CN105234743A - Deflection error compensation method for five-axis machining center tool - Google Patents
Deflection error compensation method for five-axis machining center tool Download PDFInfo
- Publication number
- CN105234743A CN105234743A CN201510669726.9A CN201510669726A CN105234743A CN 105234743 A CN105234743 A CN 105234743A CN 201510669726 A CN201510669726 A CN 201510669726A CN 105234743 A CN105234743 A CN 105234743A
- Authority
- CN
- China
- Prior art keywords
- tool
- cutter
- theta
- axis
- deformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000003801 milling Methods 0.000 claims abstract description 21
- 238000004364 calculation method Methods 0.000 claims abstract description 5
- 230000008569 process Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 230000002441 reversible effect Effects 0.000 claims 2
- 238000003754 machining Methods 0.000 abstract description 26
- 238000012545 processing Methods 0.000 description 8
- 238000005520 cutting process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003913 materials processing Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/007—Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
- B23Q15/12—Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Numerical Control (AREA)
Abstract
本发明公开了一种五轴加工中心刀具变形误差补偿方法,所述方法包括:根据建立的五轴加工铣削力模型计算铣削力大小;将理论刀位点和刀轴矢量作为镜像反变形补偿的基准;根据刀具变形量计算获得当前刀具位置由铣削力引起的刀具变形误差;对当前刀位点和刀轴矢量进行镜像反变形补偿,根据刀具变形误差计算获得新的刀位点和刀轴矢量;根据补偿后的刀位点数据计算新的刀具变形误差,判断新的误差是否成立;如果满足要求,则停止运算,保存刀位点信息;整理刀具路径位置从1到N所对应的补偿刀位点数据信息,进而得到补偿后的刀位轨迹,通过后置处理软件生成补偿后的数控加工程序。
The invention discloses a tool deformation error compensation method of a five-axis machining center. The method includes: calculating the magnitude of the milling force according to the established five-axis machining milling force model; Benchmark; calculate the tool deformation error caused by the milling force at the current tool position according to the tool deformation; perform mirror image anti-deformation compensation on the current tool position point and tool axis vector, and obtain a new tool position point and tool axis vector based on the tool deformation error calculation ;Calculate the new tool deformation error based on the compensated tool position point data, and judge whether the new error is true; if the requirements are met, stop the calculation and save the tool position point information; sort out the compensation tool corresponding to the tool path position from 1 to N Position data information, and then get the compensated tool position trajectory, and generate the compensated NC machining program through the post-processing software.
Description
技术领域technical field
本发明涉及数控加工技术领域,尤其涉及一种五轴加工中心刀具变形误差补偿方法。The invention relates to the technical field of numerical control machining, in particular to a tool deformation error compensation method for a five-axis machining center.
背景技术Background technique
在实际的加工过程中,铣削加工系统一般由机床、刀具、夹具、工件等几部分构成,其中机床和夹具的刚度一般认为是足够的,工件(非薄壁件)变形量也比较小,而刀具的刚性相对比较脆弱,铣削系统中刀具的变形是一个无法避免的问题,尤其是使用“细长杆”刀具加工时,刀具的变形是不可忽略的,其在切削力的作用下容易发生弯曲变形,是引起加工表面几何误差的主要因素。五轴联动数控技术在复杂形面的加工中具有独特的优势,即可以通过调整刀具的位姿使刀具保持最优的切削状态并避免刀具干涉,从而提高了零件的加工制造精度。因此分析五轴加工过程中刀具变形、研究误差补偿方法具有十分重要的意义。In the actual processing process, the milling system is generally composed of machine tools, tools, fixtures, and workpieces. The rigidity of the machine tools and fixtures is generally considered to be sufficient, and the deformation of the workpiece (non-thin-walled parts) is relatively small. The rigidity of the tool is relatively fragile, and the deformation of the tool in the milling system is an unavoidable problem, especially when using a "slender rod" tool for processing, the deformation of the tool cannot be ignored, and it is prone to bending under the action of cutting force Deformation is the main factor causing the geometric error of the machined surface. Five-axis linkage CNC technology has unique advantages in the processing of complex shapes and surfaces, that is, it can maintain the optimal cutting state of the tool and avoid tool interference by adjusting the position and posture of the tool, thereby improving the processing and manufacturing accuracy of the part. Therefore, it is of great significance to analyze tool deformation and study error compensation methods during five-axis machining.
(1)RaoVS和RaoPVM通过对加工过程中刀具变形量的分析,提出了一种由切削力引起的刀具变形误差补偿方法。(参见RaoVS,RaoPVM(2006)Tooldeflectioncompensationinperipheralmillingofcurvedgeometries.IntJMachToolsManuf46(15):2036-2043)。(1) RaoVS and RaoPVM proposed a tool deformation error compensation method caused by cutting force through the analysis of tool deformation during machining. (See RaoVS, RaoPVM (2006) Tooldeflection compensation in peripheral milling of curved geometries. Int J Mach Tools Manuf 46 (15): 2036-2043).
(2)BeraTC,DesaiKA和RaoPVM分析了铣削过程中刀具变形和薄壁件变形对加工误差的综合影响,通过改变加工过程中的刀具路径,进而对其误差进行补偿,并由实验室验证了该方法的可行性。(参见BeraTC,DesaiKA,RaoPVM(2011)Errorcompensationinflexibleendmillingoftubulargeometries.JournalofMaterialsProcessingTechnology211(1):24-34)。(2) BeraTC, DesaiKA and RaoPVM analyzed the comprehensive influence of tool deformation and thin-walled part deformation on machining errors during milling, and compensated the errors by changing the tool path during machining, and the laboratory verified this method feasibility. (See Bera TC, Desai KA, Rao PVM (2011) Error compensation inflexible end milling of tube large geometries. Journal of Materials Processing Technology 211 (1): 24-34).
(3)ZhuS,DingG,QinS,LeiJ,ZhuangL和YanK利用球杆仪对五轴机床的几何误差进行识别,建立了由机床误差引起的加工误差补偿模型。(参见ZhuS,DingG,QinS,LeiJ,ZhuangL,YanK(2012)Integratedgeometricerrormodeling,identificationandcompensationofCNCmachinetools.IntJMachToolsManuf52(1):24-29)。(3) ZhuS, DingG, QinS, LeiJ, ZhuangL and YanK used a ballbar to identify the geometric errors of five-axis machine tools, and established a machining error compensation model caused by machine tool errors. (See ZhuS, DingG, QinS, LeiJ, ZhuangL, YanK (2012) Integrated geometry error modeling, identification and compensation of CNC machine tools. IntJ MachToolsManuf52 (1): 24-29).
文献(1)(2)中所提出的刀具变形误差补偿方法主要还是针对三轴加工,对于五轴加工的刀具变形误差补偿并不适用。The tool deformation error compensation method proposed in literature (1) (2) is mainly for three-axis machining, and it is not applicable to tool deformation error compensation for five-axis machining.
文献(3)中所建立的误差补偿模型,考虑了机床运动过程中的几何误差,但对五轴机床加工过程中的刀具变形误差并未涉及。The error compensation model established in literature (3) considers the geometric error during the machine tool motion process, but does not involve the tool deformation error during the five-axis machine tool machining process.
发明内容Contents of the invention
本发明提供了一种五轴加工中心刀具变形误差补偿方法,本发明通过对五轴加工过程中刀具变形量的分析,考虑到刀具变形对加工型面的影响,提出一种应用于五轴加工的刀具变形误差补偿方法,为高精密加工复杂曲面零件提供理论,详见下文描述:The invention provides a tool deformation error compensation method for a five-axis machining center. The invention analyzes the amount of tool deformation in the five-axis machining process and considers the influence of the tool deformation on the machining profile, and proposes a method for five-axis machining The advanced tool deformation error compensation method provides a theory for high-precision machining of complex curved surface parts. See the description below for details:
一种五轴加工中心刀具变形误差补偿方法,所述误差补偿方法包括以下步骤:A five-axis machining center tool deformation error compensation method, the error compensation method includes the following steps:
建立刀具坐标系、工件坐标系和机床坐标系三者之间的相互转换关系,获取五轴加工过程中机床的运动参数;Establish the mutual conversion relationship between the tool coordinate system, workpiece coordinate system and machine tool coordinate system, and obtain the motion parameters of the machine tool during five-axis machining;
在刀具坐标系下,获取刀具的变形量;读取由CAM软件自动生成的理论刀位轨迹数据文件;In the tool coordinate system, obtain the deformation of the tool; read the theoretical tool position trajectory data file automatically generated by the CAM software;
根据建立的五轴加工铣削力模型计算铣削力大小;将理论刀位点和刀轴矢量作为镜像反变形补偿的基准;Calculate the milling force according to the established five-axis machining milling force model; use the theoretical tool position point and tool axis vector as the benchmark for mirror image anti-deformation compensation;
根据刀具变形量计算获得当前刀具位置由铣削力引起的刀具变形误差;Calculate and obtain the tool deformation error caused by the milling force at the current tool position according to the tool deformation;
对当前刀位点和刀轴矢量进行镜像反变形补偿,根据刀具变形误差计算获得新的刀位点和刀轴矢量;Perform mirror image anti-deformation compensation on the current tool position point and tool axis vector, and calculate new tool position point and tool axis vector according to the tool deformation error;
根据补偿后的刀位点数据计算新的刀具变形误差,判断新的误差是否成立;如果满足要求,则停止运算,保存刀位点信息;Calculate the new tool deformation error based on the compensated tool position point data, and judge whether the new error is true; if it meets the requirements, stop the calculation and save the tool position point information;
整理刀具路径位置从1到N所对应的补偿刀位点数据信息,进而得到补偿后的刀位轨迹,通过后置处理软件生成补偿后的数控加工程序。Organize the data information of the compensated tool position points corresponding to the position of the tool path from 1 to N, and then obtain the compensated tool position trajectory, and generate the compensated NC machining program through the post-processing software.
本发明提供的技术方案的有益效果是:本发明基于悬臂梁理论,建立五轴加工过程中的刀具变形模型。在进行真实加工之前,通过建立的刀具受力变形模型计算获得引起工件加工表面的误差量,对CAM软件自动生成的刀位轨迹文件进行修改,将理论的刀位轨迹沿着被加工零件表面偏置同一误差量来实现误差补偿,最终根据修改后的刀位轨迹文件用于实际的加工过程中,从而提高了五轴加工的制造精度,最后通过切削实验验证该方法的有效性。The beneficial effect of the technical solution provided by the invention is that the invention establishes a tool deformation model in a five-axis machining process based on the cantilever beam theory. Before the actual processing, the error amount caused by the machining surface of the workpiece is obtained through the calculation of the established tool force deformation model, the tool position trajectory file automatically generated by the CAM software is modified, and the theoretical tool position trajectory is offset along the surface of the processed part. Set the same error amount to achieve error compensation, and finally use the modified tool path file in the actual machining process, thereby improving the manufacturing accuracy of five-axis machining. Finally, the effectiveness of the method is verified by cutting experiments.
附图说明Description of drawings
图1为五轴加工中心运动关系图;Figure 1 is a motion diagram of a five-axis machining center;
图2为刀具变形示意图;Figure 2 is a schematic diagram of tool deformation;
图3为误差补偿方法示意图;3 is a schematic diagram of an error compensation method;
图4为刀轴矢量补偿参考基准图;Fig. 4 is a reference base diagram for tool axis vector compensation;
图5为刀位点补偿参考基准图;Figure 5 is a reference map for tool point compensation;
图6为加工零件图;Fig. 6 is a processing part diagram;
图7误差分布对比图;Figure 7 Error distribution comparison chart;
图8为一种五轴加工中心刀具变形误差补偿方法的流程图。Fig. 8 is a flow chart of a tool deformation error compensation method for a five-axis machining center.
具体实施方式detailed description
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。In order to make the purpose, technical solution and advantages of the present invention clearer, the implementation manners of the present invention will be further described in detail below.
以下结合附图,以B摆头C转台五轴联动机床球头铣削为例,详细说明本发明实施例的具体实施。The specific implementation of the embodiment of the present invention will be described in detail below in conjunction with the accompanying drawings, taking the milling of the ball end of the five-axis linkage machine tool with the B swing head and the C turntable as an example.
101:建立刀具坐标系、工件坐标系和机床坐标系三者之间的相互转换关系,获取五轴加工过程中机床的运动参数;101: Establish the mutual conversion relationship between the tool coordinate system, workpiece coordinate system and machine tool coordinate system, and obtain the motion parameters of the machine tool during five-axis machining;
本发明实施例以C转台B摆头结构五轴数控机床为例,对各坐标间运动学关系进行分析,建立刀具坐标系、工件坐标系和机床坐标系的转换关系。The embodiment of the present invention takes a five-axis CNC machine tool with C turntable and B swing head structure as an example, analyzes the kinematic relationship between coordinates, and establishes the conversion relationship between the tool coordinate system, the workpiece coordinate system and the machine tool coordinate system.
为了便于描述刀具在五轴机床加工过程中的运动轨迹,建立如图1所示坐标系统。机床初始状态时,工件坐标系[Ow,Xw,Yw,Zw]与机床坐标系[Om,Xm,Ym,Zm]方向一致,工件坐标系原点与机床坐标系原点重合;刀具坐标[Oc,Xc,Yc,Zc]原点位于刀尖点处,其坐标系方向与机床坐标系一致;[Om1,Xm1,Ym1,Zm1]为旋转坐标系,刀具绕轴Ym1的旋转角为θB(逆时针为正),其坐标系方向与机床坐标系一致;[Om2,Xm2,Ym2,Zm2]为回转坐标系,工件绕轴Zm2的回转角为θC(逆时针为正),其坐标系方向与机床坐标系一致。机床初始状态下,OcOm1之间的距离为L,OwOm2之间的距离为H,机床平动轴的初始状态为其中分别表示机床X,Y,Z轴的初始位置。刀具坐标系中任意一点可转换到工件坐标系下,坐标变换矩阵T为:In order to facilitate the description of the tool's trajectory during the five-axis machine tool machining process, the coordinate system shown in Figure 1 is established. In the initial state of the machine tool, the workpiece coordinate system [O w , X w , Y w , Z w ] is in the same direction as the machine tool coordinate system [O m , X m , Y m , Z m ], and the origin of the workpiece coordinate system and the machine tool coordinate system origin Coincident; the origin of the tool coordinates [O c , X c , Y c , Z c ] is at the tool tip, and the direction of its coordinate system is consistent with the machine tool coordinate system; [O m1 , X m1 , Y m1 , Z m1 ] are the rotation coordinates system, the rotation angle of the tool around the axis Y m1 is θ B (counterclockwise is positive), and its coordinate system direction is consistent with the machine tool coordinate system; [O m2 , X m2 , Y m2 , Z m2 ] is the rotary coordinate system, and the workpiece The rotation angle of axis Z m2 is θ C (counterclockwise is positive), and the direction of its coordinate system is consistent with that of the machine tool coordinate system. In the initial state of the machine tool, the distance between O c O m1 is L, the distance between O w O m2 is H, and the initial state of the translation axis of the machine tool is in Respectively represent the initial position of X, Y, Z axes of the machine tool. Any point in the tool coordinate system can be converted to the workpiece coordinate system, and the coordinate transformation matrix T is:
T=T5T4T3T2T1(1)T=T 5 T 4 T 3 T 2 T 1 (1)
式(1)中,T1、T3和T5为平移矩阵,T2与T4为旋转矩阵。In formula (1), T 1 , T 3 and T 5 are translation matrices, and T 2 and T 4 are rotation matrices.
在刀具坐标系下,任意一点q的位置矢量可表示成q点与刀具坐标原点构成有向线段的方向矢量可表示成在工件坐标系下,对应的q点的位置矢量可表示成q点与工件坐标原点构成有向线段的方向矢量可表示成因此,刀具坐标系下任意一点相对于工件坐标系的转换关系为:In the tool coordinate system, the position vector of any point q can be expressed as The direction vector of the directed line segment formed by point q and the origin of tool coordinates can be expressed as In the workpiece coordinate system, the corresponding position vector of point q can be expressed as The direction vector of the directed line segment formed by point q and the origin of workpiece coordinates can be expressed as Therefore, the conversion relation of any point in the tool coordinate system relative to the workpiece coordinate system is:
将式(2)、(3)展开可得:Expand formulas (2) and (3) to get:
在五轴数控编程时,由CAD/CAM软件生成的刀具轨迹,一般是根据工件的CAD模型计算获得刀尖点相对于工件的位置矢量和方向矢量。因此,刀尖点在刀具坐标系下的位置矢量和方向矢量可表示成和带入式(4)可得:In five-axis NC programming, the tool trajectory generated by CAD/CAM software is generally calculated based on the CAD model of the workpiece to obtain the position vector and direction vector of the tool tip point relative to the workpiece. Therefore, the position vector and direction vector of the tool nose point in the tool coordinate system can be expressed as and Substitute into formula (4) to get:
由(5)式计算可得五轴加工过程中,机床的运动参数。The motion parameters of the machine tool in the five-axis machining process can be obtained by formula (5).
102:在刀具坐标系下,获取刀具在Xc,Yc方向上的变形量δxC,δyC;102: Under the tool coordinate system, obtain the deformation δx C , δy C of the tool in the X c , Y c directions;
根据悬臂梁理论来计算刀具变形量,如图2所示。在刀具坐标系下,由于作用在轴向Zc的切削力使刀具产生拉伸或压缩,在Xc,Yc方向的切削力使其产生弯曲变形,而且一般认为刀具在Zc方向的刚性较大,对铣削型面的误差影响很小,一般将其忽略不计,因此主要考虑Xc,Yc方向刀具产生的弯曲变形量。在刀具坐标系下,在Xc,Yc方向上的变形量δxC,δyC可表示为:The tool deformation is calculated according to the cantilever beam theory, as shown in Figure 2. In the tool coordinate system, the tool is stretched or compressed due to the cutting force acting on the axial direction Zc , and the cutting force in the direction of Xc and Yc causes it to bend and deform, and it is generally considered that the rigidity of the tool in the direction of Zc Larger, the influence on the error of the milling profile is very small, and it is generally ignored. Therefore, the bending deformation generated by the tool in the X c and Y c directions is mainly considered. In the tool coordinate system, the deformation δx C , δy C in the direction of X c , Y c can be expressed as:
式中,分别表示在Xc,Yc方向上的分力;D为刀杆悬伸长度;ap为切削深度;E为刀具材料的弹性模量;I为刀具的惯性力矩;Z0为变形量度量位置。In the formula, Respectively represent the component force in the direction of X c , Y c ; D is the overhang length of the tool rod; a p is the cutting depth; E is the elastic modulus of the tool material; I is the moment of inertia of the tool ; Location.
五轴加工刀具变形误差补偿主要分为两个方面的内容:刀位点补偿和刀轴矢量补偿。如图3所示。Five-axis machining tool deformation error compensation is mainly divided into two aspects: tool position point compensation and tool axis vector compensation. As shown in Figure 3.
103:读取由CAM软件自动生成的理论刀位轨迹数据文件,第i个刀位点坐标为刀轴矢量为i∈(1,N),N为刀位点个数;103: Read the theoretical tool position trajectory data file automatically generated by the CAM software, the coordinates of the i-th tool position point are The tool axis vector is i∈(1,N), N is the number of tool positions;
104:初始化循环开始,i=1;根据建立的五轴加工铣削力模型计算铣削力大小;104: The initialization cycle starts, i=1; calculate the magnitude of the milling force according to the established five-axis machining milling force model;
105:将理论刀位点和刀轴矢量作为镜像反变形补偿的基准;105: Use the theoretical tool position point and tool axis vector as the benchmark for mirror image anti-deformation compensation;
106:根据刀具变形量计算获得当前刀具位置由铣削力引起的刀具变形误差E1;106: Calculate and obtain the tool deformation error E 1 caused by the milling force at the current tool position according to the tool deformation;
107:对当前刀位点和刀轴矢量进行镜像反变形补偿,根据刀具变形误差E1计算获得新的刀位点和刀轴矢量;107: Perform mirror image anti-deformation compensation on the current tool position point and tool axis vector, and calculate and obtain new tool position point and tool axis vector according to the tool deformation error E 1 ;
108:根据补偿后的刀位点数据计算新的刀具变形误差E2,判断新的误差E2<ε(公差)是否成立;108: Calculate the new tool deformation error E 2 according to the compensated tool position point data, and judge whether the new error E 2 <ε (tolerance) is established;
如果满足要求,则停止运算,保存刀位点信息,执行步骤109;否则,转到步骤106,直至满足要求;If the requirements are met, then stop the operation, save the tool location point information, and execute step 109; otherwise, go to step 106 until the requirements are met;
109:整理刀具路径位置从1到N所对应的补偿刀位点数据信息,进而得到补偿后的刀位轨迹,通过后置处理软件生成补偿后的数控加工程序。109: Organize the data information of the compensated tool position point corresponding to the position of the tool path from 1 to N, and then obtain the compensated tool position trajectory, and generate the compensated NC machining program through the post-processing software.
由悬臂梁变形理论可知,刀具在轴线方向的变形是一条弧线。因此,如果误差补偿参考基准选用的不合理,将会导致在补偿过程中出现“过切”或者“欠切”的情况,尤其是在侧铣加工过程中,补偿效果会受到严重的影响,从而导致补偿完后的加工误差比未补偿前更大。为此,需要选用合理的刀轴矢量和刀位点的误差补偿参考基准。According to the cantilever beam deformation theory, the deformation of the tool in the axial direction is an arc. Therefore, if the error compensation reference standard is selected unreasonably, it will lead to "overcut" or "undercut" in the compensation process, especially in the process of side milling, the compensation effect will be seriously affected, thus The machining error after compensation is larger than that before compensation. For this reason, it is necessary to select a reasonable reference datum for error compensation of the tool axis vector and the tool position point.
如图4所示,理论刀位轨迹中任意一点P的位置矢量和方向矢量为和在数控机床加工过程中,由于铣削力的作用,刀具受力变形形成新的刀位点和刀具矢量和由图4可知,当改变刀轴矢量时,矢量平行于矢量因此,刀轴矢量的误差补偿参考基准可定义为由点到点构成有向线段的方向矢量可表示成为:As shown in Figure 4, the position vector and direction vector of any point P in the theoretical tool position trajectory are and In the process of CNC machine tool processing, due to the action of milling force, the tool is deformed by force to form a new tool position point and tool vector and It can be seen from Figure 4 that when the tool axis vector is changed, the vector parallel to vector Therefore, the error compensation reference datum of the tool axis vector can be defined as point to The points form the direction vector of the directed line segment can be expressed as:
其中in
如图5所示,刀位点的误差补偿参考基准可表示为:As shown in Figure 5, the error compensation reference datum of the tool position point Can be expressed as:
其中in
式中,分别表示刀具坐标系下最大和最小刀具受力变形量。In the formula, Respectively represent the maximum and minimum force deformation of the tool in the tool coordinate system.
实验验证Experimental verification
为验证本方案的可行性,对图6所示的零件分别使用未补偿刀具轨迹和补偿刀具轨迹加工型面1和型面2,测量加工完成后的零件误差。型面2的整体误差相对于型面1有了明显的下降,验证了该补偿方法的可行性,如图7所示。In order to verify the feasibility of this scheme, the uncompensated tool path and the compensated tool path are used to process the surface 1 and surface 2 of the parts shown in Fig. 6, respectively, and the error of the parts after processing is measured. The overall error of profile 2 has decreased significantly compared with profile 1, which verifies the feasibility of this compensation method, as shown in Figure 7.
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。Those skilled in the art can understand that the accompanying drawing is only a schematic diagram of a preferred embodiment, and the serial numbers of the above embodiments of the present invention are only for description, and do not represent the advantages and disadvantages of the embodiments.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510669726.9A CN105234743B (en) | 2015-10-13 | 2015-10-13 | A kind of Five-axis NC Machining Center cutter distortion error compensation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510669726.9A CN105234743B (en) | 2015-10-13 | 2015-10-13 | A kind of Five-axis NC Machining Center cutter distortion error compensation method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105234743A true CN105234743A (en) | 2016-01-13 |
CN105234743B CN105234743B (en) | 2017-06-16 |
Family
ID=55032692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510669726.9A Expired - Fee Related CN105234743B (en) | 2015-10-13 | 2015-10-13 | A kind of Five-axis NC Machining Center cutter distortion error compensation method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105234743B (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106529045A (en) * | 2016-11-15 | 2017-03-22 | 西北工业大学 | Spinor-based multi-axis milling tool axis modeling method |
CN106959664A (en) * | 2017-04-24 | 2017-07-18 | 湘潭大学 | Based on the online nonlinear error compensation method of the double turntables of five axles |
CN107870604A (en) * | 2016-09-28 | 2018-04-03 | 发那科株式会社 | Numerical control device |
CN107942936A (en) * | 2017-11-28 | 2018-04-20 | 清华大学 | A kind of five axis Flank machining cutters and workpiece distortion inaccuracy compensation method |
CN108372428A (en) * | 2016-12-21 | 2018-08-07 | 中国航空制造技术研究院 | The method and means for correcting of five-axis machine tool structural failure automatic measurement compensation |
CN108544880A (en) * | 2018-04-04 | 2018-09-18 | 华侨大学 | A kind of method and system of robot Carving Machining solid irregular stone |
CN108563186A (en) * | 2018-04-02 | 2018-09-21 | 西南交通大学 | A kind of five axis ball-end milling geometric error compensation methods |
CN108614520A (en) * | 2018-03-28 | 2018-10-02 | 中国航空制造技术研究院 | Five axle construction error measurement methods, system and the device of mirror image milling system |
CN109195742A (en) * | 2016-05-24 | 2019-01-11 | 斗山机床株式会社 | Machining center |
CN109693145A (en) * | 2019-01-13 | 2019-04-30 | 深圳大学 | A kind of tool setting device and its alignment methods improving cutter rotating deviation |
CN111857038A (en) * | 2020-06-28 | 2020-10-30 | 上海中船三井造船柴油机有限公司 | Parameterized machining method of machine frame on numerical control planer type milling machine |
CN113365784A (en) * | 2019-01-28 | 2021-09-07 | 西门子股份公司 | Computer-aided optimization of numerical control machining of workpieces |
CN113419488A (en) * | 2021-06-08 | 2021-09-21 | 湖北工业大学 | Method for eliminating variable-displacement modification over-cutting of non-circular fan |
WO2022027836A1 (en) * | 2020-08-04 | 2022-02-10 | 天津大学 | Control method for five-axis machining tool tip and tool orientation nonlinear errors |
CN115599043A (en) * | 2022-12-12 | 2023-01-13 | 北京精雕科技集团有限公司(Cn) | Method and device for improving machining precision of five-axis machine tool |
JP7278507B1 (en) * | 2022-07-14 | 2023-05-19 | 三菱電機株式会社 | Numerical controller, numerically controlled machine tool, machining program generation device and machining program generation method |
CN117518985A (en) * | 2024-01-04 | 2024-02-06 | 江苏古田自动化股份有限公司 | Rotary cutter center compensation system and compensation method based on five-axis numerical control machine tool |
CN118192434A (en) * | 2024-03-28 | 2024-06-14 | 青岛黄海学院 | A machine tool precision compensation method and device |
CZ310248B6 (en) * | 2023-08-10 | 2025-01-01 | České vysoké učení technické v Praze | A method of control of feed speed and revolutions of a spindle for CNC machine tools |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1094376B1 (en) * | 1999-10-22 | 2005-11-23 | Gerber Scientific Products, Inc. | A method of compensating for cutter deflection |
CN102207730A (en) * | 2010-03-29 | 2011-10-05 | 发那科株式会社 | Numerical controller controlling five-axis machining tool |
CN102681483A (en) * | 2012-04-16 | 2012-09-19 | 大连数控技术研究院 | Coordinate system for automatically compensating temperature deformation and tool shape offset |
CN104460516A (en) * | 2013-09-25 | 2015-03-25 | 山东理工大学 | Five-axis cutter radius compensation method based on post-processing |
CN104615083A (en) * | 2015-01-23 | 2015-05-13 | 大连理工大学 | Curved surface tool path contour error compensation method based tool location point correction |
-
2015
- 2015-10-13 CN CN201510669726.9A patent/CN105234743B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1094376B1 (en) * | 1999-10-22 | 2005-11-23 | Gerber Scientific Products, Inc. | A method of compensating for cutter deflection |
CN102207730A (en) * | 2010-03-29 | 2011-10-05 | 发那科株式会社 | Numerical controller controlling five-axis machining tool |
CN102681483A (en) * | 2012-04-16 | 2012-09-19 | 大连数控技术研究院 | Coordinate system for automatically compensating temperature deformation and tool shape offset |
CN104460516A (en) * | 2013-09-25 | 2015-03-25 | 山东理工大学 | Five-axis cutter radius compensation method based on post-processing |
CN104615083A (en) * | 2015-01-23 | 2015-05-13 | 大连理工大学 | Curved surface tool path contour error compensation method based tool location point correction |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109195742A (en) * | 2016-05-24 | 2019-01-11 | 斗山机床株式会社 | Machining center |
CN107870604A (en) * | 2016-09-28 | 2018-04-03 | 发那科株式会社 | Numerical control device |
CN107870604B (en) * | 2016-09-28 | 2022-02-25 | 发那科株式会社 | Numerical controller |
CN106529045A (en) * | 2016-11-15 | 2017-03-22 | 西北工业大学 | Spinor-based multi-axis milling tool axis modeling method |
CN106529045B (en) * | 2016-11-15 | 2019-03-29 | 西北工业大学 | Multi-axis milling process tool axis modeling method based on spinor |
CN108372428A (en) * | 2016-12-21 | 2018-08-07 | 中国航空制造技术研究院 | The method and means for correcting of five-axis machine tool structural failure automatic measurement compensation |
CN106959664B (en) * | 2017-04-24 | 2019-04-09 | 湘潭大学 | Online nonlinear error compensation method based on five-axis double turntable |
CN106959664A (en) * | 2017-04-24 | 2017-07-18 | 湘潭大学 | Based on the online nonlinear error compensation method of the double turntables of five axles |
CN107942936A (en) * | 2017-11-28 | 2018-04-20 | 清华大学 | A kind of five axis Flank machining cutters and workpiece distortion inaccuracy compensation method |
CN107942936B (en) * | 2017-11-28 | 2021-02-23 | 清华大学 | Deformation error compensation method for five-axis side milling cutter and workpiece |
CN108614520A (en) * | 2018-03-28 | 2018-10-02 | 中国航空制造技术研究院 | Five axle construction error measurement methods, system and the device of mirror image milling system |
CN108614520B (en) * | 2018-03-28 | 2019-06-14 | 中国航空制造技术研究院 | Five axle construction error measurement methods, system and the device of mirror image milling system |
CN108563186A (en) * | 2018-04-02 | 2018-09-21 | 西南交通大学 | A kind of five axis ball-end milling geometric error compensation methods |
CN108563186B (en) * | 2018-04-02 | 2020-09-15 | 西南交通大学 | A geometric error compensation method for five-axis ball nose milling |
CN108544880A (en) * | 2018-04-04 | 2018-09-18 | 华侨大学 | A kind of method and system of robot Carving Machining solid irregular stone |
CN109693145A (en) * | 2019-01-13 | 2019-04-30 | 深圳大学 | A kind of tool setting device and its alignment methods improving cutter rotating deviation |
CN113365784A (en) * | 2019-01-28 | 2021-09-07 | 西门子股份公司 | Computer-aided optimization of numerical control machining of workpieces |
CN113365784B (en) * | 2019-01-28 | 2023-11-14 | 西门子股份公司 | Computer-aided optimization of numerical control machining of workpieces |
CN111857038A (en) * | 2020-06-28 | 2020-10-30 | 上海中船三井造船柴油机有限公司 | Parameterized machining method of machine frame on numerical control planer type milling machine |
WO2022027836A1 (en) * | 2020-08-04 | 2022-02-10 | 天津大学 | Control method for five-axis machining tool tip and tool orientation nonlinear errors |
CN113419488B (en) * | 2021-06-08 | 2022-07-08 | 湖北工业大学 | A method for eliminating overcutting of non-circular tooth sector deformation and modification |
CN113419488A (en) * | 2021-06-08 | 2021-09-21 | 湖北工业大学 | Method for eliminating variable-displacement modification over-cutting of non-circular fan |
JP7278507B1 (en) * | 2022-07-14 | 2023-05-19 | 三菱電機株式会社 | Numerical controller, numerically controlled machine tool, machining program generation device and machining program generation method |
US12287616B2 (en) | 2022-07-14 | 2025-04-29 | Mitsubishi Electric Corporation | Numerical controller, numerical control machine tool, machining program generation device, and machining program generation method |
CN115599043A (en) * | 2022-12-12 | 2023-01-13 | 北京精雕科技集团有限公司(Cn) | Method and device for improving machining precision of five-axis machine tool |
CZ310248B6 (en) * | 2023-08-10 | 2025-01-01 | České vysoké učení technické v Praze | A method of control of feed speed and revolutions of a spindle for CNC machine tools |
CN117518985A (en) * | 2024-01-04 | 2024-02-06 | 江苏古田自动化股份有限公司 | Rotary cutter center compensation system and compensation method based on five-axis numerical control machine tool |
CN117518985B (en) * | 2024-01-04 | 2024-03-22 | 江苏古田自动化股份有限公司 | Rotary cutter center compensation system and compensation method based on five-axis numerical control machine tool |
CN118192434A (en) * | 2024-03-28 | 2024-06-14 | 青岛黄海学院 | A machine tool precision compensation method and device |
CN118192434B (en) * | 2024-03-28 | 2024-11-05 | 青岛黄海学院 | Machine tool precision compensation method and device |
Also Published As
Publication number | Publication date |
---|---|
CN105234743B (en) | 2017-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105234743B (en) | A kind of Five-axis NC Machining Center cutter distortion error compensation method | |
Huang et al. | Error compensation for machining of large thin-walled part with sculptured surface based on on-machine measurement | |
EP2613912B1 (en) | System and method for tool testing and alignment | |
CN108253911B (en) | A Workpiece Pose Adjustment Method Based on Iterative Registration of Geometric Features of Measurement Points | |
CN107942936A (en) | A kind of five axis Flank machining cutters and workpiece distortion inaccuracy compensation method | |
CN113400088B (en) | Modeling and identification method of position-independent geometric error of AC double-turntable five-axis machine tool | |
Ma et al. | Tool deflection error compensation in five-axis ball-end milling of sculptured surface | |
CN103218475B (en) | A kind of complex space type surface Error Feedback compensation method based on testing and assessing at machine | |
CN102621929B (en) | Method for optimizing fixture height and machining path of double-rotary-table five-axis linkage numerical control machine tool | |
Liu et al. | Integration strategy of on-machine measurement (OMM) and numerical control (NC) machining for the large thin-walled parts with surface correlative constraint | |
CN110069041B (en) | A workpiece processing method and system based on on-machine measurement | |
CN102608952B (en) | Method of smoothening five-axis-linkage machine tool machining path by using ball-end cutter | |
CN110989490B (en) | A method for obtaining the optimal installation position of workpiece based on contour error | |
CN112084599B (en) | Aerospace box part structure deformation-oriented compensation method | |
CN107806825A (en) | The line lathe space geometry error measure discrimination method of three face five based on plane grating | |
Zuo et al. | Integrated geometric error compensation of machining processes on CNC machine tool | |
CN110045682B (en) | Five-axis machining cutter deformation error off-line compensation method based on least square method | |
Neugebauer et al. | Roller hemming simulation: state of the art and application limits | |
CN113799130B (en) | Robot pose calibration method in man-machine cooperation assembly | |
Chen et al. | Stiffness parameter identification and cutting-force-induced error compensation of an adsorption machining robot | |
CN106959667A (en) | A kind of lathe translation shaft error of perpendicularity modeling method | |
CN116587268B (en) | Milling precision improving method for large-area robot in space | |
Fuwen | Location issues of thin shell parts in the reconfigurable fixture for trimming operation | |
CN105302068B (en) | A kind of design method for improving machine finish | |
JP2006289580A (en) | Teaching point correcting method of program and teaching point correcting device of program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
CP02 | Change in the address of a patent holder |
Address after: 300350 District, Jinnan District, Tianjin Haihe Education Park, 135 beautiful road, Beiyang campus of Tianjin University Patentee after: Tianjin University Address before: 300072 Tianjin City, Nankai District Wei Jin Road No. 92 Patentee before: Tianjin University |
|
CP02 | Change in the address of a patent holder | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170616 Termination date: 20211013 |
|
CF01 | Termination of patent right due to non-payment of annual fee |