[go: up one dir, main page]

CN105226094B - Semiconductor structure - Google Patents

Semiconductor structure Download PDF

Info

Publication number
CN105226094B
CN105226094B CN201410276358.7A CN201410276358A CN105226094B CN 105226094 B CN105226094 B CN 105226094B CN 201410276358 A CN201410276358 A CN 201410276358A CN 105226094 B CN105226094 B CN 105226094B
Authority
CN
China
Prior art keywords
doped region
well
heavily doped
substrate
semiconductor structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410276358.7A
Other languages
Chinese (zh)
Other versions
CN105226094A (en
Inventor
陈永初
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Priority to CN201410276358.7A priority Critical patent/CN105226094B/en
Publication of CN105226094A publication Critical patent/CN105226094A/en
Application granted granted Critical
Publication of CN105226094B publication Critical patent/CN105226094B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种半导体结构。此一半导体结构包括一基板、形成于基板中的一第一阱、形成于第一阱中的一第一重掺杂区、形成于基板中并与第一阱分离的一第二重掺杂区、形成于基板中第二重掺杂区下的一第二阱、形成于基板上介于第一重掺杂区及第二重掺杂区之间的一栅介电质、以及形成于栅介电质上的一栅电极。栅介电质至少在横跨延伸自接近第二重掺杂区的一侧的一部分具有实质上均一的厚度。第一阱具有第一掺杂类型。第一重掺杂区、第二重掺杂区及第二阱具有第二掺杂类型。

The present invention discloses a semiconductor structure. The semiconductor structure includes a substrate, a first well formed in the substrate, a first heavily doped region formed in the first well, a second heavily doped region formed in the substrate and separated from the first well, a second well formed under the second heavily doped region in the substrate, a gate dielectric formed on the substrate between the first heavily doped region and the second heavily doped region, and a gate electrode formed on the gate dielectric. The gate dielectric has a substantially uniform thickness at least across a portion extending from one side close to the second heavily doped region. The first well has a first doping type. The first heavily doped region, the second heavily doped region, and the second well have a second doping type.

Description

半导体结构semiconductor structure

技术领域technical field

本发明是关于一种半导体结构,本说发明特别是关于一种包括静电放电(electrostatic discharge,ESD)保护元件的半导体结构。The present invention relates to a semiconductor structure, and more particularly, the invention relates to a semiconductor structure including an electrostatic discharge (ESD) protection element.

背景技术Background technique

静电放电可能导致敏感电子元件的毁坏。因此,静电放电保护元件往往会提供在半导体结构中。高压电子元件,例如延伸漏极金属氧化物半导体场效应晶体管(ExtendedDrain MOSFET,EDMOSFET)、横向双扩散金属氧化物半导体场效应晶体管(Lateral Double-diffused MOSFET,LDMOSFET)及应用表面电场降低(Reduced Surface Field,RESURF)技术的元件等等,可作为静电放电保护元件。Electrostatic discharge can lead to the destruction of sensitive electronic components. Therefore, ESD protection components are often provided in semiconductor structures. High-voltage electronic components, such as extended drain metal oxide semiconductor field effect transistor (ExtendedDrain MOSFET, EDMOSFET), lateral double-diffused metal oxide semiconductor field effect transistor (Lateral Double-diffused MOSFET, LDMOSFET) and application of reduced surface field , RESURF) technology components, etc., can be used as electrostatic discharge protection components.

高压电子元件的静电放电保护效能一般与元件的总宽度及表面/横向标准(rule)有关。然而,受限于高压电子元件的低导通电阻的要求,表面/横向标准不能够增加。The ESD protection performance of high-voltage electronic components is generally related to the overall width of the component and the surface/lateral rule. However, limited by the requirement of low on-resistance for high voltage electronic components, the surface/lateral scale cannot be increased.

尽管要求低导通电阻,但低导通电阻会在静电放电过程中使得电流集中于表面或漏极侧。高电流及密集的电场会导致表面接面的物理性毁损。Although low on-resistance is required, low on-resistance causes current to concentrate on the surface or drain side during electrostatic discharge. High currents and intense electric fields can cause physical damage to surface junctions.

高崩溃电压是高压电子元件的另一项要求,其总是高于运作电压。此外,静电放电保护元件的驱动电压一般远高于崩溃电压。因此,在静电放电过程中,被保护的元件可能在保护元件打开前就已经毁坏。所以,需要降低静电放电保护元件的驱动电压。High breakdown voltage is another requirement for high-voltage electronic components, which is always higher than the operating voltage. In addition, the driving voltage of ESD protection components is generally much higher than the breakdown voltage. Therefore, during electrostatic discharge, the protected component may be destroyed before the protective component is opened. Therefore, it is necessary to reduce the driving voltage of the ESD protection element.

发明内容Contents of the invention

在本发明中,提出一种包括改良的静电放电保护元件的半导体结构。In the present invention, a semiconductor structure comprising an improved electrostatic discharge protection element is proposed.

根据一些实施例,半导体结构包括一基板、一第一阱、一第一重掺杂区、一第二重掺杂区、一第二阱、一栅介电质及一栅电极。第一阱形成于基板中。第一阱具有一第一掺杂类型。第一重掺杂区形成于第一阱中。第一重掺杂区具有一第二掺杂类型。第二重掺杂区形成于基板中并与第一阱分离。第二重掺杂区具有第二掺杂类型。第二阱形成于基板中第二重掺杂区下。第二阱具有第二掺杂类型。栅介电质形成于基板上介于第一重掺杂区及第二重掺杂区之间,并至少局部地形成于第一阱上。栅介电质至少在横跨延伸自接近第二重掺杂区的一侧的一部分具有一实质上均一的厚度。栅电极形成于栅介电质上。According to some embodiments, a semiconductor structure includes a substrate, a first well, a first heavily doped region, a second heavily doped region, a second well, a gate dielectric and a gate electrode. The first well is formed in the substrate. The first well has a first doping type. The first heavily doped region is formed in the first well. The first heavily doped region has a second doping type. The second heavily doped region is formed in the substrate and separated from the first well. The second heavily doped region has a second doping type. The second well is formed under the second heavily doped region in the substrate. The second well has a second doping type. The gate dielectric is formed on the substrate between the first heavily doped region and the second heavily doped region, and is at least partially formed on the first well. The gate dielectric has a substantially uniform thickness at least across a portion extending from a side proximate to the second heavily doped region. A gate electrode is formed on the gate dielectric.

为了对本发明的上述及其他方面有更佳的了解,下文特举较佳实施例,并配合所附图式,作详细说明如下:In order to have a better understanding of the above-mentioned and other aspects of the present invention, the preferred embodiments are specifically cited below, together with the attached drawings, and are described in detail as follows:

附图说明Description of drawings

图1为根据一实施例的半导体结构的俯视示意图。FIG. 1 is a schematic top view of a semiconductor structure according to an embodiment.

图2为根据一实施例的半导体结构的剖面示意图。FIG. 2 is a schematic cross-sectional view of a semiconductor structure according to an embodiment.

图3-图4为示出根据本发明一范例的半导体结构的特征的曲线图。3-4 are graphs illustrating characteristics of a semiconductor structure according to an example of the present invention.

图5为示出根据一比较例的半导体结构的特征的曲线图。FIG. 5 is a graph showing characteristics of a semiconductor structure according to a comparative example.

图6为根据一实施例的半导体结构的剖面示意图。FIG. 6 is a schematic cross-sectional view of a semiconductor structure according to an embodiment.

图7为根据一实施例的半导体结构的剖面示意图。FIG. 7 is a schematic cross-sectional view of a semiconductor structure according to an embodiment.

图8为根据一实施例的半导体结构的剖面示意图。FIG. 8 is a schematic cross-sectional view of a semiconductor structure according to an embodiment.

图9为根据一实施例的半导体结构的剖面示意图。FIG. 9 is a schematic cross-sectional view of a semiconductor structure according to an embodiment.

图10为根据一实施例的半导体结构的俯视示意图。FIG. 10 is a schematic top view of a semiconductor structure according to an embodiment.

【符号说明】【Symbol Description】

100、100’:静电放电保护元件100, 100': Electrostatic discharge protection components

102:基板102: Substrate

104、204、304:第一阱104, 204, 304: the first well

106、306:第一重掺杂区106, 306: the first heavily doped region

108、308:第二重掺杂区108, 308: the second heavily doped region

110、310:第二阱110, 310: second well

112、212:栅介电质112, 212: gate dielectric

112s:栅介电质的一侧112s: One side of the gate dielectric

114、314:栅电极114, 314: gate electrode

116:第一掺杂区116: the first doped region

118、318:第二掺杂区118, 318: the second doped region

120、320:第三重掺杂区120, 320: the third heavily doped region

122、322:深阱122, 322: deep well

124:源极接触点124: Source contact

126:漏极接触点126: Drain contact

128:栅极接触点128: Gate contact point

130:场氧化物130: field oxide

232:埋藏层232: Buried layer

d:距离d: distance

t、t1、t2:厚度t, t1, t2: Thickness

具体实施方式Detailed ways

现在将说明包括静电放电保护元件的半导体结构及其制造方法。为了清楚起见,可能放大或省略图式中的一些元件。在可能的情况下,类似的元件是以类似的元件符号加以指示。A semiconductor structure including an electrostatic discharge protection element and a method of manufacturing the same will now be described. Some elements in the drawings may be enlarged or omitted for clarity. Where possible, like elements are indicated with like element numbers.

请参照图1,其示出根据一实施例的半导体结构的示意图。取自图1中的A-A'线的横截面可具有如图2所示的形态。Please refer to FIG. 1 , which shows a schematic diagram of a semiconductor structure according to an embodiment. A cross section taken along line AA' in FIG. 1 may have the morphology shown in FIG. 2 .

此一半导体结构包括一静电放电保护元件100及一基板102。基板102可为硅基板或绝缘层上覆硅(Silicon On Insulator,SOI)基板等等,并选择性地包括形成于其上的层。基板102可由外延或非外延方法制造而成。基板102可具有p型掺杂类型或n型掺杂类型。在此,基板102例如具有p型掺杂类型。The semiconductor structure includes an ESD protection device 100 and a substrate 102 . The substrate 102 may be a silicon substrate or a silicon-on-insulator (SOI) substrate, etc., and optionally includes layers formed thereon. The substrate 102 can be fabricated by epitaxial or non-epitaxial methods. The substrate 102 may have a p-type doping type or an n-type doping type. Here, the substrate 102 has, for example, a p-type doping type.

在图2中,将静电放电保护元件100示例性地绘示成具有EDMOSFET形态。然而,本实施例并不受限于此,举例来说,静电放电保护元件100可具有LDMOSFET形态。静电放电保护元件100包括一第一阱104、一第一重掺杂区106、一第二重掺杂区108、一第二阱110、一栅介电质112及一栅电极114。第一阱104形成于基板102中。第一阱104具有一第一掺杂类型。第一重掺杂区106形成于第一阱104中。第一重掺杂区106具有一第二掺杂类型。第二重掺杂区108形成于基板102中并与第一阱104分离。第二重掺杂区108具有第二掺杂类型。在一些范例中,第一重掺杂区106连接至源极,第二重掺杂区108连接至漏极。第二重掺杂区108的边缘至栅极的距离d可用于调整静电放电保护元件100的崩溃电压及驱动电压,例如在18V至50V的范围内调整崩溃电压。更具体地说,距离d的减少可使得崩溃电压及驱动电压减小。第二阱110形成于基板102中第二重掺杂区108下。第二阱110具有第二掺杂类型。第二阱110的设置使得电流向下而远离表面。如此一来,可增进静电放电保护效能。在本实施例中,第一掺杂类型可为p型掺杂类型,第二掺杂类型可为n型掺杂类型。或者,在另一实施例中,第一掺杂类型可为n型掺杂类型,第二掺杂类型可为p型掺杂类型。In FIG. 2 , the ESD protection device 100 is exemplarily shown in the form of an EDMOSFET. However, the present embodiment is not limited thereto. For example, the ESD protection device 100 may have an LDMOSFET form. The ESD protection device 100 includes a first well 104 , a first heavily doped region 106 , a second heavily doped region 108 , a second well 110 , a gate dielectric 112 and a gate electrode 114 . The first well 104 is formed in the substrate 102 . The first well 104 has a first doping type. The first heavily doped region 106 is formed in the first well 104 . The first heavily doped region 106 has a second doping type. The second heavily doped region 108 is formed in the substrate 102 and separated from the first well 104 . The second heavily doped region 108 has a second doping type. In some examples, the first heavily doped region 106 is connected to the source, and the second heavily doped region 108 is connected to the drain. The distance d from the edge of the second heavily doped region 108 to the gate can be used to adjust the breakdown voltage and driving voltage of the ESD protection device 100 , for example, the breakdown voltage can be adjusted in the range of 18V to 50V. More specifically, the reduction of the distance d can reduce the breakdown voltage and driving voltage. The second well 110 is formed under the second heavily doped region 108 in the substrate 102 . The second well 110 has a second doping type. The placement of the second well 110 allows the current flow down and away from the surface. In this way, the ESD protection performance can be improved. In this embodiment, the first doping type may be a p-type doping type, and the second doping type may be an n-type doping type. Alternatively, in another embodiment, the first doping type may be an n-type doping type, and the second doping type may be a p-type doping type.

栅介电质112形成于基板102上,介于第一重掺杂区106及第二重掺杂区108之间,并至少局部地形成于第一阱104上。是形成栅介电质112使得其至少在横跨延伸自接近第二重掺杂区108的一侧112s的一部分具有一实质上均一的厚度t。在本实施例中,栅介电质112是横跨整个栅介电质112具有实质上均一的厚度t。在一些范例中,厚度t约为在本实施例中,可使用形成于基板102上的介电层如氧化层作为栅介电质112,取代在传统的EDMOSFET中广为使用的场氧化物栅介电质。如此一来,栅介电质的厚度大幅度地降低,例如从约降低至约因此,能够增进静电放电保护效能。栅电极114形成于栅介电质112上。A gate dielectric 112 is formed on the substrate 102 between the first heavily doped region 106 and the second heavily doped region 108 and at least partially formed on the first well 104 . The gate dielectric 112 is formed such that it has a substantially uniform thickness t across at least a portion extending from the side 112 s proximate to the second heavily doped region 108 . In the present embodiment, the gate dielectric 112 has a substantially uniform thickness t across the entire gate dielectric 112 . In some examples, the thickness t is approximately to In this embodiment, a dielectric layer such as an oxide layer formed on the substrate 102 can be used as the gate dielectric 112 to replace the field oxide gate dielectric widely used in conventional EDMOSFETs. As a result, the thickness of the gate dielectric is greatly reduced, for example from about reduced to approx. Therefore, the electrostatic discharge protection performance can be improved. A gate electrode 114 is formed on the gate dielectric 112 .

静电放电保护元件100还可包括一第一掺杂区116,形成于第一阱104中,相邻于第一重掺杂区106。第一掺杂区116具有第一掺杂类型。第一掺杂区116可为场掺杂(fieldimplantation)区。或者,在另一实施例中,第一掺杂区116可以使用体掺杂(bodyimplantation)的方式形成,且静电放电保护元件100具有LDMOSFET形态。The ESD protection device 100 may further include a first doped region 116 formed in the first well 104 and adjacent to the first heavily doped region 106 . The first doped region 116 has a first doping type. The first doping region 116 may be a field implantation region. Alternatively, in another embodiment, the first doped region 116 may be formed by body implantation, and the ESD protection device 100 has an LDMOSFET form.

静电放电保护元件100还可包括一第二掺杂区118,自第二重掺杂区108及第二阱110沿着基板102的一顶面延伸。第二掺杂区118具有第二掺杂类型。栅介电质112具有实质上均一的厚度t的部分是形成于第二掺杂区118上。第二掺杂区118可为漂移区(driftregion)。崩溃电压及驱动电压可由漂移区的长度加以调整。The ESD protection device 100 may further include a second doped region 118 extending from the second heavily doped region 108 and the second well 110 along a top surface of the substrate 102 . The second doped region 118 has a second doping type. A portion of the gate dielectric 112 having a substantially uniform thickness t is formed on the second doped region 118 . The second doped region 118 may be a drift region. The breakdown voltage and driving voltage can be adjusted by the length of the drift region.

静电放电保护元件100还可包括一第三重掺杂区120,形成于第一重掺杂区106中。第三重掺杂区120具有第一掺杂类型。这样的设置可增进静电放电保护效能。The ESD protection device 100 may further include a third heavily doped region 120 formed in the first heavily doped region 106 . The third heavily doped region 120 has the first doping type. Such an arrangement can improve the ESD protection performance.

静电放电保护元件100还可包括一深阱122,形成于基板102中。深阱122具有第二掺杂类型。第一阱104及第二阱110是形成于深阱122中。The ESD protection device 100 may further include a deep well 122 formed in the substrate 102 . Deep well 122 has a second doping type. The first well 104 and the second well 110 are formed in the deep well 122 .

如图1所示,另一静电放电保护元件100’可对称于静电放电保护元件100地形成。并且,静电放电保护元件100可与静电放电保护元件100’共享第二重掺杂区108、第二阱110及深阱122。对称的静电放电保护元件100及100’共同作用于静电放电保护。As shown in FIG. 1 , another ESD protection element 100' may be formed symmetrically to the ESD protection element 100. Referring to FIG. Moreover, the ESD protection device 100 can share the second heavily doped region 108, the second well 110 and the deep well 122 with the ESD protection device 100'. The symmetrical ESD protection components 100 and 100' work together for ESD protection.

半导体结构还可包括源极接触点124、漏极接触点126与门极接触点128。半导体结构还可包括用于绝缘的场氧化物130,如图2所示。然而,本实施例并不受限于此,可使用任何本发明所属技术领域中所知的绝缘结构,例如浅沟道隔离(Shallow Trench Isolation,STI)。The semiconductor structure may further include a source contact 124 , a drain contact 126 and a gate contact 128 . The semiconductor structure may also include a field oxide 130 for insulation, as shown in FIG. 2 . However, the present embodiment is not limited thereto, and any insulating structure known in the technical field of the present invention, such as shallow trench isolation (Shallow Trench Isolation, STI), can be used.

在此,半导体结构可由任何标准的工艺加以制造,例如单层多晶硅工艺(singlepoly process)或双层多晶硅工艺(double poly process)、或者外延工艺或非外延工艺,而无需使用额外的掩模。Here, the semiconductor structure can be fabricated by any standard process, such as single poly process or double poly process, or epitaxial process or non-epitaxial process, without using additional masks.

请参照图3-图4,其示出根据本发明一范例的半导体结构的特征。如图3所示,包括根据本发明一范例的静电放电保护元件的半导体结构,其崩溃电压为约33.5V。如图4所示,静电放电保护元件的驱动电压为约27V,低于该崩溃电压。具有相同的栅极至漏极距离(d值)的传统静电放电保护元件的特征是示于图5中,与此相比,根据本发明的范例的传输线路脉冲(TLP)电流增进1.5倍,维持电压(holding voltage)几乎保持相同,崩溃电压接近比较例的崩溃电压,驱动电压大幅度地降低。Please refer to FIGS. 3-4 , which illustrate features of a semiconductor structure according to an example of the present invention. As shown in FIG. 3 , the breakdown voltage of the semiconductor structure including the ESD protection device according to an example of the present invention is about 33.5V. As shown in FIG. 4, the driving voltage of the electrostatic discharge protection element is about 27V, which is lower than the breakdown voltage. The characteristics of the conventional ESD protection element with the same gate-to-drain distance (d value) are shown in FIG. The holding voltage remained almost the same, the breakdown voltage was close to that of the comparative example, and the driving voltage was greatly reduced.

现在请参照图6,其以剖面视角示出根据另一实施例的半导体结构。在本实施例中,第一掺杂区116及第二掺杂区118并不包含于半导体结构中。第一阱204的掺杂范围缩小,且第一阱204与第二阱110分离。Referring now to FIG. 6 , a cross-sectional view shows a semiconductor structure according to another embodiment. In this embodiment, the first doped region 116 and the second doped region 118 are not included in the semiconductor structure. The doping range of the first well 204 is reduced, and the first well 204 is separated from the second well 110 .

在另一实施例中,如图7所示,深阱122可自半导体结构中移除。如此一来,则未在第一阱104及第二阱110底部处提供绝缘。In another embodiment, as shown in FIG. 7, the deep well 122 can be removed from the semiconductor structure. As such, no insulation is provided at the bottom of the first well 104 and the second well 110 .

在另一实施例中,如图8所示,一埋藏层232形成于基板102中第一阱104及第二阱110下。埋藏层232具有第二掺杂类型。埋藏层232是取代深阱122来提供半导体结构绝缘。In another embodiment, as shown in FIG. 8 , a buried layer 232 is formed under the first well 104 and the second well 110 in the substrate 102 . The buried layer 232 has a second doping type. The buried layer 232 replaces the deep well 122 to provide isolation for the semiconductor structure.

在另一实施例中,如图9所示,栅介电质212可具有两个不同的厚度t1及t2。栅介电质212直接位在通道区(位于图9中的第一掺杂区116)上的部分的厚度t2,是小于其他部分的厚度t1。也就是说,栅介电质212直接位在通道区上的部分较薄。如此一来,可降低导通电压(turn-on voltage)。In another embodiment, as shown in FIG. 9 , the gate dielectric 212 may have two different thicknesses t1 and t2 . The thickness t2 of the portion of the gate dielectric 212 directly on the channel region (the first doped region 116 in FIG. 9 ) is smaller than the thickness t1 of other portions. That is, the portion of the gate dielectric 212 directly on the channel region is thinner. In this way, the turn-on voltage can be reduced.

请参照图10,其以俯视视角示出根据另一实施例的半导体结构。在本实施例中,半导体结构具有八角形的配置。不像图1所示的条状配置,八角形配置本身就具有对称性。因此,不需要设置两个对称的静电放电保护元件。在图10中,是示出第一阱304、第一重掺杂区306、第二重掺杂区308、第二阱310、栅电极314、第二掺杂区318、第三重掺杂区320及深阱322。取自图10中的B-B’线的横截面可具有如图2~图9任一者所示的形态。Please refer to FIG. 10 , which shows a semiconductor structure according to another embodiment in a top view. In this embodiment, the semiconductor structure has an octagonal configuration. Unlike the strip configuration shown in Figure 1, the octagonal configuration inherently has symmetry. Therefore, there is no need to arrange two symmetrical electrostatic discharge protection components. In FIG. 10, the first well 304, the first heavily doped region 306, the second heavily doped region 308, the second well 310, the gate electrode 314, the second doped region 318, the third heavily doped region 320 and deep well 322 . The cross-section taken along line B-B' in Fig. 10 may have the form shown in any one of Figs. 2-9.

尽管只示出了条状配置(图1)及八角形配置(图10),也可以使用其他的配置,例如矩形配置、六角形配置、圆形配置或方形配置等等。Although only a striped configuration (FIG. 1) and an octagonal configuration (FIG. 10) are shown, other configurations, such as rectangular, hexagonal, circular or square configurations, etc. may be used.

综上所述,虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视随附的权利要求范围所界定的为准。To sum up, although the present invention has been disclosed as above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be defined by the appended claims.

Claims (8)

1.一种半导体结构,包括:1. A semiconductor structure comprising: 一基板;a substrate; 一第一阱,形成于该基板中,该第一阱具有一第一掺杂类型;a first well formed in the substrate, the first well having a first doping type; 一第一重掺杂区,形成于该第一阱中,该第一重掺杂区具有一第二掺杂类型;a first heavily doped region formed in the first well, the first heavily doped region having a second doping type; 一第二重掺杂区,形成于该基板中并与该第一阱分离,该第二重掺杂区具有该第二掺杂类型;a second heavily doped region formed in the substrate and separated from the first well, the second heavily doped region having the second doping type; 一第二阱,形成于该基板中该第二重掺杂区下,该第二阱具有该第二掺杂类型;a second well formed under the second heavily doped region in the substrate, the second well having the second doping type; 一栅介电质,形成于该基板上介于该第一重掺杂区及该第二重掺杂区之间,并至少局部地形成于该第一阱上,该栅介电质至少在横跨延伸自接近该第二重掺杂区的一侧的一部分具有一均一的厚度;以及a gate dielectric, formed on the substrate between the first heavily doped region and the second heavily doped region, and at least partially formed on the first well, the gate dielectric at least in having a uniform thickness across a portion extending from a side proximate the second heavily doped region; and 一栅电极,形成于该栅介电质上;a gate electrode formed on the gate dielectric; 其中,该第一重掺杂区位于一第一掺杂区内,该第二重掺杂区位于一第二掺杂区右侧且部分位于其上方,该第一掺杂区与该第二掺杂区直接接触左右相邻,该栅介电质横跨该第一掺杂区与该第二掺杂区之间;该栅介电质具有两个不同的厚度t1及t2,该栅介电质直接位在通道区上的部分的厚度t2小于位在其他部分的厚度t1,即该栅介电质直接位在通道区上的部分较薄。Wherein, the first heavily doped region is located in a first doped region, the second heavily doped region is located on the right side of a second doped region and partially above it, the first doped region and the second doped region The doped region is in direct contact with the left and right neighbors, and the gate dielectric spans between the first doped region and the second doped region; the gate dielectric has two different thicknesses t1 and t2, and the gate dielectric The thickness t2 of the portion of the dielectric directly on the channel region is smaller than the thickness t1 of the other portions, that is, the portion of the gate dielectric directly on the channel region is thinner. 2.根据权利要求1所述的半导体结构,其中:2. The semiconductor structure of claim 1, wherein: 该第一掺杂区,形成于该第一阱中且具有该第一掺杂类型。The first doped region is formed in the first well and has the first doping type. 3.根据权利要求1所述的半导体结构,其中:3. The semiconductor structure of claim 1, wherein: 该第二掺杂区,自该第二重掺杂区及该第二阱沿着该基板的一顶面延伸,该第二掺杂区具有该第二掺杂类型,其中该栅介电质具有该均一的厚度的该部分是形成于该第二掺杂区上。The second doped region extends from the second heavily doped region and the second well along a top surface of the substrate, the second doped region has the second doping type, wherein the gate dielectric The portion with the uniform thickness is formed on the second doped region. 4.根据权利要求1所述的半导体结构,更包括:4. The semiconductor structure according to claim 1, further comprising: 一第三重掺杂区,形成于该第一重掺杂区中,该第三重掺杂区具有该第一掺杂类型。A third heavily doped region is formed in the first heavily doped region, the third heavily doped region has the first doping type. 5.根据权利要求1所述的半导体结构,更包括:5. The semiconductor structure according to claim 1, further comprising: 一深阱,形成于该基板中,该深阱具有该第二掺杂类型,其中该第一阱及该第二阱是形成于该深阱中。A deep well is formed in the substrate, the deep well has the second doping type, wherein the first well and the second well are formed in the deep well. 6.根据权利要求1所述的半导体结构,更包括:6. The semiconductor structure of claim 1, further comprising: 一埋藏层,形成于该基板中该第一阱及该第二阱下,该埋藏层具有该第二掺杂类型。A buried layer is formed under the first well and the second well in the substrate, the buried layer has the second doping type. 7.根据权利要求1所述的半导体结构,更包括:7. The semiconductor structure of claim 1, further comprising: 一静电放电保护元件,包括该第一阱、该第一重掺杂区、该第二重掺杂区、该第二阱、该栅介电质及该栅电极。An electrostatic discharge protection device includes the first well, the first heavily doped region, the second heavily doped region, the second well, the gate dielectric and the gate electrode. 8.根据权利要求7所述的半导体结构,更包括:8. The semiconductor structure of claim 7, further comprising: 另一静电放电保护元件,对称于该静电放电保护元件地形成,其中该静电放电保护元件与该另一静电放电保护元件共享该第二重掺杂区及该第二阱。Another ESD protection element is formed symmetrically to the ESD protection element, wherein the ESD protection element shares the second heavily doped region and the second well with the other ESD protection element.
CN201410276358.7A 2014-06-19 2014-06-19 Semiconductor structure Active CN105226094B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410276358.7A CN105226094B (en) 2014-06-19 2014-06-19 Semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410276358.7A CN105226094B (en) 2014-06-19 2014-06-19 Semiconductor structure

Publications (2)

Publication Number Publication Date
CN105226094A CN105226094A (en) 2016-01-06
CN105226094B true CN105226094B (en) 2018-10-02

Family

ID=54994935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410276358.7A Active CN105226094B (en) 2014-06-19 2014-06-19 Semiconductor structure

Country Status (1)

Country Link
CN (1) CN105226094B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645447A (en) * 2008-08-06 2010-02-10 联华电子股份有限公司 Electrostatic Discharge Protection Circuit Components
CN102593119A (en) * 2011-01-12 2012-07-18 三星电子株式会社 Semiconductor device and fabricating method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050006701A1 (en) * 2003-07-07 2005-01-13 Tzu-Chiang Sung High voltage metal-oxide semiconductor device
CN103296060A (en) * 2012-02-24 2013-09-11 旺宏电子股份有限公司 Semiconductor structure and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645447A (en) * 2008-08-06 2010-02-10 联华电子股份有限公司 Electrostatic Discharge Protection Circuit Components
CN102593119A (en) * 2011-01-12 2012-07-18 三星电子株式会社 Semiconductor device and fabricating method thereof

Also Published As

Publication number Publication date
CN105226094A (en) 2016-01-06

Similar Documents

Publication Publication Date Title
US10468522B2 (en) Semiconductor device
CN107996003B (en) Insulated gate switching device and method of manufacturing the same
JP6299581B2 (en) Semiconductor device
US9496382B2 (en) Field effect transistor, termination structure and associated method for manufacturing
TWI533450B (en) Semiconductor device and method of manufacturing same
JP2023026604A (en) semiconductor equipment
CN103855156B (en) Diode structure compatible with FINFET technique
US8921933B2 (en) Semiconductor structure and method for operating the same
US9620640B2 (en) Body-contact metal-oxide-semiconductor field effect transistor device
KR101244139B1 (en) Semiconductor apparatus
US8482102B2 (en) Semiconductor device
CN106298923B (en) High-voltage metal-oxide-semiconductor transistor device and method for manufacturing the same
US20150372134A1 (en) Semiconductor structure and method for manufacturing the same
CN113540244A (en) Terminal for trench field plate power MOSFET
US20170243971A1 (en) Semiconductor device
JP4952042B2 (en) Semiconductor device
JP2012160685A (en) Semiconductor device and method of manufacturing semiconductor device
CN105226094B (en) Semiconductor structure
CN105637643A (en) Silicon carbide semiconductor device, method for manufacturing silicon carbide semiconductor device, and method for designing silicon carbide semiconductor device
JP2010016284A (en) Semiconductor device
US20070126057A1 (en) Lateral DMOS device insensitive to oxide corner loss
TWI582939B (en) Semiconductor structure
CN110945633B (en) Semiconductor device
CN108352325A (en) Field-effect transistor and semiconductor devices
US20120248533A1 (en) Field plate and circuit therewith

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant