CN105244074A - Aluminum slurry for crystalline silicon solar battery, and preparation method thereof - Google Patents
Aluminum slurry for crystalline silicon solar battery, and preparation method thereof Download PDFInfo
- Publication number
- CN105244074A CN105244074A CN201510719537.8A CN201510719537A CN105244074A CN 105244074 A CN105244074 A CN 105244074A CN 201510719537 A CN201510719537 A CN 201510719537A CN 105244074 A CN105244074 A CN 105244074A
- Authority
- CN
- China
- Prior art keywords
- aluminum
- crystalline silicon
- silicon solar
- aluminum paste
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 83
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 78
- 229910021419 crystalline silicon Inorganic materials 0.000 title claims abstract description 34
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 239000002002 slurry Substances 0.000 title abstract description 8
- 239000002245 particle Substances 0.000 claims abstract description 12
- 239000011230 binding agent Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 10
- 239000000725 suspension Substances 0.000 claims description 10
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 9
- 239000008096 xylene Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000000178 monomer Substances 0.000 claims description 6
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 5
- 239000011256 inorganic filler Substances 0.000 claims description 5
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 5
- 239000003999 initiator Substances 0.000 claims description 4
- 239000005543 nano-size silicon particle Substances 0.000 claims description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 3
- 229920000178 Acrylic resin Polymers 0.000 claims description 3
- 239000004925 Acrylic resin Substances 0.000 claims description 3
- 239000001856 Ethyl cellulose Substances 0.000 claims description 3
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 3
- 239000000020 Nitrocellulose Substances 0.000 claims description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 3
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 229920001249 ethyl cellulose Polymers 0.000 claims description 3
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 3
- 239000007791 liquid phase Substances 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 229920001220 nitrocellulos Polymers 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 229920001568 phenolic resin Polymers 0.000 claims description 3
- 239000005011 phenolic resin Substances 0.000 claims description 3
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 239000009719 polyimide resin Substances 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 3
- 239000011787 zinc oxide Substances 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052710 silicon Inorganic materials 0.000 abstract description 10
- 239000010703 silicon Substances 0.000 abstract description 10
- 238000011049 filling Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 239000000853 adhesive Substances 0.000 abstract 1
- 230000001070 adhesive effect Effects 0.000 abstract 1
- 238000000227 grinding Methods 0.000 abstract 1
- 239000007788 liquid Substances 0.000 abstract 1
- 239000012528 membrane Substances 0.000 abstract 1
- 238000005303 weighing Methods 0.000 abstract 1
- 239000003960 organic solvent Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000005245 sintering Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 235000012431 wafers Nutrition 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229940023462 paste product Drugs 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/14—Conductive material dispersed in non-conductive inorganic material
- H01B1/16—Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/20—Electrodes
- H10F77/206—Electrodes for devices having potential barriers
- H10F77/211—Electrodes for devices having potential barriers for photovoltaic cells
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Conductive Materials (AREA)
Abstract
Description
技术领域technical field
本发明属于太阳能电池技术领域,具体涉及一种晶体硅太阳能电池用铝浆,还涉及该种晶体硅太阳能电池用铝浆的制备方法。The invention belongs to the technical field of solar cells, and in particular relates to an aluminum paste for a crystalline silicon solar cell, and also relates to a preparation method of the aluminum paste for a crystalline silicon solar cell.
背景技术Background technique
晶体硅太阳能电池一直是太阳能电池领域内发展最为迅速,市场最大的一类,其中作为晶体硅太阳能电池阳极材料的铝浆,其主要由导电相、无机粘结剂、添加剂、有机载体组成。配好的铝浆采用丝网印刷在硅片表面后再与银浆共烧结。但采用现有的材料及工艺,在烧结后铝浆料易出现硅片附着力不佳、铝膜表面易出现微裂纹等缺陷。本发明人经过研究发现,主要是有机相在烧结过程中挥发过快,导致铝与多晶硅间产生较多孔隙,且印刷后湿的铝膜因为有机相的挥发也未能在烧结时及时形成致密的铝膜,从而出现微裂纹的缺陷。Crystalline silicon solar cells have always been the fastest-growing and largest market category in the field of solar cells. Among them, aluminum paste, which is used as an anode material for crystalline silicon solar cells, is mainly composed of conductive phases, inorganic binders, additives, and organic carriers. The prepared aluminum paste is screen printed on the surface of the silicon wafer and then co-sintered with the silver paste. However, with existing materials and processes, after sintering, the aluminum paste is prone to defects such as poor adhesion to silicon wafers and microcracks on the surface of the aluminum film. After research, the inventors found that the organic phase volatilized too quickly during the sintering process, resulting in more pores between the aluminum and polysilicon, and the wet aluminum film after printing failed to form a dense film in time due to the volatilization of the organic phase. Aluminum film, resulting in micro-crack defects.
