[go: up one dir, main page]

CN105241964B - The delay calculating method of cylindrical surface workpiece phase-control focusing ultrasound detection - Google Patents

The delay calculating method of cylindrical surface workpiece phase-control focusing ultrasound detection Download PDF

Info

Publication number
CN105241964B
CN105241964B CN201510575567.6A CN201510575567A CN105241964B CN 105241964 B CN105241964 B CN 105241964B CN 201510575567 A CN201510575567 A CN 201510575567A CN 105241964 B CN105241964 B CN 105241964B
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
theta
msup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510575567.6A
Other languages
Chinese (zh)
Other versions
CN105241964A (en
Inventor
姜学平
韩庆邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201510575567.6A priority Critical patent/CN105241964B/en
Publication of CN105241964A publication Critical patent/CN105241964A/en
Application granted granted Critical
Publication of CN105241964B publication Critical patent/CN105241964B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种圆柱形曲面工件相控聚焦超声检测的延时计算方法,其特征在于:包括直射检测时各阵元延时计算方法和经圆柱内壁反射后聚焦检测时各阵元延时计算方法。本发明提出的延时计算方法计算的延时可以形成较好的检测声束,能有效检测外径较小的轴或管状工件,包括小径管对接焊缝中的横向缺陷,也可以用于该类工件中其它缺陷的补充检测,辅助缺陷定性。

The invention discloses a time-delay calculation method for phase-controlled focused ultrasonic detection of a cylindrical curved surface workpiece, which is characterized in that it includes the time-delay calculation method of each array element during direct-ray detection and the time delay of each array element during focus detection after reflection from the inner wall of a cylinder Calculation method. The time delay calculated by the delay calculation method proposed by the present invention can form a better detection sound beam, which can effectively detect shafts or tubular workpieces with small outer diameters, including transverse defects in butt welds of small diameter pipes, and can also be used for this Supplementary detection of other defects in similar workpieces to assist in the characterization of defects.

Description

圆柱形曲面工件相控聚焦超声检测的延时计算方法Time-delay calculation method for phase-controlled focused ultrasonic testing of cylindrical curved surface workpieces

技术领域technical field

本发明涉及一种圆柱形曲面工件相控聚焦超声检测的延时计算方法,属于超声检测技术领域。The invention relates to a time-delay calculation method for phase-controlled focused ultrasonic detection of cylindrical curved surface workpieces, and belongs to the technical field of ultrasonic detection.

背景技术Background technique

小径管对接焊缝广泛存在于石油、化工、供暖等各种大型锅炉尤其是火电锅炉中,用作热交换和物质传输。如一台1千兆瓦的锅炉在安装中约有焊缝8万多道,而2014年我国火力发电装机容量约915.7千兆瓦,小径管对接焊缝数量巨大。若焊缝中存在未发现的危害性缺陷,则易引起爆管,可能导致锅炉非计划停机,造成巨大的经济损失和社会问题。该类焊缝服役环境恶劣,因此对于检测的可靠性和检测效率要求极高,检测难度大。尤其是横向缺陷,极易漏检。横向缺陷是指焊缝中缺陷的走向垂直于焊缝中心线和检测面的缺陷,最常见的横向缺陷是横向裂纹。Butt welds of small-diameter tubes are widely used in various large-scale boilers such as petroleum, chemical industry, and heating, especially thermal power boilers, and are used for heat exchange and material transmission. For example, there are more than 80,000 welds in the installation of a 1 gigawatt boiler. In 2014, the installed capacity of thermal power generation in my country was about 915.7 gigawatts, and the number of small diameter pipe butt welds is huge. If there are undiscovered harmful defects in the weld, it is easy to cause tube explosion, which may lead to unplanned shutdown of the boiler, resulting in huge economic losses and social problems. The service environment of this type of weld is harsh, so the requirements for detection reliability and detection efficiency are extremely high, and detection is difficult. Especially the transverse defects are easy to be missed. Transverse defects refer to the defects in the weld whose trend is perpendicular to the centerline of the weld and the detection surface. The most common transverse defect is a transverse crack.

目前焊缝检测常用的无损检测技术包括射线、超声、磁粉、渗透和涡流,其中只有射线和超声可以同时检测小径管对接焊缝表面和内部缺陷。At present, the non-destructive testing techniques commonly used in weld inspection include ray, ultrasonic, magnetic particle, penetration and eddy current, among which only ray and ultrasonic can detect the surface and internal defects of small-diameter pipe butt welds at the same time.

射线检测是利用射线透过被检物体时有缺陷部位与无缺陷部位对射线的吸收能力不同,导致成像底片的亮度不同而检测缺陷,一般采用单次透照的双壁双投影检测方法。它对裂纹、未熔合等危害性较大的面积型缺陷不敏感;检测较厚工件时难以透照,检测中有盲区,易导致漏检;还存在辐射、污染,效率低的不足。Radiographic inspection is to detect defects by using the difference in the absorption ability of the defective part and the non-defective part when the ray passes through the object to be inspected, resulting in a difference in the brightness of the imaging film. Generally, a single transillumination double-wall double-projection detection method is used. It is insensitive to more harmful area-type defects such as cracks and lack of fusion; it is difficult to detect thicker workpieces through transillumination, and there are blind areas in the detection, which may easily lead to missed inspections; there are also deficiencies in radiation, pollution, and low efficiency.

而目前常规的超声检测一般采用斜入射横波(SV波)脉冲回波法单面双侧检测,通过手动来回移动探头作锯齿形扫查,观察回波幅度和回波变化定位定量定性缺陷。该方法检测时,声传播方向与横向缺陷共面,很难检测出横向缺陷,且采用自发自收方式,楔块前沿较大,难以检测较薄的工件。另外,超声衍射时差法的检测盲区太大,甚至大于管子壁厚,不适宜于检测小径管对接焊缝。最后,目前工业检测中常用的相控阵超声检测技术采用聚焦脉冲横波回波法扇形扫描、电子扫描和多项扫描成像进行检测,同样存在常规超声检测中遇到的问题—声传播方向与横向缺陷共面,缺陷反射回波信号很弱,甚至淹没于噪声信号之中,极易造成漏检。采用二维相控阵超声检测技术进行检测,探头阵元数多,要求设备通道数较多,检测设备昂贵且不适宜于现场应用。At present, conventional ultrasonic testing generally adopts oblique incident shear wave (SV wave) pulse-echo method for single-sided and double-sided detection. The probe is manually moved back and forth for zigzag scanning, and the echo amplitude and echo changes are observed to locate quantitative and qualitative defects. When this method is detected, the sound propagation direction is in the same plane as the transverse defect, so it is difficult to detect the transverse defect, and the self-generating and self-retracting method is adopted, and the leading edge of the wedge is large, making it difficult to detect thinner workpieces. In addition, the detection blind zone of the ultrasonic diffraction time-of-flight method is too large, even larger than the pipe wall thickness, which is not suitable for detecting small-diameter pipe butt welds. Finally, the phased array ultrasonic testing technology commonly used in industrial testing at present uses the focused pulse shear wave echo method sector scanning, electronic scanning and multi-scan imaging for testing. The defect is coplanar, and the echo signal reflected by the defect is very weak, even submerged in the noise signal, which can easily cause missed detection. Two-dimensional phased array ultrasonic testing technology is used for testing. The number of probe array elements is large, requiring a large number of equipment channels, and the testing equipment is expensive and not suitable for field application.

目前的横向缺陷的超声检测只能检测板对接焊缝的横向缺陷。主要是采用常规超声单晶片探头,布置于焊缝两侧,斜探头与焊缝中心线所成角度不大于10°,作两个方向的斜平行扫查,如果焊缝余高磨平,探头可以在焊缝及热影响区上作两个方向的平行扫查。但斜平行扫查不能用于管对接焊缝,主要是由于楔块-工件曲线引起声束发散严重,使得检测声场混乱,不能进行检测。The current ultrasonic detection of transverse defects can only detect transverse defects of plate butt welds. Mainly adopt conventional ultrasonic single-chip probes, which are arranged on both sides of the weld. The angle formed by the oblique probe and the center line of the weld is not more than 10°, and the oblique parallel scanning in two directions is performed. If the weld reinforcement is ground flat, the probe Parallel scanning in two directions can be performed on the weld seam and the heat-affected zone. However, oblique parallel scanning cannot be used for pipe butt welds, mainly because the wedge-workpiece curve causes serious sound beam divergence, which makes the detection sound field chaotic and cannot be detected.

为了克服上述问题,开发了圆柱曲面工件的横向缺陷检测装置,详情参照专利201510498212.1,在使用该装置检测时,需要设置各阵元的延时,现有的方法不适用与该装置,而上述专利中没有披露具体的计算方法,因而会导致延时设置不合理,不能形成有效的检测声束。In order to overcome the above problems, a transverse defect detection device for workpieces with cylindrical curved surfaces has been developed. For details, refer to patent 201510498212.1. When using this device for detection, it is necessary to set the delay of each array element. The existing method is not suitable for this device, and the above patent The specific calculation method is not disclosed in , which will lead to unreasonable delay setting and the inability to form an effective detection sound beam.

发明内容Contents of the invention

为了解决上述技术问题,本发明提供了一种圆柱形曲面工件相控聚焦超声检测的延时计算方法。In order to solve the above-mentioned technical problems, the present invention provides a time-delay calculation method for phase-controlled focused ultrasonic testing of cylindrical curved workpieces.

为了达到上述目的,本发明所采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:

圆柱形曲面工件相控聚焦超声检测的延时计算方法,包括直射检测时各阵元延时计算方法和经圆柱内壁反射后聚焦检测时各阵元延时计算方法;The time-delay calculation method for the phase-controlled focused ultrasonic inspection of cylindrical curved surface workpieces, including the calculation method of the time-delay calculation method of each array element during the direct inspection and the calculation method of the time-delay calculation method of each array element during the focus inspection after reflection from the inner wall of the cylinder;

所述直射检测时各阵元延时计算方法过程为:The process of calculating the delay of each array element during the direct detection is as follows:

A1)构建缺陷检测模型,沿探头中心作横切面;A1) Build a defect detection model, and make a cross-section along the center of the probe;

A2)定义横切面与管轴相交的点为原点O,建立极坐标系;A2) define the point where the cross section intersects with the pipe axis as the origin O, and establish a polar coordinate system;

A3)楔块斜面的后端点B所在的位置为B(RBB);楔块下表面的后端点A所在的位置为A(Rout,0),Rout为管外径;A3) The position of the rear end point B of the wedge slope is B(R BB ); the position of the rear end point A of the wedge lower surface is A(R out ,0), and R out is the outer diameter of the pipe;

A4)计算各阵元中心所在的位置;A4) Calculate the position of the center of each array element;

定义第i个阵元中心I所在的位置为I(Rii);Define the position of the i-th array element center I as I(R ii );

其中,AI为A点到第i个阵元中心I之间的距离,BI为B点到第i个阵元中心I之间的距离;Among them, AI is the distance between point A and the center I of the i-th array element, and BI is the distance between point B and the center I of the i-th array element;

H0为A点到B点之间的距离,α0为楔块的倾斜角;H 0 is the distance between point A and point B, α 0 is the inclination angle of the wedge;

BI=p×(i-1)+s0 BI=p×(i-1)+s 0

s0为B点到离其最近阵元中心的距离,p为阵元间距,即相邻阵元中心间的距离,p=g+e,其中g为阵元间隙尺寸,e为阵元宽度;s 0 is the distance from point B to the center of the nearest array element, p is the array element spacing, that is, the distance between adjacent array element centers, p=g+e, where g is the array element gap size, and e is the array element width ;

A5)根据Snell定律,得到入射点位置的方程;A5) according to Snell's law, obtain the equation of incident point position;

定义第i个阵元激发的声波的入射点D所在的位置为D(Rout,θD);声聚焦点P所在的位置为P(RP,θP);Define the position of the incident point D of the sound wave excited by the i-th array element as D(R out , θ D ); the position of the acoustic focus point P as P(R P , θ P );

关于θD的方程为,The equation for θ D is,

其中,cw为楔块材料声速,cs为管材料声速;Among them, c w is the sound velocity of the wedge material, and c s is the sound velocity of the tube material;

A6)获取入射点位置的取值范围;A6) Obtain the value range of the incident point position;

用直线连接I与P,直线与圆弧相交的点为E,E所在的位置为E(Rout,θE),θD的取值范围在θi和θE之间;Connect I and P with a straight line, the point where the straight line intersects the arc is E, the position of E is E(R out , θ E ), and the value range of θ D is between θ i and θ E ;

A7)根据入射点位置的取值范围和方程,采用二分法数值计算,获取入射点位置值;A7) According to the value range and equation of the incident point position, the value of the incident point position is obtained by numerical calculation using the dichotomy method;

A8)根据入射点位置值获取阵元的延时;第i个阵元的延时Δti为,A8) Obtain the delay of the array element according to the position value of the incident point; the delay Δt i of the i-th array element is,

Δti=max(t)-ti+t0 Δt i =max(t)-t i +t 0

其中,in,

为第i个阵元中心I,发射声波传到P点所用的声时; It is the sound time used for transmitting the sound wave to the point P at the center I of the i-th array element;

max(t)为ti中的最大值;max(t) is the maximum value in t i ;

t0为延时设置中的初始延时,为一固定常数;t 0 is the initial delay in the delay setting, which is a fixed constant;

经圆柱内壁反射后聚焦检测时各阵元延时计算方法:Calculation method of the time delay of each array element during focus detection after reflection from the inner wall of the cylinder:

B1)构建缺陷检测模型,沿探头中心作横切面;B1) Build a defect detection model, and make a cross-section along the center of the probe;

B2)定义横切面与管轴相交的点为原点O,建立极坐标系;B2) define the point where the cross section intersects with the tube axis as the origin O, and set up a polar coordinate system;

B3)楔块斜面的后端点B所在的位置为B(RB,θB);楔块下表面的后端点A所在的位置为A(Rout,0),Rout等于管外径;B3) The position of the rear end point B of the wedge slope is B(R B , θ B ); the position of the rear end point A of the lower surface of the wedge is A(R out , 0), and R out is equal to the outer diameter of the pipe;

B4)计算各阵元中心所在的位置;B4) Calculate the position of the center of each array element;

定义第i个阵元中心I所在的位置为I(Ri,θi);Define the position of the i-th array element center I as I(R i , θ i );

其中,AI为A点到第i个阵元中心I之间的距离,BI为B点到第i个阵元中心I之间的距离;Among them, AI is the distance between point A and the center I of the i-th array element, and BI is the distance between point B and the center I of the i-th array element;

H0为A点到B点之间的距离,α0为楔块的倾斜角;H 0 is the distance between point A and point B, α 0 is the inclination angle of the wedge;

BI=p×(i-1)+s0 BI=p×(i-1)+s 0

s0为B点到离其最近阵元中心的距离,p为阵元间距,即相邻阵元中心间的距离,p=g+e,其中g为阵元间隙尺寸,e为阵元宽度;s 0 is the distance from point B to the center of the nearest array element, p is the array element spacing, that is, the distance between adjacent array element centers, p=g+e, where g is the array element gap size, and e is the array element width ;

B5)根据Snell定律和正余弦定理,得到入射点位置的方程;B5) according to Snell's law and the law of sine and cosine, obtain the equation of incident point position;

定义第i个阵元激发的声波的入射点H所在的位置为H(Rout,θH);声聚焦点P′所在的位置为P′(RP′,θP′);管内壁反射点F所在的位置为F(Rin,θF),Rin为管内径;Define the position of the incident point H of the sound wave excited by the i-th array element as H(R out , θ H ); the position of the acoustic focal point P' as P'(R P' , θ P' ); The position of point F is F(R in , θ F ), and R in is the inner diameter of the tube;

关于θH的方程为,The equation for θ H is,

B6)获取入射点位置的取值范围;B6) Obtain the value range of the incident point position;

用直线连接I与P′,直线与圆弧相交的点为K,K所在的位置为K(Rout,θK),θH的取值范围在θi和θK之间;Connect I and P' with a straight line, the point where the straight line intersects the arc is K, the position of K is K(R out , θ K ), and the value range of θ H is between θ i and θ K ;

B7)根据入射点位置的取值范围和方程,采用二分法数值计算,获取入射点位置值;B7) According to the value range and equation of the incident point position, the value of the incident point position is obtained by numerical calculation using the dichotomy method;

B8)根据入射点位置值获取阵元的延时;B8) Obtain the delay of the array element according to the position value of the incident point;

第i个阵元的延时Δti′为,The delay Δt i ′ of the i-th array element is,

Δti′=max(t)′-ti′+t0 Δt i '=max(t)'-t i '+t 0

其中,in,

为第i个阵元中心I,发射声波传到P′点所用的声时; It is the sound time used by the center I of the i-th array element to transmit the sound wave to point P′;

max(t)′为ti′中的最大值。max(t)' is the maximum value among t i '.

本发明所达到的有益效果:本发明提出的延时计算方法计算的延时可以形成较好的检测声束,能有效检测外径较小(一般小于159mm)的轴或管状工件,包括小径管对接焊缝中的横向缺陷,也可以用于该类工件中其它缺陷的补充检测,辅助缺陷定性。The beneficial effects achieved by the present invention: the delay calculated by the delay calculation method proposed by the present invention can form a better detection sound beam, and can effectively detect shafts or tubular workpieces with smaller outer diameters (generally less than 159mm), including small-diameter tubes Transverse defects in butt welds can also be used for supplementary detection of other defects in this type of workpiece to assist in the characterization of defects.

附图说明Description of drawings

图1为圆柱曲面工件的横向缺陷检测装置的结构示意图。Fig. 1 is a schematic structural diagram of a transverse defect detection device for a workpiece with a cylindrical curved surface.

图2为直射波检测时的横切面示意图。Fig. 2 is a schematic cross-sectional view of direct wave detection.

图3为局部放大图。Figure 3 is a partially enlarged view.

图4为反射波检测时的横切面示意图Figure 4 is a cross-sectional schematic diagram of reflected wave detection

具体实施方式detailed description

下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings. The following examples are only used to illustrate the technical solution of the present invention more clearly, but not to limit the protection scope of the present invention.

如图1所示,为圆柱曲面工件的横向缺陷检测装置,可实现直射检测和经圆柱内壁反射后聚焦检测,在一般情况下,远离检测面的区域,直射检测即可满足,另外由于缺陷走向是多向的,当缺陷走向与直射波比较接近时,检测缺陷比较困难,就需要使用经圆柱内壁反射后聚焦检测。As shown in Figure 1, it is a transverse defect detection device for cylindrical curved surface workpieces, which can realize direct detection and focus detection after reflection from the inner wall of the cylinder. In general, direct detection is sufficient for areas far away from the detection surface. It is multi-directional. When the direction of the defect is relatively close to the direct wave, it is difficult to detect the defect, and it is necessary to use the focus detection after reflection from the inner wall of the cylinder.

圆柱形曲面工件相控聚焦超声检测的延时计算方法,包括直射检测时各阵元延时计算方法和经圆柱内壁反射后聚焦检测时各阵元延时计算方法。The time-delay calculation method for phase-controlled focused ultrasonic testing of cylindrical curved surface workpieces includes the calculation method for the time-delay calculation of each array element in the direct-ray inspection and the calculation method for the time-delay calculation of each array element in the focused inspection after reflection from the inner wall of the cylinder.

直射检测时各阵元延时计算方法过程为:The process of calculating the delay of each array element during direct detection is as follows:

A1)构建缺陷检测模型,沿探头中心作横切面,具体如图2和3所示。A1) Build a defect detection model, and make a cross-section along the center of the probe, as shown in Figures 2 and 3.

A2)定义横切面与管轴相交的点为原点O,建立极坐标系。A2) Define the point where the cross section intersects the tube axis as the origin O, and establish a polar coordinate system.

A3)楔块斜面的后端点B所在的位置为B(RB,θB);楔块下表面的后端点A所在的位置为A(Rout,0),Rout等于管外径。A3) The position of the rear end point B of the wedge slope is B(R B , θ B ); the position of the rear end point A of the wedge lower surface is A(R out , 0), and R out is equal to the outer diameter of the pipe.

A4)计算各阵元所在的位置。A4) Calculate the position of each array element.

定义第i个阵元中心I所在的位置为I(Ri,θi);Define the position of the i-th array element center I as I(R i , θ i );

在ΔABI中,定义A点到B点之间的距离AB=H0,∠ABI=α0+π/2,α0为楔块的倾斜角;In ΔABI, define the distance AB=H 0 between point A and point B, ∠ABI=α 0 +π/2, α 0 is the inclination angle of the wedge;

B点到第i个阵元中心I之间的距离BI为The distance BI between point B and the center I of the i-th array element is

BI=p×(i-1)+s0; (1.1)BI=p×(i-1)+s 0 ; (1.1)

其中,s0为B点到离其最近阵元中心的距离,p为阵元间距,即相邻阵元中心间的距离,p=g+e,其中g为阵元间隙尺寸,e为阵元宽度;Among them, s 0 is the distance from point B to the center of the nearest array element, p is the array element spacing, that is, the distance between adjacent array element centers, p=g+e, where g is the array element gap size, and e is the array element spacing element width;

由此可计算出,A点到第i个阵元中心I之间的距离AI,From this, the distance AI between point A and the center I of the i-th array element can be calculated,

所以θB为,So θ B is,

θB=π-β0-∠BAI (1.4)θ B =π-β 0 -∠BAI (1.4)

那么,在ΔIAO中,Then, in ΔIAO,

由正弦定理计算得,Calculated by the law of sines,

上述计算所用参数进行汇总,如表一所示。The parameters used in the above calculations are summarized, as shown in Table 1.

表一所用参数汇总表Table 1 Summary of parameters used

计算获得各阵元中心所在位置,如表二所示。Calculate the position of the center of each array element, as shown in Table 2.

表二各阵元中心位置Table 2 Center position of each array element

A5)得到入射点位置的方程。A5) Obtain the equation for the position of the incident point.

定义第i个阵元激发的声波的入射点D所在的位置为D(Rout,θD),入射角为αi;声聚焦点P所在的位置为P(RP,θP),折射角为αrDefine the position of the incident point D of the sound wave excited by the i-th array element as D(R out , θ D ), the incident angle is α i ; the position of the acoustic focal point P is P(R P , θ P ), the refraction The angle is α r .

在ΔIOD中,In ΔIOD,

在ΔPOD中,In ΔPOD,

由Snell定律,By Snell's law,

其中,cw为楔块材料声速,cs为管材料声速;Among them, c w is the sound velocity of the wedge material, and c s is the sound velocity of the tube material;

化简后得到关于θD的方程为,After simplification, the equation about θ D is obtained as,

为了避免出现分母为零的情形,方便编程计算,公式转化为,In order to avoid the situation where the denominator is zero and facilitate programming calculations, the formula is transformed into,

A6)获取入射点位置的取值范围。A6) Obtain the value range of the incident point position.

用直线连接I与P,直线与圆弧相交的点为E,E所在的位置为E(Rout,θE),θD的取值范围在θi和θE之间。Connect I and P with a straight line, the intersection point of the straight line and the arc is E, the position of E is E(R out , θ E ), and the value range of θ D is between θ i and θ E.

在ΔIOP中,In ΔIOP,

∠PIO=∠EIO,为,∠PIO=∠EIO, for,

在ΔIEO中,∠IEO为,In ΔIEO, ∠IEO is,

所以so

θE=π-∠EIO-∠IEO+θi。 (2.10)θ E = π-∠EIO-∠IEO+θ i . (2.10)

A7)根据入射点位置的取值范围和方程(2.6),采用二分法数值计算,获取入射点位置值。A7) According to the value range of the incident point position and Equation (2.6), use the bisection numerical calculation to obtain the incident point position value.

将入射点位置值带入(2.1)和(2.3)可求得DI和DP。DI and DP can be obtained by substituting the value of the incident point position into (2.1) and (2.3).

A8)根据入射点位置值获取阵元的延时。A8) Obtain the delay of the array element according to the position value of the incident point.

为第i个阵元中心I,发射声波传到P点所用的声时为,is the center I of the i-th array element, and the acoustic time used for transmitting the sound wave to point P is,

那么第i个阵元的延时为,Then the delay of the i-th array element is,

Δti=max(t)-ti+t0 (2.12)Δt i =max(t)-t i +t 0 (2.12)

其中,in,

max(t)为ti中的最大值;max(t) is the maximum value in t i ;

t0为延时设置中的初始延时,为一固定常数,可以令其为0。t 0 is the initial delay in the delay setting, which is a fixed constant and can be set to 0.

设P点位置为(30mm,30°),各阵元的延时如表三所示。Assuming that the position of point P is (30mm, 30°), the time delay of each array element is shown in Table 3.

表三直射波检测时,各阵元的延时Table 3 Delay of each array element during direct wave detection

由见表三可见,在所列的参数系统下,各阵元辐射声波入射至楔块—工件界面的入射角在一较小范围内变化,其声透射率变化不大。It can be seen from Table 3 that under the listed parameter system, the incident angle of the radiated sound wave of each array element to the wedge-workpiece interface changes within a small range, and its acoustic transmittance does not change much.

经圆柱内壁反射后聚焦检测时各阵元延时计算方法:Calculation method of the time delay of each array element during focus detection after reflection from the inner wall of the cylinder:

B1)构建缺陷检测模型,沿探头中心作横切面,具体如图4所示.B1) Build a defect detection model, and make a cross-section along the center of the probe, as shown in Figure 4.

B2)定义横切面与管轴相交的点为原点O,建立极坐标系。B2) Define the point where the cross-section intersects the pipe axis as the origin O, and establish a polar coordinate system.

B3)楔块斜面的后端点B所在的位置为B(RB,θB);楔块下表面的后端点A所在的位置为A(Rout,0),Rout等于管外径。B3) The position of the rear end point B of the wedge slope is B(R B , θ B ); the position of the rear end point A of the wedge lower surface is A(R out , 0), and R out is equal to the outer diameter of the pipe.

B4)计算各阵元中心所在的位置(与步骤A4一样)。B4) Calculate the position of the center of each array element (same as step A4).

B5)得到入射点位置的方程。B5) Obtain the equation of the incident point position.

定义第i个阵元激发的声波的入射点H所在的位置为H(Rout,θH),入射角为βi;声聚焦点P′所在的位置为P′(RP′,θP′);管内壁反射点F所在的位置为F(Rin,θF),折射角为βr,Rin为管内径。Define the position of the incident point H of the acoustic wave excited by the i-th array element as H(R out , θ H ), and the incident angle as β i ; the position of the acoustic focal point P' is P'(R P' , θ P ′ ); the position of the reflection point F on the inner wall of the tube is F(R in , θ F ), the refraction angle is β r , and R in is the inner diameter of the tube.

在ΔIOH中,In ΔIOH,

根据正弦定理和HI,求出βi为,According to the law of sine and HI, get β i as,

在ΔFOH中,由余弦定理计算FH为,In ΔFOH, FH is calculated by the law of cosines as,

由正弦定理得,From the law of sines,

利用Snell定律和公式(3.2)求解βr得,Using Snell's law and formula (3.2) to solve β r , we get,

化简公式(3.5)可得,Simplify formula (3.5) to get,

在ΔFOH中,由正弦定理计算∠OFH为,In ΔFOH, calculate ∠OFH by the law of sine as,

在ΔFOP′中,由正弦定理计算∠P′OF为,In ΔFOP', calculate ∠P'OF by the law of sine as,

联合公式(3.7)和(3.8)求解公式得,Combining formulas (3.7) and (3.8) to solve the formula, we get,

在ΔFOP′中,由余弦定理计算P′F得,In ΔFOP', P'F is calculated by the law of cosines,

将公式(3.3)和(3.10)代入(3.9)得,Substituting formulas (3.3) and (3.10) into (3.9), we get,

B6)获取入射点位置的取值范围。B6) Obtain the value range of the incident point position.

用直线连接I与P,直线与圆弧相交的点为K,K所在的位置为K(Rout,θK),θH的取值范围在θi和θK之间,采用步骤A6中的方法计算θKConnect I and P with a straight line, the point where the straight line intersects the arc is K, the position of K is K(R out , θ K ), the value range of θ H is between θ i and θ K , adopt the method in step A6 method to calculate θ K .

B7)根据入射点位置的取值范围和方程,采用二分法数值计算,获取入射点位置值。B7) According to the value range and equation of the position of the incident point, the value of the position of the incident point is obtained by numerical calculation using the dichotomy method.

将入射点位置值带入公式(3.1)、(3.3)和(3.10)可求得HI、HF和P′F。Substituting the value of the incident point position into formulas (3.1), (3.3) and (3.10) can obtain HI, HF and P'F.

B8)根据入射点位置值获取阵元的延时。B8) Obtain the delay of the array element according to the position value of the incident point.

为第i个阵元中心I,发射声波传到P′点所用的声时为,is the center I of the i-th array element, and the sound time used for transmitting the sound wave to the point P′ is,

那么第i个阵元的延时为,Then the delay of the i-th array element is,

Δti′=max(t)′-ti′+t0 (3.13)Δt i '=max(t)'-t i '+t 0 (3.13)

其中,max(t)′为ti′中的最大值。Wherein, max(t)' is the maximum value in t i '.

设P′点位置为(34mm,45°),各阵元的延时如表四所示。Assuming that the position of point P' is (34mm, 45°), the time delay of each array element is shown in Table 4.

表三反射波检测时,各阵元的延时Table 3 Delay of each array element during reflected wave detection

由见表四可见,在所列的参数系统下,各阵元辐射声波入射至楔块—工件界面的入射角在一较小范围内变化,其声透射率变化不大。It can be seen from Table 4 that under the listed parameter system, the incident angle of each array element radiated sound wave incident on the wedge-workpiece interface changes within a small range, and its acoustic transmittance does not change much.

上述的延时计算方法计算的延时可以形成较好的检测声束,能有效检测外径较小(一般小于159mm)的轴或管状工件,包括小径管对接焊缝中的横向缺陷,也可以用于该类工件中其它缺陷的补充检测,辅助缺陷定性。The delay calculated by the above delay calculation method can form a better detection sound beam, which can effectively detect shafts or tubular workpieces with small outer diameters (generally less than 159mm), including transverse defects in butt welds of small-diameter pipes, and can also detect It is used for supplementary detection of other defects in this type of workpiece, and assists in the characterization of defects.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, and it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and modifications can also be made. It should also be regarded as the protection scope of the present invention.

Claims (1)

1.圆柱形曲面工件相控聚焦超声检测的延时计算方法,其特征在于:包括直射检测时各阵元延时计算方法和经圆柱内壁反射后聚焦检测时各阵元延时计算方法;1. The time-delay calculation method for phase-controlled focused ultrasonic detection of cylindrical curved surface workpieces, which is characterized in that: it includes the time-delay calculation method of each array element during direct-ray detection and the time-delay calculation method of each array element during focus detection after reflection from the inner wall of the cylinder; 所述直射检测时各阵元延时计算方法过程为:The process of calculating the delay of each array element during the direct detection is as follows: A1)构建缺陷检测模型,沿探头中心作横切面;A1) Build a defect detection model, and make a cross-section along the center of the probe; A2)定义横切面与管轴相交的点为原点O,建立极坐标系;A2) define the point where the cross section intersects with the pipe axis as the origin O, and establish a polar coordinate system; A3)楔块斜面的后端点B所在的位置为B(RBB);楔块下表面的后端点A所在的位置为A(Rout,0),Rout为管外径;A3) The position of the rear end point B of the wedge slope is B(R BB ); the position of the rear end point A of the wedge lower surface is A(R out ,0), and R out is the outer diameter of the pipe; A4)计算各阵元中心所在的位置;A4) Calculate the position of the center of each array element; 定义第i个阵元中心I所在的位置为I(Rii);Define the position of the i-th array element center I as I(R ii ); <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msup> <mi>AI</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mi>I</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>cos&amp;theta;</mi> <mi>B</mi> </msub> </mrow> </msqrt> </mrow> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msup> <mi>AI</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mi>I</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>cos&amp;theta;</mi> <mi>B</mi> </msub> </mrow> </msqrt> </mrow> <mrow> <msub> <mi>sin&amp;theta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>A</mi> <mi>I</mi> </mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> </mfrac> <msub> <mi>sin&amp;theta;</mi> <mi>B</mi> </msub> </mrow> <mrow> <msub> <mi>sin&amp;theta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>A</mi> <mi>I</mi> </mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> </mfrac> <msub> <mi>sin&amp;theta;</mi> <mi>B</mi> </msub> </mrow> 其中,AI为A点到第i个阵元中心I之间的距离,BI为B点到第i个阵元中心I之间的距离;Among them, AI is the distance between point A and the center I of the i-th array element, and BI is the distance between point B and the center I of the i-th array element; <mrow> <msup> <mi>AI</mi> <mn>2</mn> </msup> <mo>=</mo> <msup> <mi>BI</mi> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>H</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>2</mn> <mi>B</mi> <mi>I</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>sin&amp;alpha;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msup> <mi>AI</mi> <mn>2</mn> </msup> <mo>=</mo> <msup> <mi>BI</mi> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>H</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>2</mn> <mi>B</mi> <mi>I</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>sin&amp;alpha;</mi> <mn>0</mn> </msub> </mrow> H0为A点到B点之间的距离,α0为楔块的倾斜角;H 0 is the distance between point A and point B, α 0 is the inclination angle of the wedge; BI=p×(i-1)+s0 BI=p×(i-1)+s 0 s0为B点到离其最近阵元中心的距离,p为阵元间距,即相邻阵元中心间的距离,p=g+e,其中g为阵元间隙尺寸,e为阵元宽度;s 0 is the distance from point B to the center of the nearest array element, p is the array element spacing, that is, the distance between adjacent array element centers, p=g+e, where g is the array element gap size, and e is the array element width ; A5)根据Snell定律,得到入射点位置的方程;A5) according to Snell's law, obtain the equation of incident point position; 定义第i个阵元激发的声波的入射点D所在的位置为D(Rout,θD);声聚焦点P所在的位置为P(RP,θP);Define the position of the incident point D of the sound wave excited by the i-th array element as D(R out , θ D ); the position of the acoustic focus point P as P(R P , θ P ); 关于θD的方程为,The equation for θ D is, <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>c</mi> <mi>s</mi> </msub> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>P</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>P</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>P</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>c</mi> <mi>w</mi> </msub> <msub> <mi>R</mi> <mi>P</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>P</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>)</mo> </mrow> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>i</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>c</mi> <mi>s</mi> </msub> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>P</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>P</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>P</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>c</mi> <mi>w</mi> </msub> <msub> <mi>R</mi> <mi>P</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>P</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>)</mo> </mrow> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>i</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> </mrow> </mtd> </mtr> </mtable> </mfenced> 其中,cw为楔块材料声速,cs为管材料声速;Among them, c w is the sound velocity of the wedge material, and c s is the sound velocity of the tube material; A6)获取入射点位置的取值范围;A6) Obtain the value range of the incident point position; 用直线连接I与P,直线与圆弧相交的点为E,E所在的位置为E(Rout,θE),θD的取值范围在θi和θE之间;Connect I and P with a straight line, the point where the straight line intersects the arc is E, the position of E is E(R out , θ E ), and the value range of θ D is between θ i and θ E ; A7)根据入射点位置的取值范围和方程,采用二分法数值计算,获取入射点位置值;A7) According to the value range and equation of the incident point position, the value of the incident point position is obtained by numerical calculation using the dichotomy method; A8)根据入射点位置值获取阵元的延时;第i个阵元的延时Δti为,A8) Obtain the delay of the array element according to the position value of the incident point; the delay Δt i of the i-th array element is, Δti=max(t)-ti+t0 Δt i =max(t)-t i +t 0 其中,in, 为第i个阵元中心I,发射声波传到P点所用的声时; It is the sound time used for transmitting the sound wave to the point P at the center I of the i-th array element; <mrow> <mi>D</mi> <mi>I</mi> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>i</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>;</mo> </mrow> 1 <mrow> <mi>D</mi> <mi>I</mi> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>i</mi> </msub> <msub> <mi>R</mi> <mn>0</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>;</mo> </mrow> 1 <mrow> <mi>D</mi> <mi>P</mi> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>P</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>P</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>P</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>;</mo> </mrow> <mrow> <mi>D</mi> <mi>P</mi> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>P</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>P</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>P</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>D</mi> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>;</mo> </mrow> max(t)为ti中的最大值;max(t) is the maximum value in t i ; t0为延时设置中的初始延时,为一固定常数;t 0 is the initial delay in the delay setting, which is a fixed constant; 经圆柱内壁反射后聚焦检测时各阵元延时计算方法:Calculation method of the time delay of each array element during focus detection after reflection from the inner wall of the cylinder: B1)构建缺陷检测模型,沿探头中心作横切面;B1) Build a defect detection model, and make a cross-section along the center of the probe; B2)定义横切面与管轴相交的点为原点O,建立极坐标系;B2) define the point where the cross section intersects with the tube axis as the origin O, and set up a polar coordinate system; B3)楔块斜面的后端点B所在的位置为B(RB,θB);楔块下表面的后端点A所在的位置为A(Rout,0),Rout等于管外径;B3) The position of the rear end point B of the wedge slope is B(R B , θ B ); the position of the rear end point A of the lower surface of the wedge is A(R out , 0), and R out is equal to the outer diameter of the pipe; B4)计算各阵元中心所在的位置;B4) Calculate the position of the center of each array element; 定义第i个阵元中心I所在的位置为I(Ri,θi);Define the position of the i-th array element center I as I(R i , θ i ); <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msup> <mi>AI</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mi>I</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>cos&amp;theta;</mi> <mi>B</mi> </msub> </mrow> </msqrt> </mrow> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msup> <mi>AI</mi> <mn>2</mn> </msup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mi>I</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>cos&amp;theta;</mi> <mi>B</mi> </msub> </mrow> </msqrt> </mrow> <mrow> <msub> <mi>sin&amp;theta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>A</mi> <mi>I</mi> </mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> </mfrac> <msub> <mi>sin&amp;theta;</mi> <mi>B</mi> </msub> </mrow> <mrow> <msub> <mi>sin&amp;theta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>A</mi> <mi>I</mi> </mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> </mfrac> <msub> <mi>sin&amp;theta;</mi> <mi>B</mi> </msub> </mrow> 其中,AI为A点到第i个阵元中心I之间的距离,BI为B点到第i个阵元中心I之间的距离;Among them, AI is the distance between point A and the center I of the i-th array element, and BI is the distance between point B and the center I of the i-th array element; <mrow> <msup> <mi>AI</mi> <mn>2</mn> </msup> <mo>=</mo> <msup> <mi>BI</mi> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>H</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>2</mn> <mi>B</mi> <mi>I</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>sin&amp;alpha;</mi> <mn>0</mn> </msub> </mrow> <mrow> <msup> <mi>AI</mi> <mn>2</mn> </msup> <mo>=</mo> <msup> <mi>BI</mi> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>H</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <mn>2</mn> <mi>B</mi> <mi>I</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>H</mi> <mn>0</mn> </msub> <mo>&amp;CenterDot;</mo> <msub> <mi>sin&amp;alpha;</mi> <mn>0</mn> </msub> </mrow> H0为A点到B点之间的距离,α0为楔块的倾斜角;H 0 is the distance between point A and point B, α 0 is the inclination angle of the wedge; BI=p×(i-1)+s0 BI=p×(i-1)+s 0 s0为B点到离其最近阵元中心的距离,p为阵元间距,即相邻阵元中心间的距离,p=g+e,其中g为阵元间隙尺寸,e为阵元宽度;s 0 is the distance from point B to the center of the nearest array element, p is the array element spacing, that is, the distance between adjacent array element centers, p=g+e, where g is the array element gap size, and e is the array element width ; B5)根据Snell定律和正余弦定理,得到入射点位置的方程;B5) according to Snell's law and the law of sine and cosine, obtain the equation of incident point position; 定义第i个阵元激发的声波的入射点H所在的位置为H(Rout,θH);声聚焦点P′所在的位置为P′(RP′,θP′);管内壁反射点F所在的位置为F(Rin,θF),Rin为管内径;Define the position of the incident point H of the sound wave excited by the i-th array element as H(R out , θ H ); the position of the acoustic focal point P' as P'(R P' , θ P' ); The position of point F is F(R in , θ F ), and R in is the inner diameter of the tube; 关于θH的方程为,The equation for θ H is, <mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>c</mi> <mi>s</mi> </msub> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> </mrow> <mo>)</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>c</mi> <mi>w</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> <msub> <mi>R</mi> <mi>i</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>c</mi> <mi>s</mi> </msub> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> </mrow> <mo>)</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>c</mi> <mi>w</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> </mrow> <mo>)</mo> <msub> <mi>R</mi> <mi>i</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>R</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> </mrow> <mo>)</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <msup> <mi>p</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> </mrow> <mo>)</mo> <msub> <mi>R</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> </msub> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow> <mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>R</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> </mrow> <mo>)</mo> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;theta;</mi> <msup> <mi>p</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> </mrow> <mo>)</mo> <msub> <mi>R</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> </msub> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow> B6)获取入射点位置的取值范围;B6) Obtain the value range of the incident point position; 用直线连接I与P′,直线与圆弧相交的点为K,K所在的位置为K(Rout,θK),θH的取值范围在θi和θK之间;Connect I and P' with a straight line, the point where the straight line intersects the arc is K, the position of K is K(R out , θ K ), and the value range of θ H is between θ i and θ K ; B7)根据入射点位置的取值范围和方程,采用二分法数值计算,获取入射点位置值;B7) According to the value range and equation of the incident point position, the dichotomy method is used for numerical calculation to obtain the incident point position value; B8)根据入射点位置值获取阵元的延时;B8) Obtain the delay of the array element according to the position value of the incident point; 第i个阵元的延时Δti′为,The delay Δt i ′ of the i-th array element is, Δti′=max(t)′-ti′+t0 Δt i '=max(t)'-t i '+t 0 其中,in, 为第i个阵元中心I,发射声波传到P′点所用的声时; It is the sound time used for transmitting the sound wave to the point P′ at the center I of the i-th array element; <mrow> <mi>H</mi> <mi>I</mi> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>i</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>;</mo> </mrow> <mrow> <mi>H</mi> <mi>I</mi> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>i</mi> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </msqrt> <mo>;</mo> </mrow> <mrow> <mi>F</mi> <mi>H</mi> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </msqrt> <mo>;</mo> </mrow> <mrow> <mi>F</mi> <mi>H</mi> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>H</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> <msub> <mi>R</mi> <mrow> <mi>o</mi> <mi>u</mi> <mi>t</mi> </mrow> </msub> </mrow> </msqrt> <mo>;</mo> </mrow> <mrow> <msup> <mi>FP</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> </msub> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </msqrt> <mo>;</mo> </mrow> <mrow> <msup> <mi>FP</mi> <mo>&amp;prime;</mo> </msup> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>R</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>-</mo> <msub> <mi>&amp;theta;</mi> <mi>F</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>R</mi> <msup> <mi>P</mi> <mo>&amp;prime;</mo> </msup> </msub> <msub> <mi>R</mi> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mrow> </msqrt> <mo>;</mo> </mrow> max(t)′为ti′中的最大值;max(t)' is the maximum value in t i '; t0为延时设置中的初始延时,为一固定常数。t 0 is the initial delay in the delay setting, which is a fixed constant.
CN201510575567.6A 2015-09-10 2015-09-10 The delay calculating method of cylindrical surface workpiece phase-control focusing ultrasound detection Active CN105241964B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510575567.6A CN105241964B (en) 2015-09-10 2015-09-10 The delay calculating method of cylindrical surface workpiece phase-control focusing ultrasound detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510575567.6A CN105241964B (en) 2015-09-10 2015-09-10 The delay calculating method of cylindrical surface workpiece phase-control focusing ultrasound detection

Publications (2)

Publication Number Publication Date
CN105241964A CN105241964A (en) 2016-01-13
CN105241964B true CN105241964B (en) 2017-09-29

Family

ID=55039687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510575567.6A Active CN105241964B (en) 2015-09-10 2015-09-10 The delay calculating method of cylindrical surface workpiece phase-control focusing ultrasound detection

Country Status (1)

Country Link
CN (1) CN105241964B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105866254A (en) * 2016-06-08 2016-08-17 中国特种设备检测研究院 Electromagnetic ultrasonic sensor for nondestructive weld joint testing
CN106093206A (en) * 2016-07-15 2016-11-09 国网浙江省电力公司电力科学研究院 A kind of welding line ultrasonic array total focus formation method based on oblique incidence compressional wave
CN109975410A (en) * 2019-03-12 2019-07-05 浙江大学 Ultrasonic phased array detection and scanning method for hot melt butt joints of plastic pipes
CN110208384A (en) * 2019-07-01 2019-09-06 河海大学常州校区 A kind of workpiece surface is open the measurement method at oblique flaw height and inclination angle
CN110967404B (en) * 2019-11-25 2022-06-28 苏州热工研究院有限公司 Phased array ultrasonic testing system and testing method for conventional island shaft forgings in nuclear power plants
US12327096B2 (en) 2022-08-01 2025-06-10 Microsoft Technology Licensing, Llc Deferred formula computation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190998A (en) * 1993-12-27 1995-07-28 Hitachi Constr Mach Co Ltd Ultrasonic flaw detection method and apparatus
CN101403728A (en) * 2008-04-30 2009-04-08 硕德(北京)科技有限公司 Phase distortion emendation method based on proximity correlation method in phased array ultrasonic detection
CN101617223A (en) * 2007-02-28 2009-12-30 杰富意钢铁株式会社 Calibration method of ultrasonic flaw detection, quality control method and manufacturing method of pipe body
CN101617222A (en) * 2007-02-28 2009-12-30 杰富意钢铁株式会社 Quality control method and manufacturing method of pipe body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190998A (en) * 1993-12-27 1995-07-28 Hitachi Constr Mach Co Ltd Ultrasonic flaw detection method and apparatus
CN101617223A (en) * 2007-02-28 2009-12-30 杰富意钢铁株式会社 Calibration method of ultrasonic flaw detection, quality control method and manufacturing method of pipe body
CN101617222A (en) * 2007-02-28 2009-12-30 杰富意钢铁株式会社 Quality control method and manufacturing method of pipe body
CN101403728A (en) * 2008-04-30 2009-04-08 硕德(北京)科技有限公司 Phase distortion emendation method based on proximity correlation method in phased array ultrasonic detection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
相控阵超声检测扇形扫描角度范围的研究;姜学平等;《2015 远东无损检测新技术论坛》;20150529;第193-196页 *
相控阵超声绝对声时法测量底面开口裂纹;刘书宏等;《声学技术》;20140831;第331-335页 *

Also Published As

Publication number Publication date
CN105241964A (en) 2016-01-13

Similar Documents

Publication Publication Date Title
CN105241964B (en) The delay calculating method of cylindrical surface workpiece phase-control focusing ultrasound detection
CN105181799B (en) The transverse defect detection means and method of Cylinder Surface workpiece
CN105136903B (en) Cylinder Surface workpiece butt weld transverse defect detection device and method
CN108562647B (en) Ultrasonic testing device and method of polyethylene pipeline hot-melt butt joint combined with PA-TOFD
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
CN106093206A (en) A kind of welding line ultrasonic array total focus formation method based on oblique incidence compressional wave
CN103808800A (en) Ultrasonic combined detection method for large-diameter and thick-wall pipe
CN102520067A (en) Tube seat fillet welding seam detection method based on CIVA simulation software
WO2022217813A1 (en) Method for combined inspection of welded joints under high temperatures
CN101788534A (en) Method for detecting transverse defect of submerged-arc welding seam
CN109975410A (en) Ultrasonic phased array detection and scanning method for hot melt butt joints of plastic pipes
CN102590354A (en) Probe for performing ultrasonic detection on internal thread tube
CN110824022B (en) Angle gain compensation test block and debugging method for phased array detection of curved longitudinal welds
CN203443933U (en) Small-size bicrystal curved surface transverse wave ultrasonic probe
CN105784843A (en) Special-shaped structural member weld phased array imaging test transducer device and testing method
CN205593972U (en) Formation of image of special shaped structure spare welding seam phased array detects uses energy conversion device
Crawford et al. Preliminary assessment of NDE methods on inspection of HDPE butt fusion piping joints for lack of fusion
Chen et al. Ultrasonic imaging detection of welding joint defects of pressure pipeline based on phased array technology
Hagglund et al. Detection capabilities of a phased array ultrasonic inspection system for plastic pipe butt fusion joints
CN215985876U (en) Boiler membrane type pipe fire facing side inner wall surface longitudinal linear defect detection system
CN205691552U (en) A kind of heat exchanger tube sheet angle welding ultrasound wave automatic detection device
Xu et al. A novel method for nozzle-to-pipe weld inspection from the nozzle side
CN209264639U (en) A thin-walled austenitic pipe circular seam phased array detection positioning calibration test block
Miao et al. Ultrasonic phased array inspection with water wedge for butt fusion joints of polyethylene pipe
CN203443931U (en) Small-size bicrystal curved surface longitudinal wave ultrasonic probe

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant