀有序,密度较大,直径为100-200nm,长度为1.0-1.5μm。The process steps of this embodiment are the same as those of Example 1, except that the temperature of the one-step low-temperature hydrothermal reaction in step (2) is 90° C., and the time is 24 h, and the prepared ordered TiO nanorod array film layer is evenly distributed and Sequence, high density, 100-200nm in diameter, 1.0-1.5μm in length.
实施例7:Embodiment 7:
本实施例的工艺步骤同实施例1,不同之处在于步骤(2)中的一步低温水热反应的温度为120℃,时间为6h,制备的有序TiO2纳米棒阵列薄膜层分布均匀有序,密度较小,直径为20-30nm,长度为0.15-0.25μm。The process step of this embodiment is the same as that of embodiment 1, and the difference is that the temperature of the one-step low-temperature hydrothermal reaction in step (2) is 120 ℃, and the time is 6h, and the ordered TiO nanorod array thin film layer of preparation is evenly distributed Sequence, less dense, 20-30nm in diameter, 0.15-0.25μm in length.
实施例8:Embodiment 8:
本实施例的工艺步骤同实施例1,不同之处在于步骤(2)中的一步低温水热反应的温度为150℃,时间为6h,制备的有序TiO2纳米棒阵列薄膜层分布均匀有序,密度较大,直径为75-115nm,长度为1.1-1.7μm。The process step of this embodiment is the same as that of Example 1, except that the temperature of the one-step low-temperature hydrothermal reaction in step (2) is 150° C., and the time is 6 h, and the ordered TiO nanorod array thin film layers are distributed evenly and effectively. Sequence, denser, 75-115nm in diameter, 1.1-1.7μm in length.
实施例9:Embodiment 9:
本实施例的工艺步骤同实施例1,不同之处在于步骤(2)中的一步低温水热反应的温度为150℃,时间为10h,制备的有序TiO2纳米棒阵列薄膜层分布均匀有序,密度较大,直径为60-300nm,长度为3-4μm。The process step of this embodiment is the same as that of Example 1, except that the temperature of the one-step low-temperature hydrothermal reaction in step (2) is 150° C., and the time is 10 h, and the prepared ordered TiO nanorod array film layer is evenly distributed and Sequence, denser, 60-300nm in diameter, 3-4μm in length.
实施例10:Example 10:
本实施例的工艺步骤同实施例1,不同之处在于步骤(2)中的一步低温水热反应的温度为150℃,时间为13h,制备的有序TiO2纳米棒阵列薄膜层分布均匀有序,密度较大,直径为100-300nm,长度为5μm。The process steps of this embodiment are the same as those of Example 1, except that the temperature of the one-step low-temperature hydrothermal reaction in step (2) is 150° C., and the time is 13 h, and the prepared ordered TiO nanorod array film layer is evenly distributed and Sequence, denser, 100-300nm in diameter, 5μm in length.
实施例11:Example 11:
本实施例的工艺步骤同实施例1,不同之处在于步骤(3)中的SbCl3的浓度为0.01mol/L,Na2S2O3的浓度为0.1mol/L,制备的Sb2S3纳米薄膜层的厚度为160nm。The process steps of this embodiment are the same as those in Example 1, except that the concentration of SbCl 3 in step (3) is 0.01mol/L, the concentration of Na 2 S 2 O 3 is 0.1 mol/L, and the prepared Sb 2 S The thickness of the 3nm film layer is 160nm.
实施例12:Example 12:
本实施例的工艺步骤同实施例1,不同之处在于步骤(3)中的SbCl3的浓度为0.04mol/L,Na2S2O3的浓度为0.4mol/L,制备的Sb2S3纳米薄膜层的厚度为400nm。The process steps of this embodiment are the same as those in Example 1, except that the concentration of SbCl 3 in step (3) is 0.04mol/L, the concentration of Na 2 S 2 O 3 is 0.4 mol/L, and the prepared Sb 2 S The thickness of the 3nm film layer is 400nm.
实施例13:Example 13:
本实施例的工艺步骤同实施例1,不同之处在于步骤(3)中的化学沉积法的沉积时间为1h,制备的Sb2S3纳米薄膜层的厚度为150nm。The process steps of this embodiment are the same as those of Embodiment 1, except that the deposition time of the chemical deposition method in step (3) is 1 h, and the thickness of the prepared Sb 2 S 3 nano film layer is 150 nm.
实施例14:Example 14:
本实施例的工艺步骤同实施例1,不同之处在于步骤(3)中的化学沉积法的沉积时间为5h,制备的Sb2S3纳米薄膜层的厚度为1000nm。The process steps of this embodiment are the same as those of Embodiment 1, except that the deposition time of the chemical deposition method in step (3) is 5 hours, and the thickness of the prepared Sb 2 S 3 nano film layer is 1000 nm.
实施例15:Example 15:
本实施例的工艺步骤同实施例1,不同之处在于步骤(3)中退火晶化温度为400℃,晶化时间为3h,制备的Sb2S3纳米薄膜层的厚度为250nm。The process steps of this example are the same as those of Example 1, except that the annealing crystallization temperature in step (3) is 400° C., the crystallization time is 3 hours, and the thickness of the prepared Sb 2 S 3 nano film layer is 250 nm.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510790442.5A CN105244445B (en) | 2015-11-17 | 2015-11-17 | A kind of preparation method of hybrid heterojunctions solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510790442.5A CN105244445B (en) | 2015-11-17 | 2015-11-17 | A kind of preparation method of hybrid heterojunctions solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105244445A CN105244445A (en) | 2016-01-13 |
CN105244445B true CN105244445B (en) | 2018-08-03 |
Family
ID=55042009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510790442.5A Expired - Fee Related CN105244445B (en) | 2015-11-17 | 2015-11-17 | A kind of preparation method of hybrid heterojunctions solar cell |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105244445B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105762207B (en) * | 2016-03-30 | 2017-11-03 | 北京化工大学 | A kind of Sb of narrow band gap2S3The hydrothermal preparing process of semiconductive thin film |
CN107863401B (en) * | 2017-10-24 | 2019-09-24 | 三峡大学 | A kind of preparation method of antimony trisulfide base full-inorganic thin-film solar cells |
CN109256468A (en) * | 2018-07-31 | 2019-01-22 | 中国科学院合肥物质科学研究院 | A kind of hydridization solar cell and preparation method thereof integrated based on a variety of hetero-junctions performances |
CN109603918B (en) * | 2018-11-12 | 2022-01-25 | 东莞理工学院 | Preparation method of poly 3-hexylthiophene coated titanium dioxide composite gold photocatalyst |
CN109860317B (en) * | 2018-12-19 | 2020-12-18 | 湖州师范学院 | A kind of carbon counter electrode antimony sulfide thin film solar cell and preparation method thereof |
CN114242903A (en) * | 2021-11-30 | 2022-03-25 | 华中科技大学 | A kind of preparation method and application of solar cell heterojunction |
CN114284372B (en) * | 2021-11-30 | 2024-05-24 | 湖北文理学院 | Three-layer nanorod array heterojunction structure and preparation method thereof |
CN114577863A (en) * | 2022-03-01 | 2022-06-03 | 国网电力科学研究院武汉南瑞有限责任公司 | Gallium oxide film hydrogen sensor and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2538452A2 (en) * | 2010-02-18 | 2012-12-26 | Korea Research Institute Of Chemical Technology | All-solid-state heterojunction solar cell |
EP2560212A2 (en) * | 2010-02-18 | 2013-02-20 | Korea Research Institute Of Chemical Technology | Method for manufacturing a nanostructured inorganic/organic heterojunction solar cell |
CN103367512A (en) * | 2013-06-27 | 2013-10-23 | 中国科学院等离子体物理研究所 | Solar battery based on inorganic bulk heterojunction and preparation method thereof |
CN103762316A (en) * | 2013-12-24 | 2014-04-30 | 中电电气(南京)太阳能研究院有限公司 | Method for preparing Sb2S3-base organic and inorganic composite solar cell |
CN104617221A (en) * | 2014-06-05 | 2015-05-13 | 河北科技大学 | Organic-inorganic hybrid solar cell and preparation method thereof |
-
2015