发明内容Contents of the invention
本发明所要解决的技术问题就是提供一种晶体硅太阳能电池用铝浆,附着力好,铝膜表面无微裂纹。The technical problem to be solved by the present invention is to provide an aluminum paste for crystalline silicon solar cells, which has good adhesion and no microcracks on the surface of the aluminum film.
本发明的另一目的是提供该种晶体硅太阳能电池用铝浆的制备方法,工艺条件简单,成本低廉。Another object of the present invention is to provide a method for preparing the aluminum paste for crystalline silicon solar cells, which has simple process conditions and low cost.
为解决上述技术问题,本发明采用如下技术方案:一种晶体硅太阳能电池用铝浆,包括以下组分,各组分质量百分比为:In order to solve the above technical problems, the present invention adopts the following technical scheme: an aluminum paste for crystalline silicon solar cells, comprising the following components, the mass percentage of each component is:
各组分的质量百分比之和为100%。The sum of the mass percentages of each component is 100%.
本发明通过增加纳米铝悬浮液组分,有效解决了现有技术在烧结后铝浆料易出现硅片附着力不佳、铝膜表面易出现微裂纹等技术问题。具体机理如下:由于纳米铝悬浮液是纳米级的铝粉被有机溶剂包裹后得到的,在铝浆印刷后进行烧结时,外层有机溶剂包覆物挥发后,纳米铝粉因为金属的纳米效应,小于100nm时可极大的降低金属的熔点;而且,铝浆料烧结时在有机溶剂包覆物挥发分解的同时,纳米铝粉即开始熔解并流动,从而填补通用铝粉与硅表面的孔隙,从根本上提高铝与硅的解除面积,形成更多有效的铝浆的背电场,并解决了硅片附着力不佳及铝膜表面的微裂纹的问题。为了消除烧结过程中产生的内应力,减小电池片的翘曲,添加少量无机填料,可以达到有效降低电池片翘曲的目的。The invention effectively solves the technical problems in the prior art that the aluminum slurry easily has poor adhesion to silicon wafers and the surface of the aluminum film is prone to microcracks after sintering by increasing the components of the nano-aluminum suspension. The specific mechanism is as follows: Since the nano-aluminum suspension is obtained after the nano-scale aluminum powder is wrapped by an organic solvent, when the aluminum paste is printed and sintered, after the outer layer of organic solvent coating volatilizes, the nano-aluminum powder is due to the nano-effect of the metal , when the thickness is less than 100nm, the melting point of the metal can be greatly reduced; moreover, when the aluminum paste is sintered, the organic solvent coating volatilizes and decomposes, and the nano-aluminum powder starts to melt and flow, thereby filling the pores on the surface of the general-purpose aluminum powder and silicon , fundamentally increase the release area of aluminum and silicon, form more effective back electric field of aluminum paste, and solve the problems of poor adhesion of silicon wafer and micro cracks on the surface of aluminum film. In order to eliminate the internal stress generated during the sintering process and reduce the warpage of the battery sheet, a small amount of inorganic filler can be added to effectively reduce the warpage of the battery sheet.
优选的,包括以下组分,各组分质量百分比为:Preferably, the following components are included, and the mass percent of each component is:
各组分的质量百分比之和为100%,其中,无机填料为纳米氧化硅。The sum of the mass percentages of each component is 100%, wherein the inorganic filler is nano silicon oxide.
优选的,包括以下组分,各组分质量百分比为:Preferably, the following components are included, and the mass percent of each component is:
优选的,包括以下组分,各组分质量百分比为:Preferably, the following components are included, and the mass percent of each component is:
优选的,包括以下组分,各组分质量百分比为:Preferably, the following components are included, and the mass percent of each component is:
优选的,所述通用铝粉由粒径分别为6~7微米和1~2微米的球形铝粉按照4:1的质量比混合而成。Preferably, the general-purpose aluminum powder is prepared by mixing spherical aluminum powders with particle diameters of 6-7 microns and 1-2 microns respectively in a mass ratio of 4:1.
优选的,所述纳米铝悬浮液的制备方法如下:取粒径为20~80nm的纳米铝粉于二甲苯溶液中,同时加入乙烯基吡咯烷酮单体,得到的混合溶液用超声波分散10min后加入偶氮类引发剂,于60℃温度、氮气气氛下引发聚合反应,充分反应后使用高速离心机进行固液相分离,提取下层固相加入等量二甲苯配置而得到纳米铝悬浮液。Preferably, the preparation method of the nano-aluminum suspension is as follows: take nano-aluminum powder with a particle size of 20-80 nm in xylene solution, add vinylpyrrolidone monomer at the same time, and disperse the obtained mixed solution with ultrasonic wave for 10 minutes, then add Nitrogen initiator, initiate polymerization reaction at 60°C under nitrogen atmosphere. After sufficient reaction, use high-speed centrifuge to separate solid-liquid phase, extract the lower solid phase and add an equal amount of xylene to prepare to obtain nano-aluminum suspension.
由于纳米级铝粉反应活性高,不可直接将铝粉保存在醇类、水或者含有较高反应活性物质的溶剂混合物中,本发明为避免纳米铝粉在存放及铝浆配置过程中表面被氧化,因此预先对使用的纳米铝粉在乙烯基吡咯烷酮单体中进行反应性包覆,在铝粉表面形成一层有机包覆膜,从而避免纳米铝粉因为使用、存储、转移的操作不当表面被氧化而影响铝浆的背电场效率。Due to the high reactivity of nano-scale aluminum powder, the aluminum powder cannot be directly stored in alcohols, water or solvent mixtures containing highly reactive substances. Therefore, the nano-aluminum powder used is reactively coated in vinylpyrrolidone monomer in advance to form an organic coating film on the surface of the aluminum powder, thereby preventing the surface of the nano-aluminum powder from being damaged due to improper use, storage, and transfer. Oxidation affects the back electric field efficiency of the aluminum paste.
使用二甲苯、苯类等与水不能互溶的有机溶剂在超声波中清洗纳米铝粉,清洗后纳米铝粉表面被二甲苯类有机溶剂包覆,在纳米铝粉表面形成有机包覆膜,避免纳米铝粉粉体的团聚,但同时被二甲苯包覆的纳米铝粉在后期浆料配置过程中,纳米铝粉外表面的有机包覆膜极易被其他有机溶剂破坏。因此本发明采用将二甲苯包覆的纳米铝粉与乙烯基吡咯烷酮单体(简称NVP单体)、偶氮类引发剂偶氮二异丁腈(简称AIBN)等在二甲苯溶液中进行单体引发,得到聚乙烯吡咯烷酮包覆的纳米铝粉。并以此包覆铝粉加入到最终的铝浆配比中,极大的提升现有铝浆的性能。Use xylene, benzene and other organic solvents that are immiscible with water to clean the nano aluminum powder in ultrasonic wave. The agglomeration of aluminum powder, but at the same time, the organic coating film on the outer surface of the nano-aluminum powder is easily damaged by other organic solvents during the later slurry configuration process of the nano-aluminum powder coated with xylene. Therefore the present invention adopts the nano-aluminum powder coated with xylene and vinylpyrrolidone monomer (being called for short NVP monomer), azo initiator azobisisobutyronitrile (being called for short AIBN) etc. Initiate to obtain nano-aluminum powder coated with polyvinylpyrrolidone. And this coated aluminum powder is added to the final aluminum paste ratio, which greatly improves the performance of the existing aluminum paste.
优选的,所述无机粘结剂为三氧化二铋、二氧化硅、氧化锌、三氧化硼中的一种或几种。Preferably, the inorganic binder is one or more of bismuth trioxide, silicon dioxide, zinc oxide and boron trioxide.
优选的,所述有机粘结剂为聚乙烯醇缩丁醛、丙烯酸树脂、聚酰亚胺树脂、聚苯硫醚树脂、酚醛树脂、环氧树脂、乙基纤维素、硝酸纤维素中的一种或几种。Preferably, the organic binder is one of polyvinyl butyral, acrylic resin, polyimide resin, polyphenylene sulfide resin, phenolic resin, epoxy resin, ethyl cellulose, nitrocellulose species or several.
该种晶体硅太阳能电池用铝浆的制备方法,按照比例称取各组分,使用分散机混合均匀后,用三辊研磨机研磨至粒径为15~20微米,粘度为25000~35000mPa·s,即可得到晶体硅太阳能电池用铝浆。The preparation method of the aluminum paste for crystalline silicon solar cells is to weigh the components according to the proportion, mix them evenly with a disperser, and then grind them with a three-roll mill until the particle size is 15-20 microns and the viscosity is 25000-35000 mPa·s , the aluminum paste for crystalline silicon solar cells can be obtained.
与现有技术相比,本发明的优点是:本发明通过增加纳米铝悬浮液组分,由于纳米铝悬浮液是纳米级的铝粉被有机溶剂包裹后得到的,在铝浆印刷后进行烧结时,外层有机溶剂包覆物挥发后,纳米铝粉因为金属的纳米效应,小于100nm时可极大的降低金属的熔点;而且,铝浆料烧结时在有机溶剂包覆物挥发分解的同时,纳米铝粉即开始熔解并流动,从而填补通用铝粉与硅表面的孔隙,从根本上提高铝与硅的解除面积,形成更多有效的铝浆的背电场,并解决了硅片附着力不佳及铝膜表面的微裂纹的问题。另外,为了消除烧结过程中产生的内应力,减小电池片的翘曲,添加少量无机填料纳米氧化硅,可以达到有效降低电池片翘曲的目的。Compared with the prior art, the advantages of the present invention are: the present invention increases the components of the nano-aluminum suspension, since the nano-aluminum suspension is obtained after the nano-scale aluminum powder is wrapped with an organic solvent, it is sintered after printing the aluminum paste When the outer organic solvent coating volatilizes, the nano-aluminum powder can greatly reduce the melting point of the metal when it is less than 100nm due to the nano-effect of the metal; moreover, when the aluminum paste is sintered, the organic solvent coating volatilizes and decomposes at the same time , the nano-aluminum powder begins to melt and flow, thereby filling the pores on the surface of general-purpose aluminum powder and silicon, fundamentally increasing the release area of aluminum and silicon, forming more effective back electric fields of aluminum paste, and solving the adhesion of silicon wafers Poor and micro-cracks on the surface of the aluminum film. In addition, in order to eliminate the internal stress generated during the sintering process and reduce the warpage of the battery sheet, a small amount of inorganic filler nano-silicon oxide can be added to effectively reduce the warpage of the battery sheet.
下面结合具体实施方式对本发明作进一步描述:The present invention will be further described below in conjunction with specific embodiment:
具体实施方式detailed description
本发明一种晶体硅太阳能电池用铝浆实施例1,包括以下组分,各组分质量百分比为:Embodiment 1 of an aluminum paste for a crystalline silicon solar cell of the present invention comprises the following components, and the mass percent of each component is:
所述通用铝粉由粒径分别为6~7微米和1~2微米的球形铝粉按照4:1的质量比混合而成。The general-purpose aluminum powder is prepared by mixing spherical aluminum powders with particle diameters of 6-7 microns and 1-2 microns respectively at a mass ratio of 4:1.
所述纳米铝悬浮液的制备方法如下:取粒径为40nm的纳米铝粉于二甲苯溶液中,同时加入乙烯基吡咯烷酮单体,得到的混合溶液用超声波分散10min后加入偶氮类引发剂,于60℃温度、氮气气氛下引发聚合反应,充分反应后使用高速离心机进行固液相分离,提取下层固相加入等量二甲苯配置而得到纳米铝悬浮液。The preparation method of the nano-aluminum suspension is as follows: take nano-aluminum powder with a particle size of 40nm in xylene solution, add vinylpyrrolidone monomer at the same time, and add an azo initiator after the mixed solution obtained is dispersed by ultrasonic waves for 10 minutes. Initiate the polymerization reaction at a temperature of 60°C under a nitrogen atmosphere. After sufficient reaction, use a high-speed centrifuge to separate the solid-liquid phase, extract the lower solid phase and add an equal amount of xylene to prepare it to obtain a nano-aluminum suspension.
所述无机粘结剂为三氧化二铋、二氧化硅、氧化锌、三氧化硼中的一种或几种。The inorganic binder is one or more of bismuth trioxide, silicon dioxide, zinc oxide and boron trioxide.
所述有机粘结剂为聚乙烯醇缩丁醛、丙烯酸树脂、聚酰亚胺树脂、聚苯硫醚树脂、酚醛树脂、环氧树脂、乙基纤维素、硝酸纤维素中的一种或几种。The organic binder is one or more of polyvinyl butyral, acrylic resin, polyimide resin, polyphenylene sulfide resin, phenolic resin, epoxy resin, ethyl cellulose, nitrocellulose kind.
该种晶体硅太阳能电池用铝浆的制备方法,按照比例称取各组分,使用分散机混合均匀后,用三辊研磨机研磨至粒径为15~20微米,粘度为30000mPa·s,即可得到晶体硅太阳能电池用铝浆。The preparation method of this kind of aluminum paste for crystalline silicon solar cells is to weigh each component according to the proportion, use a disperser to mix evenly, and use a three-roll mill to grind until the particle size is 15-20 microns and the viscosity is 30000mPa·s, that is, Aluminum paste for crystalline silicon solar cells can be obtained.
本发明一种晶体硅太阳能电池用铝浆实施例2,其结构组成与实施例1基本相似,区别在于:包括以下组分,各组分质量百分比为:Example 2 of an aluminum paste for crystalline silicon solar cells of the present invention, its structural composition is basically similar to that of Example 1, the difference is that it includes the following components, and the mass percentage of each component is:
该种晶体硅太阳能电池用铝浆的制备方法,与实施例1相同。The preparation method of this kind of aluminum paste for crystalline silicon solar cells is the same as that of Example 1.
本发明一种晶体硅太阳能电池用铝浆实施例3,其结构组成与实施例1基本相似,区别在于:包括以下组分,各组分质量百分比为:Example 3 of an aluminum paste for crystalline silicon solar cells of the present invention, its structural composition is basically similar to that of Example 1, the difference is that it includes the following components, and the mass percentage of each component is:
该种晶体硅太阳能电池用铝浆的制备方法,与实施例1相同。The preparation method of this kind of aluminum paste for crystalline silicon solar cells is the same as that of Example 1.
现有技术中一种电池用铝浆对比例,包括以下组分,各组分质量百分比为:78%通用铝粉;12%无机粘结剂;10%有机粘结剂。A comparative example of aluminum paste for batteries in the prior art includes the following components, the mass percentages of which are: 78% general-purpose aluminum powder; 12% inorganic binder; 10% organic binder.
该种电池用铝浆的制备方法如下:按照比例称取各组分,使用分散机混合均匀后,用三辊研磨机研磨至粒径为15~20微米,粘度为25000~35000mPa·s即可。The preparation method of this kind of aluminum paste for batteries is as follows: Weigh the components according to the proportion, mix them evenly with a disperser, and grind them with a three-roll mill until the particle size is 15-20 microns and the viscosity is 25000-35000 mPa·s. .
对实施例1~3得到的晶体硅太阳能电池用铝浆产物,使用250目网版丝网印刷在规格156mm×156mm的单晶硅电池片上,形成铝背面,进马弗炉烘干后,在铝背面印刷背银形成背电极,进马弗炉烘干,然后在电池片另一面(正面)印刷正面银浆,通过烧结炉烧结后得到单晶硅电池片,对电池片的表观、附着力、翘曲以及光电转换率等性能进行检测,同时与对比例进行比较,检测结果如表1所示。The aluminum paste products for crystalline silicon solar cells obtained in Examples 1 to 3 were screen-printed on a monocrystalline silicon battery sheet with a size of 156 mm × 156 mm using a 250-mesh screen to form an aluminum back, and after being dried in a muffle furnace, the Print the back silver on the back of the aluminum to form the back electrode, dry it in a muffle furnace, then print the front silver paste on the other side (front) of the cell, and sinter it in a sintering furnace to obtain a monocrystalline silicon cell. Performances such as force, warpage, and photoelectric conversion rate were tested, and compared with the comparative example, the test results are shown in Table 1.
表1Table 1
测试结果表明,本发明实施例1~3得到的晶体硅太阳能电池用铝浆产物,与现有技术的对比例相比,有效消除了铝膜表面的微裂纹的问题;而且硅片附着力有明显提高,达到对比例的2倍以上;并且翘曲有明显下降,有效降低了电池片翘曲,说明添加少量无机填料纳米氧化硅,可以消除烧结过程中产生的内应力,减小电池片的翘曲;另外,光电转换率也比对比例有明显提高,可见,本发明的晶体硅太阳能电池用铝浆产物的综合性能比现有技术的电池用铝浆有着显著提高,有着良好的应用前景。The test results show that the aluminum paste products for crystalline silicon solar cells obtained in Examples 1 to 3 of the present invention, compared with the comparative examples of the prior art, effectively eliminate the problem of microcracks on the surface of the aluminum film; It is significantly improved, reaching more than 2 times that of the comparative example; and the warpage is significantly reduced, which effectively reduces the warpage of the battery sheet, indicating that adding a small amount of inorganic filler nano-silicon oxide can eliminate the internal stress generated during the sintering process and reduce the battery sheet. Warpage; In addition, the photoelectric conversion rate is also significantly improved compared with the comparative example. It can be seen that the comprehensive performance of the aluminum paste product for crystalline silicon solar cells of the present invention is significantly improved compared with the aluminum paste for batteries of the prior art, and has a good application prospect. .
以上所述仅为本发明的具体实施例,但本发明的技术特征并不局限于此,任何本领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围之中。The above is only a specific embodiment of the present invention, but the technical characteristics of the present invention are not limited thereto, any changes or modifications made by those skilled in the art within the field of the present invention are covered by the patent scope of the present invention among.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710311723.7A CN107293350A (en) | 2015-10-30 | 2015-10-30 | A kind of preparation method of nano aluminum suspension |
CN201510719537.8A CN105244074B (en) | 2015-10-30 | 2015-10-30 | A kind of crystal silicon solar energy battery aluminium paste |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510719537.8A CN105244074B (en) | 2015-10-30 | 2015-10-30 | A kind of crystal silicon solar energy battery aluminium paste |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710311723.7A Division CN107293350A (en) | 2015-10-30 | 2015-10-30 | A kind of preparation method of nano aluminum suspension |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105244074A true CN105244074A (en) | 2016-01-13 |
CN105244074B CN105244074B (en) | 2017-06-20 |
Family
ID=55041683
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510719537.8A Active CN105244074B (en) | 2015-10-30 | 2015-10-30 | A kind of crystal silicon solar energy battery aluminium paste |
CN201710311723.7A Pending CN107293350A (en) | 2015-10-30 | 2015-10-30 | A kind of preparation method of nano aluminum suspension |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710311723.7A Pending CN107293350A (en) | 2015-10-30 | 2015-10-30 | A kind of preparation method of nano aluminum suspension |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN105244074B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107274954A (en) * | 2017-05-26 | 2017-10-20 | 河南职业技术学院 | A kind of special silver paste for rear screen glass de-fog of car and its manufacture method |
CN112133789A (en) * | 2020-09-22 | 2020-12-25 | 常州时创能源股份有限公司 | Double-sided PERC solar cell and preparation method thereof |
CN112934427A (en) * | 2019-11-26 | 2021-06-11 | 新疆硅基新材料创新中心有限公司 | Crushing and grinding SiOXMethod and apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101986391A (en) * | 2010-12-10 | 2011-03-16 | 长沙族兴金属颜料有限公司 | Front silver paste for crystalline silicon solar battery plate and preparation method thereof |
CN102212304A (en) * | 2011-03-25 | 2011-10-12 | 北京化工大学 | Flexible circuit conductive composition, preparation method and using method thereof |
CN103762249A (en) * | 2013-10-16 | 2014-04-30 | 杭州正银电子材料有限公司 | Back-field passivated-aluminum conductive slurry for crystalline-silicon solar cell and preparation method |
WO2014117409A1 (en) * | 2013-02-04 | 2014-08-07 | 深圳首创光伏有限公司 | Electrically conductive paste for positive electrode of crystalline silicon solar cell and preparation method thereof |
CN104637568A (en) * | 2015-02-02 | 2015-05-20 | 南通天盛新能源科技有限公司 | Aluminum paste for all-aluminum back surface field crystalline silicon solar cell and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7511418B2 (en) * | 2005-05-20 | 2009-03-31 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting element, light emitting device and manufacturing method of light emitting element |
CN102643543B (en) * | 2011-02-18 | 2014-09-17 | 中国科学院深圳先进技术研究院 | Composite dielectric material, copper-clad foil prepreg manufactured and copper-clad foil laminated board by using composite dielectric material |
CN102258953B (en) * | 2011-07-11 | 2015-11-25 | 北京纳辰科技发展有限责任公司 | A kind of nano aluminum paste and preparation method thereof |
CN103056388B (en) * | 2013-01-22 | 2015-07-22 | 西南科技大学 | Method for preparing aluminum nanoparticles coated with dispersion stabilizers by liquid-phase chemical reduction method |
-
2015
- 2015-10-30 CN CN201510719537.8A patent/CN105244074B/en active Active
- 2015-10-30 CN CN201710311723.7A patent/CN107293350A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101986391A (en) * | 2010-12-10 | 2011-03-16 | 长沙族兴金属颜料有限公司 | Front silver paste for crystalline silicon solar battery plate and preparation method thereof |
CN102212304A (en) * | 2011-03-25 | 2011-10-12 | 北京化工大学 | Flexible circuit conductive composition, preparation method and using method thereof |
WO2014117409A1 (en) * | 2013-02-04 | 2014-08-07 | 深圳首创光伏有限公司 | Electrically conductive paste for positive electrode of crystalline silicon solar cell and preparation method thereof |
CN103762249A (en) * | 2013-10-16 | 2014-04-30 | 杭州正银电子材料有限公司 | Back-field passivated-aluminum conductive slurry for crystalline-silicon solar cell and preparation method |
CN104637568A (en) * | 2015-02-02 | 2015-05-20 | 南通天盛新能源科技有限公司 | Aluminum paste for all-aluminum back surface field crystalline silicon solar cell and preparation method thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107274954A (en) * | 2017-05-26 | 2017-10-20 | 河南职业技术学院 | A kind of special silver paste for rear screen glass de-fog of car and its manufacture method |
CN112934427A (en) * | 2019-11-26 | 2021-06-11 | 新疆硅基新材料创新中心有限公司 | Crushing and grinding SiOXMethod and apparatus |
CN112133789A (en) * | 2020-09-22 | 2020-12-25 | 常州时创能源股份有限公司 | Double-sided PERC solar cell and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105244074B (en) | 2017-06-20 |
CN107293350A (en) | 2017-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101271928B (en) | Method for producing high-viscosity solar cell front side silver paste and the same | |
CN106128555B (en) | A kind of highly conductive crystal silicon solar batteries front electrode silver slurry and preparation method thereof | |
CN101950594B (en) | Lead-free environment-friendly electronic Ag/Al (silver/aluminum) paste and preparation method thereof | |
CN102779566B (en) | Lead-free conductive silver paste for front faces of crystalline silicon solar cells | |
CN102332322B (en) | Solar battery aluminium slurry with strong adhesive force and preparation method thereof | |
CN102034877A (en) | Conductive paste for solar cell and preparation method thereof | |
CN115083659B (en) | Conductive paste for laser transfer, preparation method and application thereof | |
CN103778993B (en) | Electrode of solar battery silver paste composition | |
CN104637568A (en) | Aluminum paste for all-aluminum back surface field crystalline silicon solar cell and preparation method thereof | |
CN101937736A (en) | A kind of lead-free environment-friendly electronic silver paste and preparation method thereof | |
CN105244074B (en) | A kind of crystal silicon solar energy battery aluminium paste | |
CN102674696B (en) | A kind of glass powder and preparation method thereof and a kind of conductive silver paste and preparation method thereof | |
CN104464882B (en) | A kind of photovoltaic cell silver slurry and sintering method thereof | |
CN103310871A (en) | Slurry for solar cells and preparation methods of slurry | |
CN108198648A (en) | A kind of back of the body passivation rear surface of solar cell silver paste | |
CN101265086B (en) | A water-based tape casting method for sheet-type positive temperature coefficient heat-sensitive ceramics | |
WO2018040564A1 (en) | Back surface field paste for high efficiency crystalline silicon solar cell and preparation method thereof | |
CN110289121B (en) | Alloy aluminum paste for back of PERC solar cell | |
CN105374413A (en) | Low viscosity high efficiency silver slurry for crystal silicon solar energy battery back electrode and preparation method | |
CN106128554B (en) | A kind of anti-aging crystal silicon solar batteries back electrode silver paste | |
CN101826564B (en) | A kind of solar cell back field aluminum paste | |
WO2018040570A1 (en) | Local contact back surface field aluminum paste for high-efficiency double-sided crystalline silicon solar cell and preparation method thereof | |
CN102543257B (en) | Modified silver thick film sizing agent for crystalline silicon solar cell and preparation method thereof | |
CN109493991B (en) | A kind of boron paste for PERC battery | |
CN103972308B (en) | A kind of high adhesion force industrialization crystal silicon solar energy battery aluminium paste |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |