CN105242457A - Light guide device with high color saturation - Google Patents
Light guide device with high color saturation Download PDFInfo
- Publication number
- CN105242457A CN105242457A CN201510777523.1A CN201510777523A CN105242457A CN 105242457 A CN105242457 A CN 105242457A CN 201510777523 A CN201510777523 A CN 201510777523A CN 105242457 A CN105242457 A CN 105242457A
- Authority
- CN
- China
- Prior art keywords
- light
- light guide
- guide plate
- quantum dot
- film layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002096 quantum dot Substances 0.000 claims abstract description 79
- 239000010408 film Substances 0.000 claims abstract description 50
- 239000010409 thin film Substances 0.000 claims abstract description 17
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 5
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 5
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- -1 polyethylene terephthalate Polymers 0.000 claims description 3
- 238000012546 transfer Methods 0.000 claims description 2
- 238000013461 design Methods 0.000 abstract description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 19
- 239000012788 optical film Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 206010019332 Heat exhaustion Diseases 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000005424 photoluminescence Methods 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133615—Edge-illuminating devices, i.e. illuminating from the side
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133614—Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Planar Illumination Modules (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种背光模组,尤其涉及一种高色彩饱和度的导光装置。The invention relates to a backlight module, in particular to a light guide device with high color saturation.
背景技术Background technique
近年来,随着消费电子的蓬勃发展,各个尺寸的显示设备的市场需求越来越大,其中,液晶显示装置(LiquidCrystalDisplay,LCD)因其重量轻、体型薄、功耗低、无辐射等优点而被广泛应用于诸如便携式电视、移动电话、摄录放影机、笔记本电脑以及桌上型显示器等消费性电子或计算机产品中,成为显示器的主流。液晶是一种被动发光器件,需要背光源发出的光线来显示图像内容,常见的背光源包括冷阴极管(ColdCathodeFluorescentLamp,CCFL)和发光二极管(LightEmittingDiode,LED)等。其中LED以高流明效率、高显色能力、低压驱动、不含易碎部件、不含重金属材料等优点正迅速取代CCFL成为背光源的主流技术。由于液晶面板本身不发光,须借助背光模组提供的背光源来显示影像,因此背光模组已然成为液晶显示装置的关键组件之一。一般来说,背光模组依照光源入射位置的不同,可分成侧入式背光模组与直下式背光模组两种。例如,直下式背光模组是将光源设置在液晶面板的后方,直接形成面光源提供给液晶面板;而侧入式背光模组是将背光源LED灯条(Lightbar)设于液晶面板侧后方的背板边缘,LED灯条发出的光线从导光板(LightGuidePlate,LGP)一侧的入光面进入导光板,经由反射和扩散之后从导光板的出光面射出,再经由光学膜片组产生面光源以提供给液晶面板。In recent years, with the vigorous development of consumer electronics, the market demand for display devices of various sizes is increasing. Among them, Liquid Crystal Display (LCD) has the advantages of light weight, thin body, low power consumption, and no radiation. It is widely used in consumer electronics or computer products such as portable TVs, mobile phones, video recorders, notebook computers, and desktop displays, and has become the mainstream of displays. Liquid crystal is a passive light-emitting device that requires light from a backlight source to display image content. Common backlight sources include cold cathode tubes (Cold Cathode Fluorescent Lamp, CCFL) and light emitting diodes (Light Emitting Diode, LED). Among them, LED is rapidly replacing CCFL as the mainstream technology of backlight with its advantages of high lumen efficiency, high color rendering ability, low-voltage drive, no fragile parts, and no heavy metal materials. Since the liquid crystal panel itself does not emit light, images must be displayed through the backlight provided by the backlight module, so the backlight module has become one of the key components of the liquid crystal display device. Generally speaking, the backlight module can be divided into two types, the side-type backlight module and the direct-type backlight module, according to the incident position of the light source. For example, the direct-type backlight module sets the light source behind the liquid crystal panel to directly form a surface light source for the liquid crystal panel; while the side-type backlight module sets the backlight LED light bar (Lightbar) behind the side of the liquid crystal panel. At the edge of the back panel, the light emitted by the LED light bar enters the light guide plate from the light incident surface on one side of the light guide plate (LGP), and is emitted from the light exit surface of the light guide plate after reflection and diffusion, and then generates a surface light source through the optical film group to provide to the LCD panel.
另一方面,固态照明包括两种典型的体系结构:一种是结合红色LED、绿色LED和蓝色LED;一种是紫外光LED芯片或蓝光LED芯片结合颜色转换荧光粉。以后者为例,含有颜色转换荧光粉的光转化层往往需要较高的光致发光量子效率、合适的折射率、良好的耐光性及所需的发光颜色。在此,量子点(QuantumDot,QD)是一种发光半导体晶体,其具有窄而可调的光致发光光谱、高光致发光量子效率、无机材料固有的热稳定性,此外,量子点还可有效地将蓝色光线转化为高饱和度的白色光线,从而在屏幕上显示最宽广色域的颜色。Solid-state lighting, on the other hand, includes two typical architectures: one that combines red, green, and blue LEDs; and one that combines UV LED chips or blue LED chips with color-converting phosphors. Taking the latter as an example, a light conversion layer containing a color conversion phosphor often requires a high photoluminescence quantum efficiency, a suitable refractive index, good light fastness and the required luminous color. Here, quantum dot (QuantumDot, QD) is a light-emitting semiconductor crystal, which has a narrow and tunable photoluminescence spectrum, high photoluminescence quantum efficiency, and inherent thermal stability of inorganic materials. In addition, quantum dots can also effectively It converts blue light into highly saturated white light to display colors with the widest color gamut on the screen.
在现有技术中,将量子点应用于背光模组的结构设计时,通常分为三种类型:量子点薄膜(QDfilm)、量子点管(QDtube)和量子点发光二极管(QDLED)。由于量子点的效率与寿命和温度密切相关,而量子点管以及量子点发光二极管会受到温度影响而出现热衰竭,使整体发光效率降低,因此目前大致以量子点薄膜放置在背光模组的光学膜片位置,再搭配增亮膜以及两个棱镜片(prismsheet),才会让整体发光效率达到一般荧光粉的LED辉度的85%。但是,当前的量子点薄膜层使用面积过大,成本相对比较高昂。In the prior art, when quantum dots are applied to the structural design of backlight modules, they are usually divided into three types: quantum dot film (QDfilm), quantum dot tube (QDtube) and quantum dot light emitting diode (QDLED). Because the efficiency of quantum dots is closely related to life and temperature, and quantum dot tubes and quantum dot light-emitting diodes will be affected by temperature and suffer from heat exhaustion, which will reduce the overall luminous efficiency. The location of the diaphragm, together with the brightness enhancement film and two prism sheets, can make the overall luminous efficiency reach 85% of the LED luminance of ordinary phosphor powder. However, the current quantum dot film layer uses too much area, and the cost is relatively high.
有鉴于此,如何设计一种新的背光模组架构,既发挥量子点的高光致发光量子效率的优势,又可降低其使用面积和成本,从而克服现有技术中的上述缺陷或不足,是业内相关技术人员亟待解决的一项课题。In view of this, how to design a new backlight module architecture, which can not only take advantage of the high photoluminescence quantum efficiency of quantum dots, but also reduce its use area and cost, so as to overcome the above-mentioned defects or deficiencies in the prior art, is an important issue. It is a problem to be solved urgently by relevant technicians in the industry.
发明内容Contents of the invention
针对现有技术中的具有量子点薄膜层的背光模组所存在的上述缺陷,本发明提供一种新颖的、具有高色彩饱和度的导光装置。Aiming at the above defects in the prior art backlight module with quantum dot film layer, the present invention provides a novel light guide device with high color saturation.
依据本发明的一个方面,提供一种高色彩饱和度的导光装置,包括:According to one aspect of the present invention, a light guide device with high color saturation is provided, comprising:
一蓝色LED光源;A blue LED light source;
一第一导光板,设置于所述蓝色LED光源的侧面,所述第一导光板用于将所述蓝色LED光源出射的光线传递至远离所述蓝色LED光源的相对一侧;A first light guide plate, arranged on the side of the blue LED light source, the first light guide plate is used to transmit the light emitted by the blue LED light source to the opposite side away from the blue LED light source;
一第二导光板,设置于所述第一导光板的上方;A second light guide plate, arranged above the first light guide plate;
一量子点薄膜层,设置于所述第二导光板的、远离所述蓝色LED光源的一侧,所述量子点薄膜层用于将来自所述第一导光板的出光端面的蓝色光线转换为白色光线;以及A quantum dot thin film layer, arranged on the side of the second light guide plate away from the blue LED light source, the quantum dot thin film layer is used to transfer the blue light from the light-emitting end surface of the first light guide plate converted to white light; and
一第一反射片,位于所述第一导光板的下方,用于将所述第一导光板出射的部分蓝色光线反射回所述第一导光板的内部。A first reflection sheet, located below the first light guide plate, is used to reflect part of the blue light emitted by the first light guide plate back to the inside of the first light guide plate.
在其中的一实施例,所述第一导光板出射的一部分蓝色光线经由所述量子点薄膜层表面发生反射,另一部分蓝色光线藉由所述量子点薄膜层转换为红色光线和绿色光线,所述量子点薄膜层用于将反射后的所述蓝色光线、转换后的所述红色光线和所述绿色光线混合生成所述白色光线。In one of the embodiments, part of the blue light emitted by the first light guide plate is reflected by the surface of the quantum dot film layer, and another part of the blue light is converted into red light and green light by the quantum dot film layer , the quantum dot film layer is used for mixing the reflected blue light, the converted red light and the green light to generate the white light.
在其中的一实施例,所述第一导光板或所述第二导光板采用多块拼接而成。In one embodiment, the first light guide plate or the second light guide plate is formed by splicing a plurality of pieces.
在其中的一实施例,所述导光装置还包括一第二反射片,设置于所述量子点薄膜层的、远离所述第二导光板的一侧,所述第二反射片用于将穿透所述量子点薄膜层的部分红色光线、部分绿色光线和部分蓝色光线反射回来从而降低光能量损耗。In one of the embodiments, the light guide device further includes a second reflective sheet, which is arranged on the side of the quantum dot thin film layer away from the second light guide plate, and the second reflective sheet is used to Part of the red light, part of the green light and part of the blue light passing through the quantum dot film layer are reflected back to reduce light energy loss.
在其中的一实施例,所述导光装置还包括一第三反射片,位于所述第二导光板的上方,所述第三反射片具有多个间隔分布的通孔,藉由所述通孔将所述第二导光板出射的蓝色光线重新打回所述量子点薄膜层。In one of the embodiments, the light guide device further includes a third reflective sheet located above the second light guide plate, the third reflective sheet has a plurality of through holes distributed at intervals, and through the through holes The holes return the blue light emitted by the second light guide plate back to the quantum dot film layer.
在其中的一实施例,所述第一导光板的出光端面为一斜面,所述斜面朝向所述第二导光板,且倾斜角度介于20度~45度之间。In one embodiment, the light emitting end surface of the first light guide plate is an inclined surface, the inclined surface faces the second light guide plate, and the inclination angle is between 20 degrees and 45 degrees.
在其中的一实施例,所述第一导光板的出光端面至所述量子点薄膜层的最长距离小于所述第二导光板的高度与tanθ1之乘积,其中θ1为所述第一导光板的全反射临界角度。In one of the embodiments, the longest distance from the light exit end surface of the first light guide plate to the quantum dot film layer is less than the product of the height of the second light guide plate and tanθ1, where θ1 is the first The critical angle of total reflection of the light guide plate.
在其中的一实施例,所述第一导光板的出光端面为三角凹槽或圆角凹槽。In one embodiment, the light-emitting end surface of the first light guide plate is a triangular groove or a rounded groove.
在其中的一实施例,所述第一导光板和所述第二导光板为聚对苯二甲酸乙二醇脂(PET)、聚碳酸酯(PC)或聚甲基丙烯酸甲酯(PMMA)材质。In one embodiment, the first light guide plate and the second light guide plate are polyethylene terephthalate (PET), polycarbonate (PC) or polymethyl methacrylate (PMMA). material.
在其中的一实施例,所述导光装置用作为一侧入式背光模组或一直下式背光光源。In one embodiment, the light guiding device is used as a side-entry backlight module or a direct-down backlight source.
采用本发明的高色彩饱和度的导光装置,其包括蓝色LED光源、第一导光板、第二导光板、量子点薄膜层和第一反射片,上述第一导光板设置于蓝色LED光源的侧面并用于将蓝色LED光源出射的光线传递至远离蓝色LED光源的相对一侧,上述第二导光板设置于第一导光板的上方,量子点薄膜层设置于第二导光板的远离蓝色LED光源的一侧,该量子点薄膜层将来自第一导光板的出光端面的蓝色光线转换为白色光线,第一反射片位于第一导光板的下方从而将部分蓝色光线反射回第一导光板的内部。相比于现有技术,本发明采用双导光板的架构设计,通过第一导光板将蓝色光线传递至远离LED光源的另一侧,并从第一导光板的出光端面入射到第二导光板侧面的量子点薄膜层,藉由该量子点薄膜层将蓝色光线转换为白色光线之后再导入该第二导光板,使得光均匀地整面出光。如此一来,本发明将量子点薄膜层设置在远离LED光源的一侧,更可以缩小量子点薄膜层的使用面积,进而降低成本。The light guide device with high color saturation of the present invention includes a blue LED light source, a first light guide plate, a second light guide plate, a quantum dot film layer and a first reflection sheet, and the first light guide plate is arranged on the blue LED The side of the light source is used to transmit the light emitted by the blue LED light source to the opposite side away from the blue LED light source. The second light guide plate is arranged above the first light guide plate, and the quantum dot film layer is arranged on the second light guide plate. On the side away from the blue LED light source, the quantum dot film layer converts the blue light from the light-emitting end surface of the first light guide plate into white light, and the first reflector is located under the first light guide plate to reflect part of the blue light Back to the inside of the first light guide plate. Compared with the prior art, the present invention adopts the architecture design of double light guide plates, and transmits the blue light to the other side away from the LED light source through the first light guide plate, and enters the second light guide plate from the light-emitting end surface of the first light guide plate. The quantum dot film layer on the side of the light plate converts the blue light into white light through the quantum dot film layer and then guides it into the second light guide plate, so that the light is evenly emitted from the entire surface. In this way, the present invention arranges the quantum dot thin film layer on the side away from the LED light source, which can further reduce the use area of the quantum dot thin film layer, thereby reducing the cost.
附图说明Description of drawings
读者在参照附图阅读了本发明的具体实施方式以后,将会更清楚地了解本发明的各个方面。其中,Readers will have a clearer understanding of various aspects of the present invention after reading the detailed description of the present invention with reference to the accompanying drawings. in,
图1示出现有技术中的一种具有量子点薄膜层的背光模组的结构示意图;Fig. 1 shows a schematic structural view of a backlight module with a quantum dot film layer in the prior art;
图2示出依据本发明一实施方式的高色彩饱和度的导光装置的结构示意图;FIG. 2 shows a schematic structural view of a light guide device with high color saturation according to an embodiment of the present invention;
图3A示出如图2所示的导光装置的一第一实施例;Fig. 3 A shows a first embodiment of the light guiding device shown in Fig. 2;
图3B示出如图2所示的导光装置的一第二实施例;Figure 3B shows a second embodiment of the light guiding device shown in Figure 2;
图3C示出如图2所示的导光装置的一第三实施例;Fig. 3 C shows a third embodiment of the light guiding device shown in Fig. 2;
图3D示出如图2所示的导光装置的一第四实施例;Figure 3D shows a fourth embodiment of the light guiding device shown in Figure 2;
图3E示出如图2所示的导光装置的一第五实施例;Figure 3E shows a fifth embodiment of the light guiding device shown in Figure 2;
图3F示出如图2所示的导光装置的一第六实施例;FIG. 3F shows a sixth embodiment of the light guiding device shown in FIG. 2;
图4示出图2的导光装置中,具有较佳的出光能量比例时的第一导光板的示意性结构图;Fig. 4 shows a schematic structural diagram of a first light guide plate with a better light energy ratio in the light guide device of Fig. 2;
图5示出依据本发明的另一实施方式,采用上述图2的导光装置的液晶显示设备的结构示意图;以及FIG. 5 shows a schematic structural view of a liquid crystal display device using the light guide device of FIG. 2 according to another embodiment of the present invention; and
图6示出依据本发明的再一实施方式,采用上述图2的导光装置的液晶显示设备的结构示意图。FIG. 6 shows a schematic structural diagram of a liquid crystal display device using the light guide device of FIG. 2 according to yet another embodiment of the present invention.
具体实施方式detailed description
为了使本申请所揭示的技术内容更加详尽与完备,可参照附图以及本发明的下述各种具体实施例,附图中相同的标记代表相同或相似的组件。然而,本领域的普通技术人员应当理解,下文中所提供的实施例并非用来限制本发明所涵盖的范围。此外,附图仅仅用于示意性地加以说明,并未依照其原尺寸进行绘制。In order to make the technical content disclosed in this application more detailed and complete, reference may be made to the drawings and the following various specific embodiments of the present invention, and the same symbols in the drawings represent the same or similar components. However, those skilled in the art should understand that the examples provided below are not intended to limit the scope of the present invention. In addition, the drawings are only for schematic illustration and are not drawn according to their original scale.
下面参照附图,对本发明各个方面的具体实施方式作进一步的详细描述。The specific implementation manners of various aspects of the present invention will be further described in detail below with reference to the accompanying drawings.
图1示出现有技术中的一种具有量子点薄膜层的背光模组的结构示意图。FIG. 1 shows a schematic structural view of a backlight module with a quantum dot film layer in the prior art.
参照图1,现有的背光模组包括一蓝色LED光源101、一量子点薄膜层(QuantumDotFilm)103、一导光板(LightGuidePlate,LGP)105、一量子点反射层107以及反射片(ReflectiveSheet)109和反射片111。1, the existing backlight module includes a blue LED light source 101, a quantum dot film layer (QuantumDotFilm) 103, a light guide plate (LightGuidePlate, LGP) 105, a quantum dot reflective layer 107 and reflective sheet (ReflectiveSheet) 109 and reflector 111.
其中,量子点薄膜层103设置在蓝色LED光源101与导光板105之间。量子点薄膜层103用于透射光源101出射的一部分蓝色光线,并将另一部分蓝色光线转换为红色光线和绿色光线。如图1所示,蓝色光线以粗线条L1表示,红色光线和绿色光线以细线条L2表示。反射片109设置于导光板105的下方,反射片111设置于导光板105的、远离蓝色LED光源的一侧,它们将导光板105下侧和右侧出射的光线反射回导光板105的内部,以减少光能量损失。如我们所熟知,导光板105的上方为出光端面,其出射的光线经由量子点反射片107的反射和转换之后,产生混合均匀的白色光线。Wherein, the quantum dot film layer 103 is disposed between the blue LED light source 101 and the light guide plate 105 . The quantum dot film layer 103 is used to transmit a part of the blue light emitted by the light source 101 and convert another part of the blue light into red light and green light. As shown in FIG. 1 , blue light is represented by thick lines L1 , and red light and green light are represented by thin lines L2 . The reflective sheet 109 is arranged under the light guide plate 105, and the reflective sheet 111 is arranged on the side of the light guide plate 105 away from the blue LED light source, and they reflect the light emitted from the lower side and the right side of the light guide plate 105 back to the inside of the light guide plate 105 , to reduce light energy loss. As we know, the top of the light guide plate 105 is a light-emitting end surface, and the emitted light is reflected and converted by the quantum dot reflector 107 to generate uniformly mixed white light.
但是,正如背景技术部分所说,量子点薄膜容易受到温度影响而出现热衰竭。在图1中,量子点薄膜层103靠蓝色LED光源101太近,热衰竭严重。并且,量子点薄膜层103还会将部分光线反射回蓝色LED光源101,不仅造成能量耗损,还会加剧热衰竭效应。另外,设置在导光板105上方的量子点反射层107为一整片材质的反射层,使用面积过大,成本昂贵。However, as mentioned in the background section, quantum dot films are susceptible to thermal exhaustion due to temperature. In FIG. 1 , the quantum dot film layer 103 is too close to the blue LED light source 101 , and the heat exhaustion is serious. Moreover, the quantum dot film layer 103 will also reflect part of the light back to the blue LED light source 101, which not only causes energy loss, but also aggravates the heat exhaustion effect. In addition, the quantum dot reflective layer 107 disposed above the light guide plate 105 is a reflective layer made of a whole piece of material, and the use area is too large and the cost is expensive.
为了解决现有技术中的上述缺陷或不足,本发明揭示了一种新颖的、具有高色彩饱和度的导光装置。其中,图2示出依据本发明一实施方式的高色彩饱和度的导光装置的结构示意图。在下文描述中,如无特别说明,蓝色光线以粗线条L1表示,红色光线和绿色光线以细线条L2表示。In order to solve the above defects or deficiencies in the prior art, the present invention discloses a novel light guide device with high color saturation. Wherein, FIG. 2 shows a schematic structural diagram of a light guide device with high color saturation according to an embodiment of the present invention. In the following description, unless otherwise specified, the blue light is represented by a thick line L1, and the red light and green light are represented by a thin line L2.
参照图2,在该实施方式中,本发明的导光装置采用双导光板层叠设计。具体来说,该导光装置包括一蓝色LED光源201、一第一导光板(firstLGP)203、一第二导光板(secondLGP)205、一量子点薄膜层207和一第一反射片209。较佳地,该导光装置可用作为一侧入式背光模组,或者,该导光装置作为一直下式背光光源。Referring to FIG. 2 , in this embodiment, the light guide device of the present invention adopts a stacked design of double light guide plates. Specifically, the light guide device includes a blue LED light source 201 , a first light guide plate (firstLGP) 203 , a second light guide plate (secondLGP) 205 , a quantum dot film layer 207 and a first reflection sheet 209 . Preferably, the light guide device can be used as a side-lit backlight module, or the light guide device can be used as a direct-down backlight source.
详细而言,第一导光板203设置于蓝色LED光源201的侧面。第一导光板203用于将蓝色LED光源201出射的蓝色光线L1传导至远离蓝色LED光源201的相对一侧。第二导光板205设置于第一导光板203的上方,例如,第一导光板203的出光端面与第二导光板205的入光端面相对设置。量子点薄膜层207设置于第二导光板205的、远离蓝色LED光源201的一侧。如此一来,量子点薄膜层207可将来自第一导光板203的出光端面的蓝色光线转换为白色光线。第一反射片209位于第一导光板203的下方,用于将第一导光板203从下方出射的部分蓝色光线反射回第一导光板203的内部。此外,还可在第一反射片209的上方且靠近第一导光板203出光端面的位置安装另一尺寸较小的量子点薄膜层211,以增加光能量的利用效率。In detail, the first light guide plate 203 is disposed on the side of the blue LED light source 201 . The first light guide plate 203 is used to guide the blue light L1 emitted by the blue LED light source 201 to an opposite side away from the blue LED light source 201 . The second light guide plate 205 is disposed above the first light guide plate 203 , for example, the light-emitting end surface of the first light guide plate 203 is opposite to the light-incoming end surface of the second light guide plate 205 . The quantum dot film layer 207 is disposed on a side of the second light guide plate 205 away from the blue LED light source 201 . In this way, the quantum dot film layer 207 can convert the blue light from the light-emitting end surface of the first light guide plate 203 into white light. The first reflection sheet 209 is located below the first light guide plate 203 and is used for reflecting part of the blue light emitted by the first light guide plate 203 from below back to the inside of the first light guide plate 203 . In addition, another smaller quantum dot thin film layer 211 can be installed above the first reflection sheet 209 and close to the light-emitting end surface of the first light guide plate 203 to increase the utilization efficiency of light energy.
在一具体实施例,第一导光板203出射的一部分蓝色光线经由量子点薄膜层207的表面发生反射,另一部分蓝色光线藉由量子点薄膜层207转换为红色光线和绿色光线。量子点薄膜层207用于将反射后的蓝色光线、转换后的红色光线和绿色光线混合生成白色光线。In a specific embodiment, part of the blue light emitted from the first light guide plate 203 is reflected by the surface of the quantum dot film layer 207 , and another part of the blue light is converted into red light and green light by the quantum dot film layer 207 . The quantum dot film layer 207 is used to mix the reflected blue light, converted red light and green light to generate white light.
在一具体实施例,第一导光板和第二导光板可为聚对苯二甲酸乙二醇脂(PET)、聚碳酸酯(PC)或聚甲基丙烯酸甲酯(PMMA)材质。In a specific embodiment, the first light guide plate and the second light guide plate can be made of polyethylene terephthalate (PET), polycarbonate (PC) or polymethyl methacrylate (PMMA).
由上述可知,本发明通过第一导光板将蓝色光线传递至远离蓝色LED光源的另一侧,并从第一导光板的出光端面入射到第二导光板侧面的量子点薄膜层,藉由该量子点薄膜层将蓝色光线转换为白色光线之后再导入该第二导光板,可使光均匀地整面出光。由于量子点薄膜层设置在第一导光板的远离LED光源的一侧,因而不会出现诸如现有技术中的热衰竭严重的问题,并且还可缩小量子点薄膜层的使用面积,进而降低成本。From the above, it can be known that the present invention transmits the blue light to the other side away from the blue LED light source through the first light guide plate, and enters the quantum dot film layer on the side of the second light guide plate from the light-emitting end surface of the first light guide plate. The blue light is converted into white light by the quantum dot film layer and then guided into the second light guide plate, so that the light can be evenly emitted from the entire surface. Since the quantum dot film layer is arranged on the side of the first light guide plate away from the LED light source, serious problems such as heat exhaustion in the prior art will not occur, and the use area of the quantum dot film layer can also be reduced, thereby reducing costs .
图3A至图3F分别示出如图2所示的导光装置的多个不同实施例。3A to 3F respectively illustrate several different embodiments of the light guiding device as shown in FIG. 2 .
如图3A所示,在该实施例中,其与图2的导光装置的主要区别是在于,蓝色LED光源301选用了较大功率的LED。这是因为,尽管LED的功率越大,温升越高,但是量子点薄膜层207放置在第一导光板203的右侧,它与LED光源之间的距离较远,其受温度的影响很小。在图3B中,第二导光板205采用多块拼接而成。当然,在其它的实施例中,也可将第一导光板203采用多块拼接。As shown in FIG. 3A , in this embodiment, the main difference from the light guide device in FIG. 2 is that the blue LED light source 301 uses a higher power LED. This is because, although the power of the LED is greater, the temperature rise is higher, but the quantum dot thin film layer 207 is placed on the right side of the first light guide plate 203, and the distance between it and the LED light source is far, and it is greatly affected by the temperature. Small. In FIG. 3B , the second light guide plate 205 is formed by splicing multiple pieces. Of course, in other embodiments, multiple pieces of the first light guide plate 203 may also be spliced.
参照图3C和图3D,将它们与图2进行比较,其主要区别是在于,第一导光板的出光端面进行了特别设计,以便将出射的蓝色光线集中入射到第二导光板的入射端面之下侧。例如,图3C的第一导光板203的出光端面设计为三角凹槽S1。又如,图3D的第一导光板203的出光端面设计为圆角凹槽S2。此外,经过实验数据测试表明,入射到第二导光板出光面的光线角度θ31与θ32均大于40度。Referring to Figure 3C and Figure 3D, and comparing them with Figure 2, the main difference is that the light-emitting end face of the first light guide plate is specially designed so that the outgoing blue light is incident on the incident end face of the second light guide plate underside. For example, the light emitting end surface of the first light guide plate 203 in FIG. 3C is designed as a triangular groove S1. As another example, the light emitting end surface of the first light guide plate 203 in FIG. 3D is designed as a rounded groove S2. In addition, experimental data testing shows that the angles θ 31 and θ 32 of light incident on the light-emitting surface of the second light guide plate are both greater than 40 degrees.
如图3E所示,在该实施例中,导光装置还包括一第二反射片213,其设置于量子点薄膜层207的、远离第二导光板205的一侧。第二反射片213用于将穿透量子点薄膜层207的部分红色光线、部分绿色光线和部分蓝色光线反射回来从而降低光能量损耗。As shown in FIG. 3E , in this embodiment, the light guide device further includes a second reflective sheet 213 disposed on the side of the quantum dot film layer 207 away from the second light guide plate 205 . The second reflective sheet 213 is used to reflect back part of the red light, part of the green light and part of the blue light passing through the quantum dot thin film layer 207 so as to reduce light energy loss.
如图3F所示,在该实施例中,导光装置不仅设有第二反射片213,还在第二导光板205的上方设有第三反射片215以及第一导光板203的下方设有量子点薄膜层211a。其中,第三反射片215还具有多个间隔分布的通孔217,藉由这些通孔217将第二导光板205出射的蓝色光线重新打回量子点薄膜层211a,不仅可进一步增加发光效率,同时也能够调整光均匀度。As shown in FIG. 3F , in this embodiment, the light guide device is not only provided with a second reflective sheet 213, but also provided with a third reflective sheet 215 above the second light guide plate 205 and below the first light guide plate 203. Quantum dot film layer 211a. Wherein, the third reflection sheet 215 also has a plurality of through holes 217 distributed at intervals, and through these through holes 217, the blue light emitted by the second light guide plate 205 is returned to the quantum dot film layer 211a, which can not only further increase the luminous efficiency , but also to adjust the light uniformity.
图4示出图2的导光装置中,具有较佳的出光能量比例时的第一导光板的示意性结构图。FIG. 4 shows a schematic structural view of the first light guide plate when there is a better light energy ratio in the light guide device in FIG. 2 .
参照图4,在该实施例中,第一导光板203的厚度为H1,第二导光板205的厚度为H2。蓝色LED光源201出射的蓝色光线进入第一导光板203之后,其入射角和反射角均为θ1。第一导光板203的出光端面为一斜面,该斜面与水平面的夹角为θ2。入射到第二导光板205出光面的光线角度记为θ33。实验表明,当θ2为90度时,第二导光板205出光面的光能量相对于蓝色LED光源的占比为0;当θ2为45度时,第二导光板205出光面的光能量相对于蓝色LED光源的占比为58%;当θ2为30度时,第二导光板205出光面的光能量相对于蓝色LED光源的占比为88%。一般地,可将倾角θ2选择为介于20度~45度之间。Referring to FIG. 4, in this embodiment, the thickness of the first light guide plate 203 is H1, and the thickness of the second light guide plate 205 is H2. After the blue light emitted by the blue LED light source 201 enters the first light guide plate 203 , its incident angle and reflection angle are both θ 1 . The light emitting end surface of the first light guide plate 203 is an inclined surface, and the included angle between the inclined surface and the horizontal plane is θ 2 . The angle of light incident on the light-emitting surface of the second light guide plate 205 is denoted as θ 33 . Experiments have shown that when θ 2 is 90 degrees, the ratio of light energy on the light-emitting surface of the second light guide plate 205 to the blue LED light source is 0; when θ 2 is 45 degrees, the light energy on the light-emitting surface of the second light guide plate 205 The proportion of energy relative to the blue LED light source is 58%; when θ2 is 30 degrees, the proportion of light energy of the light emitting surface of the second light guide plate 205 relative to the blue LED light source is 88%. Generally, the inclination angle θ 2 can be selected to be between 20 degrees and 45 degrees.
在一具体实施例,为了避免蓝光无法成功入射量子点薄膜层以造成画面漏光情形,第一导光板203的出光端面至量子点薄膜层207的最长距离应小于第二导光板205的高度H2与tanθ1之乘积,其中θ1为第一导光板的全反射临界角度。类似地,入射到第二导光板205出光面的光线角度θ33也会大于40度。In a specific embodiment, in order to prevent blue light from successfully entering the quantum dot film layer and causing light leakage in the picture, the longest distance from the light-emitting end surface of the first light guide plate 203 to the quantum dot film layer 207 should be less than the height H2 of the second light guide plate 205 The product of tanθ 1 , where θ 1 is the critical angle of total reflection of the first light guide plate. Similarly, the angle θ 33 of the light incident on the light-emitting surface of the second light guide plate 205 is greater than 40 degrees.
图5示出依据本发明的另一实施方式,采用上述图2的导光装置的液晶显示设备的结构示意图。FIG. 5 shows a schematic structural diagram of a liquid crystal display device using the light guide device in FIG. 2 according to another embodiment of the present invention.
参照图5,在该实施方式中,该液晶显示设备包括一液晶面板305、一光学薄膜层303和一导光装置。光学薄膜层303位于液晶面板305的下方,导光装置位于光学薄膜层303的下方。如前所述,导光装置中的第二导光板205的出光面可出射均匀的白色光线,以满足液晶面板中液晶分子所需的背光要求。Referring to FIG. 5 , in this embodiment, the liquid crystal display device includes a liquid crystal panel 305 , an optical film layer 303 and a light guide device. The optical film layer 303 is located under the liquid crystal panel 305 , and the light guide device is located under the optical film layer 303 . As mentioned above, the light-emitting surface of the second light-guiding plate 205 in the light-guiding device can emit uniform white light to meet the backlight requirements required by the liquid crystal molecules in the liquid crystal panel.
图6示出依据本发明的再一实施方式,采用上述图2的导光装置的液晶显示设备的结构示意图。FIG. 6 shows a schematic structural diagram of a liquid crystal display device using the light guide device of FIG. 2 according to yet another embodiment of the present invention.
参照图6,类似于图5,在该实施方式中,该液晶显示设备包括一液晶面板305、一光学薄膜层303、一扩散板(diffuserplate)307和一导光装置。光学薄膜层303位于液晶面板305的下方,扩散板307位于光学薄膜层303的下方。导光装置位于扩散板307的下方。与图5不同的是,第二导光板的上方设有第三反射片217。第三反射片215还具有多个间隔分布的通孔217,藉由这些通孔217将第二导光板出射的部分蓝色光线重新打回量子点薄膜层207a的底边,这样不仅可增加发光效率,还可调整光均匀度。Referring to FIG. 6 , similar to FIG. 5 , in this embodiment, the liquid crystal display device includes a liquid crystal panel 305 , an optical film layer 303 , a diffuser plate 307 and a light guide device. The optical film layer 303 is located below the liquid crystal panel 305 , and the diffusion plate 307 is located below the optical film layer 303 . The light guiding device is located under the diffuser plate 307 . The difference from FIG. 5 is that a third reflective sheet 217 is disposed above the second light guide plate. The third reflection sheet 215 also has a plurality of through holes 217 distributed at intervals, and through these through holes 217, part of the blue light emitted by the second light guide plate is returned to the bottom edge of the quantum dot film layer 207a, which not only increases the light emission efficiency, light uniformity can also be adjusted.
采用本发明的高色彩饱和度的导光装置,其包括蓝色LED光源、第一导光板、第二导光板、量子点薄膜层和第一反射片,上述第一导光板设置于蓝色LED光源的侧面并用于将蓝色LED光源出射的光线传递至远离蓝色LED光源的相对一侧,上述第二导光板设置于第一导光板的上方,量子点薄膜层设置于第二导光板的远离蓝色LED光源的一侧,该量子点薄膜层将来自第一导光板的出光端面的蓝色光线转换为白色光线,第一反射片位于第一导光板的下方从而将部分蓝色光线反射回第一导光板的内部。相比于现有技术,本发明采用双导光板的架构设计,通过第一导光板将蓝色光线传递至远离LED光源的另一侧,并从第一导光板的出光端面入射到第二导光板侧面的量子点薄膜层,藉由该量子点薄膜层将蓝色光线转换为白色光线之后再导入该第二导光板,使得光均匀地整面出光。如此一来,本发明将量子点薄膜层设置在远离LED光源的一侧,更可以缩小量子点薄膜层的使用面积,进而降低成本。The light guide device with high color saturation of the present invention includes a blue LED light source, a first light guide plate, a second light guide plate, a quantum dot film layer and a first reflection sheet, and the first light guide plate is arranged on the blue LED The side of the light source is used to transmit the light emitted by the blue LED light source to the opposite side away from the blue LED light source. The second light guide plate is arranged above the first light guide plate, and the quantum dot film layer is arranged on the second light guide plate. On the side away from the blue LED light source, the quantum dot film layer converts the blue light from the light-emitting end surface of the first light guide plate into white light, and the first reflector is located under the first light guide plate to reflect part of the blue light Back to the inside of the first light guide plate. Compared with the prior art, the present invention adopts the architecture design of double light guide plates, and transmits the blue light to the other side away from the LED light source through the first light guide plate, and enters the second light guide plate from the light-emitting end surface of the first light guide plate. The quantum dot film layer on the side of the light plate converts the blue light into white light through the quantum dot film layer and then guides it into the second light guide plate, so that the light is evenly emitted from the entire surface. In this way, the present invention arranges the quantum dot thin film layer on the side away from the LED light source, which can further reduce the use area of the quantum dot thin film layer, thereby reducing the cost.
上文中,参照附图描述了本发明的具体实施方式。但是,本领域中的普通技术人员能够理解,在不偏离本发明的精神和范围的情况下,还可以对本发明的具体实施方式作各种变更和替换。这些变更和替换都落在本发明权利要求书所限定的范围内。Hereinbefore, specific embodiments of the present invention have been described with reference to the accompanying drawings. However, those skilled in the art can understand that without departing from the spirit and scope of the present invention, various changes and substitutions can be made to the specific embodiments of the present invention. These changes and substitutions all fall within the scope defined by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510777523.1A CN105242457A (en) | 2015-11-13 | 2015-11-13 | Light guide device with high color saturation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510777523.1A CN105242457A (en) | 2015-11-13 | 2015-11-13 | Light guide device with high color saturation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105242457A true CN105242457A (en) | 2016-01-13 |
Family
ID=55040147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510777523.1A Pending CN105242457A (en) | 2015-11-13 | 2015-11-13 | Light guide device with high color saturation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105242457A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106784236A (en) * | 2016-11-22 | 2017-05-31 | 深圳市华星光电技术有限公司 | LED source and its manufacture method, display panel |
CN107340647A (en) * | 2017-09-01 | 2017-11-10 | 青岛海信电器股份有限公司 | A kind of method for solving the backlight module edge colour cast using fluorescent film |
WO2017193418A1 (en) * | 2016-05-09 | 2017-11-16 | 武汉华星光电技术有限公司 | Quantum dot backlight module |
WO2017206515A1 (en) * | 2016-06-03 | 2017-12-07 | 京东方科技集团股份有限公司 | Backlight source, and manufacturing method, use and display device thereof |
CN107688255A (en) * | 2017-09-11 | 2018-02-13 | 深圳市华星光电技术有限公司 | A kind of backlight module, quantum dot diaphragm and preparation method thereof |
US20220187656A1 (en) * | 2020-06-23 | 2022-06-16 | Wuhan China Star Optoelectronics Technology Co., Ltd. | Backlight and display apparatus |
-
2015
- 2015-11-13 CN CN201510777523.1A patent/CN105242457A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017193418A1 (en) * | 2016-05-09 | 2017-11-16 | 武汉华星光电技术有限公司 | Quantum dot backlight module |
WO2017206515A1 (en) * | 2016-06-03 | 2017-12-07 | 京东方科技集团股份有限公司 | Backlight source, and manufacturing method, use and display device thereof |
US10539735B2 (en) | 2016-06-03 | 2020-01-21 | Boe Technology Group Co., Ltd. | Backlight source, method for producing the same and use of the same, display device |
CN106784236A (en) * | 2016-11-22 | 2017-05-31 | 深圳市华星光电技术有限公司 | LED source and its manufacture method, display panel |
CN107340647A (en) * | 2017-09-01 | 2017-11-10 | 青岛海信电器股份有限公司 | A kind of method for solving the backlight module edge colour cast using fluorescent film |
CN107688255A (en) * | 2017-09-11 | 2018-02-13 | 深圳市华星光电技术有限公司 | A kind of backlight module, quantum dot diaphragm and preparation method thereof |
US20220187656A1 (en) * | 2020-06-23 | 2022-06-16 | Wuhan China Star Optoelectronics Technology Co., Ltd. | Backlight and display apparatus |
US11668971B2 (en) * | 2020-06-23 | 2023-06-06 | Wuhan China Star Optoelectronics Technology Co., Ltd. | Backlight and display apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7891852B2 (en) | Illumination system using phosphor remote from light source | |
KR102529717B1 (en) | display device | |
US8376601B2 (en) | Backlight unit and display unit | |
CN103148406B (en) | Display device and backlight module thereof | |
CN105242457A (en) | Light guide device with high color saturation | |
CN101782203B (en) | Backlight system containing free-form surface reflector | |
US20090033832A1 (en) | Backlight module and application thereof | |
KR20170074947A (en) | Quantum dot backlight module and display device | |
EP3525247B1 (en) | Light emitting device | |
CN102313165A (en) | Lighting unit and display provided with the same | |
WO2020000729A1 (en) | Reflective sheet, side-entry backlight module and liquid crystal display | |
US20180106938A1 (en) | Quantum dot backlight module | |
CN101071230A (en) | Liquid crystal display device and its backlight module | |
WO2012161155A1 (en) | Backlight unit and liquid-crystal display device | |
US20120063162A1 (en) | Illuminating Device and Liquid Crystal Display Device | |
US20180101064A1 (en) | Backlight modules and double-sided display devices | |
TWI397748B (en) | Backlight module | |
CN101349778A (en) | Light guide plate and backlight module | |
CN108319071A (en) | Display device | |
KR20120129092A (en) | Liquid crystal display device | |
CN101470299A (en) | Light emitting diode backlight module, diffusion sheet thereof and manufacturing method thereof | |
US10732457B2 (en) | Backlight module and display device having transparent substrate with a plurality of light source disposed thereon | |
KR102591781B1 (en) | Display appartus | |
WO2012043361A1 (en) | Illumination device and display device | |
CN100395631C (en) | Backlight component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160113 |