- 2015-11-17 CN CN201510790442.5A patent/CN105244445B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2538452A2 (en) * | 2010-02-18 | 2012-12-26 | Korea Research Institute Of Chemical Technology | All-solid-state heterojunction solar cell |
EP2560212A2 (en) * | 2010-02-18 | 2013-02-20 | Korea Research Institute Of Chemical Technology | Method for manufacturing a nanostructured inorganic/organic heterojunction solar cell |
CN103367512A (en) * | 2013-06-27 | 2013-10-23 | 中国科学院等离子体物理研究所 | Solar battery based on inorganic bulk heterojunction and preparation method thereof |
CN103762316A (en) * | 2013-12-24 | 2014-04-30 | 中电电气(南京)太阳能研究院有限公司 | Method for preparing Sb2S3-base organic and inorganic composite solar cell |
CN104617221A (en) * | 2014-06-05 | 2015-05-13 | 河北科技大学 | Organic-inorganic hybrid solar cell and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105244445A (en) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105244445B (en) | A kind of preparation method of hybrid heterojunctions solar cell | |
Sharma et al. | Dye sensitized solar cells: From genesis to recent drifts | |
Zhao et al. | In situ fabrication of 2D SnS2 nanosheets as a new electron transport layer for perovskite solar cells | |
CN102347143B (en) | A kind of graphene composite porous counter electrode, preparation method and applications | |
CN104201287B (en) | Perovskite based flexible film solar cell and preparation method thereof | |
CN104701023B (en) | A kind of carbon electrode material of perovskite thin film solar cell and preparation method thereof | |
CN107287615B (en) | A vanadium-doped ZnO nanorod array photoanode and its preparation method and application | |
Ma et al. | Electrophoretic deposition of ZnSnO3/MoS2 heterojunction photoanode with improved photoelectric response by low recombination rate | |
CN105977386A (en) | Perovskite solar cell of nano metal oxide hole transport layer and preparation method thereof | |
CN110611030A (en) | Perovskite solar cell with array structure electron transport layer and preparation method thereof | |
CN102637755B (en) | Nanometer structure copper zinc tin sulfide (CZTS) film photovoltaic cell and preparation method of nanometer structure CZTS film photovoltaic cell | |
CN105304819A (en) | Solar cell containing perovskite material and preparation method thereof | |
CN108011046A (en) | A kind of method of perovskite surface in situ method growth perovskite nano wire and a kind of perovskite solar cell | |
CN103866389A (en) | Preparation method of porous single crystal nanosheet TiN on carbon fiber and use | |
Latif et al. | Effect of annealing temperature of MoO3 layer in MoO3/Au/MoO3 (MAM) coated PbS QDs sensitized ZnO nanorods/FTO glass solar cell | |
Yu et al. | The Cu2O/CuO/SnO2 transparent pn junction film device towards photovoltaic enhancement with Cu2+ self-oxidation transition layer | |
CN104037324A (en) | Perovskite hybrid solar cell based on cadmium sulfide nanoarray | |
CN103715280B (en) | A kind of micro/nano secondary array structure thin film solar cell and its preparation method | |
CN102280259A (en) | Method for preparing nanometer polychromatic-light anode of dye-sensitized solar cell | |
JP5641981B2 (en) | Photoelectric conversion element that can be manufactured by a method suitable for mass production | |
CN104167453A (en) | Perovskite solar battery based on CdSe nanocrystals and preparation method | |
CN103088343B (en) | Preparation method of Cu2O/TiO2 nanocomposite film | |
Fu et al. | A transparent photovoltaic device of NiO/MgO quantum dots/TiO2 arrays pn junction with carrier injection of MgO QDs | |
CN107633951A (en) | A kind of method and its application that homogeneity barrier layer/skeleton structure is prepared using titanium tetrachloride hydrolysis | |
CN105304818A (en) | High-efficiency perovskite solar cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180803 Termination date: 20201117 |