CN105222895A - A kind of spectrometer chip being integrated with array waveguide grating and photodetector - Google Patents
A kind of spectrometer chip being integrated with array waveguide grating and photodetector Download PDFInfo
- Publication number
- CN105222895A CN105222895A CN201510660961.XA CN201510660961A CN105222895A CN 105222895 A CN105222895 A CN 105222895A CN 201510660961 A CN201510660961 A CN 201510660961A CN 105222895 A CN105222895 A CN 105222895A
- Authority
- CN
- China
- Prior art keywords
- photodetector
- array
- waveguide grating
- waveguide
- arrayed waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 230000003595 spectral effect Effects 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 55
- 238000005253 cladding Methods 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 12
- 239000012792 core layer Substances 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 11
- 229920002120 photoresistant polymer Polymers 0.000 claims description 11
- 238000000206 photolithography Methods 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 238000000465 moulding Methods 0.000 claims description 7
- 238000001039 wet etching Methods 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000011347 resin Substances 0.000 claims description 4
- 229920005989 resin Polymers 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 3
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 3
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 238000005530 etching Methods 0.000 claims description 2
- 230000008020 evaporation Effects 0.000 claims description 2
- 238000009616 inductively coupled plasma Methods 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 claims description 2
- 238000007254 oxidation reaction Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000007740 vapor deposition Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 5
- 230000010354 integration Effects 0.000 abstract 1
- 238000004377 microelectronic Methods 0.000 abstract 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000004847 absorption spectroscopy Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001506 fluorescence spectroscopy Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Spectrometry And Color Measurement (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
技术领域technical field
本发明涉及微型仪器技术领域,更具体地说,涉及一种集成了阵列波导光栅和光电探测器的光谱仪芯片。The invention relates to the technical field of micro-instruments, and more specifically relates to a spectrometer chip integrated with arrayed waveguide gratings and photodetectors.
背景技术Background technique
光谱仪能够测定输入光的光谱成分,是各种照明光源生产中必需的测量仪器;并且是吸收光谱、荧光光谱和拉曼光谱等光谱分析技术中必需的组件,在食品安全、医疗卫生、环境检测等领域具有广阔的应用前景。The spectrometer can determine the spectral composition of the input light, and is a necessary measuring instrument in the production of various lighting sources; it is also a necessary component in spectral analysis technologies such as absorption spectroscopy, fluorescence spectroscopy and Raman spectroscopy, and is widely used in food safety, medical hygiene, and environmental testing. and other fields have broad application prospects.
光谱仪已有很多商用产品,主要由透镜、光栅和CCD/CMOS光电探测器组成,但这些产品需要昂贵的光学元件和精密的光学装配,在应用中存在着价格高、体积重量大等缺点。There are many commercial products of spectrometers, mainly composed of lenses, gratings and CCD/CMOS photodetectors, but these products require expensive optical components and precise optical assembly, and there are disadvantages such as high price and large volume and weight in application.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种体积小、成本低和可以批量生产的集成了阵列波导光栅和光电探测器的光谱仪芯片。The object of the present invention is to overcome the disadvantages of the prior art, and provide a spectrometer chip integrated with an arrayed waveguide grating and a photodetector which is small in size, low in cost and capable of mass production.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
一种集成了阵列波导光栅和光电探测器的光谱仪芯片,包括基板和加工在基板上的阵列波导光栅、光电探测器阵列、微反射镜阵列;阵列波导光栅的输出波导阵列、微反射镜阵列与光电探测器阵列一一对应设置;光信号从阵列波导光栅的输入波导进入阵列波导光栅,光信号中具有特定波长的光从输出波导阵列中的与该特定波长对应的特定输出波导输出,经微反射镜阵列折射传导至光电探测器阵列中对应的光电探测器上,转换为电信号输出。A spectrometer chip integrating an arrayed waveguide grating and a photodetector, including a substrate and an arrayed waveguide grating processed on the substrate, a photodetector array, and a micromirror array; the output waveguide array of the arrayed waveguide grating, the microreflector array and the The photodetector arrays are arranged in one-to-one correspondence; the optical signal enters the arrayed waveguide grating from the input waveguide of the arrayed waveguide grating, and the light with a specific wavelength in the optical signal is output from the specific output waveguide corresponding to the specific wavelength in the output waveguide array, and is passed through the micro The mirror array is refracted and conducted to the corresponding photodetectors in the photodetector array, and converted into electrical signals for output.
作为优选,根据光信号的光谱组成,每个输出波导输出的不同波长的光彼此分隔。Preferably, according to the spectral composition of the optical signal, the lights of different wavelengths output by each output waveguide are separated from each other.
作为优选,基板上加工有光波导下包层、光波导芯层、光波导上包层,在平面结构上形成阵列波导光栅。Preferably, the substrate is processed with an optical waveguide lower cladding layer, an optical waveguide core layer, and an optical waveguide upper cladding layer, and an arrayed waveguide grating is formed on the planar structure.
作为优选,加工顺序依次为:光波导下包层、光电探测器、光波导芯层、光波导上包层、金属电极、微反射镜。Preferably, the processing sequence is: the lower cladding layer of the optical waveguide, the photodetector, the core layer of the optical waveguide, the upper cladding layer of the optical waveguide, the metal electrode, and the microreflector.
作为优选,阵列波导光栅的输出波导的末端开设有光电探测器的探测窗口,在探测窗口往基板内注入与基板极性相反的杂质层,在探测窗口表面设置防反射层,在防反射层外周设置电接触窗口,杂质层延伸至电接触窗口,在电接触窗口设置与杂质层形成电接触的上电极,在基板的底面设置下电极。Preferably, a detection window of a photodetector is provided at the end of the output waveguide of the arrayed waveguide grating, and an impurity layer opposite to the polarity of the substrate is injected into the substrate through the detection window, an anti-reflection layer is arranged on the surface of the detection window, and an anti-reflection layer is placed on the outer periphery of the anti-reflection layer An electrical contact window is provided, the impurity layer extends to the electrical contact window, an upper electrode forming electrical contact with the impurity layer is arranged in the electrical contact window, and a lower electrode is arranged on the bottom surface of the substrate.
作为优选,通过氧化和化学气相沉积制作二氧化硅层作为光波导下包层;通过等离子体增强的化学气相沉积制作氮氧化硅层作为光波导芯层;在氮气气氛下进行退火;通过光刻和电感耦合等离子体刻蚀工艺在光波导芯层上形成阵列波导光栅的形状;通过低压化学气相沉积制作TEOS氧化硅层作为光波导上包层。Preferably, a silicon dioxide layer is made by oxidation and chemical vapor deposition as the lower cladding layer of the optical waveguide; a silicon oxynitride layer is made as the core layer of the optical waveguide by plasma-enhanced chemical vapor deposition; annealing is carried out under a nitrogen atmosphere; and inductively coupled plasma etching process to form the shape of the arrayed waveguide grating on the core layer of the optical waveguide; the TEOS silicon oxide layer is made as the upper cladding layer of the optical waveguide by low-pressure chemical vapor deposition.
作为优选,通过光刻和湿法腐蚀形成电接触窗口,通过光刻、蒸发金属铝和湿法腐蚀形成光电探测器的上电极;在基板的背面蒸发金属铝形成共同的下电极。Preferably, the electrical contact window is formed by photolithography and wet etching, the upper electrode of the photodetector is formed by photolithography, metal aluminum evaporation and wet etching; the common lower electrode is formed by evaporating metal aluminum on the back side of the substrate.
作为优选,将微反射镜的加工模具覆盖于输出波导与光电探测器的光敏面的连接位置,然后进行微反射镜加工。Preferably, the processing mold of the micro-mirror is covered on the connecting position of the output waveguide and the photosensitive surface of the photodetector, and then the micro-mirror is processed.
作为优选,微反射镜的加工模具设置有成型轮廓与注入通道,将加工模具对准键合在基板上,成型轮廓覆盖输出波导的未端与光敏面。Preferably, the processing mold of the micromirror is provided with a molding profile and an injection channel, the processing mold is aligned and bonded on the substrate, and the molding profile covers the end of the output waveguide and the photosensitive surface.
作为优选,加工微反射镜时,通过注入通道将紫外固化的光学树脂注入并固化;揭开加工模具后,在基板的表面旋涂光刻胶,去除微反射镜表面的光刻胶,并通过溅射金属和剥离工艺在微反射镜表面形成反射层。As preferably, when processing the micro-mirror, the UV-curable optical resin is injected and cured through the injection channel; after the processing mold is opened, the photoresist is spin-coated on the surface of the substrate, the photoresist on the surface of the micro-mirror is removed, and passed Sputtering metal and lift-off processes form a reflective layer on the surface of the micromirror.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
本发明用制作在同一基板上的阵列波导光栅和光电探测器阵列取代了现有技术中的反射/透射光栅和CCD/CMOS光电探测器,用集成在同一基板上的微透镜阵列实现阵列波导光栅和光电探测器阵列的光学对准。本发明能够实现分光并把光信号转化为电信号,从而实现了光谱仪的芯片化,并可采用微细加工技术实现批量制造,大大降低光谱仪的体积和成本,甚至可以集成在智能手机等便携设备中实现化学成分分析等新功能。The present invention replaces the reflective/transmissive grating and CCD/CMOS photodetector in the prior art with the arrayed waveguide grating and photodetector array fabricated on the same substrate, and realizes the arrayed waveguide grating with the microlens array integrated on the same substrate and optical alignment of the photodetector array. The invention can realize light splitting and convert optical signals into electrical signals, thereby realizing chip-based spectrometers, and adopting micro-fabrication technology to realize mass production, greatly reducing the volume and cost of spectrometers, and can even be integrated in portable devices such as smart phones Realize new functions such as chemical composition analysis.
附图说明Description of drawings
图1是本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2是阵列波导光栅的输出波导、微反射镜阵列和光电探测器的局部放大示意图;Fig. 2 is a partial enlarged schematic diagram of the output waveguide of the arrayed waveguide grating, the micromirror array and the photodetector;
图3是阵列波导光栅的输出波导、微反射镜阵列和光电探测器的剖面示意图;Fig. 3 is a schematic cross-sectional view of an output waveguide of an arrayed waveguide grating, a micromirror array and a photodetector;
图中:10是基板,20是阵列波导光栅,30是光电探测器,40是微反射镜,50是输入波导,60是输出波导,70是光敏面,80是光波导下包层,90是探测窗口,100是杂质层,110是防反射层,120是光波导芯层,130是光波导上包层,140是电接触窗口,150是上电极,160是下电极。In the figure: 10 is the substrate, 20 is the arrayed waveguide grating, 30 is the photodetector, 40 is the micro mirror, 50 is the input waveguide, 60 is the output waveguide, 70 is the photosensitive surface, 80 is the lower cladding of the optical waveguide, 90 is 100 is the impurity layer for the detection window, 110 is the anti-reflection layer, 120 is the core layer of the optical waveguide, 130 is the upper cladding layer of the optical waveguide, 140 is the electrical contact window, 150 is the upper electrode, and 160 is the lower electrode.
具体实施方式detailed description
以下结合附图及实施例对本发明进行进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
本发明克服了现有技术的光谱仪体积重量大、售价昂贵等不足,提供一种集成了阵列波导光栅20和光电探测器30的光谱仪芯片,如图1所示,包括基板10、阵列波导光栅20、光电探测器30阵列、微反射镜40阵列,阵列波导光栅20、光电探测器30阵列、微反射镜40阵列加工在基板10上,阵列波导光栅20包括输入波导50、输出波导60阵列,输出波导60阵列、微反射镜40阵列与光电探测器30阵列一一对应设置,无需光学装配即可以将输出波导60的光转换成电信号。The present invention overcomes the shortcomings of the spectrometer in the prior art, such as large volume and weight, high price, etc., and provides a spectrometer chip integrated with an arrayed waveguide grating 20 and a photodetector 30, as shown in Figure 1, including a substrate 10, an arrayed waveguide grating 20. An array of photodetectors 30, an array of micromirrors 40, an arrayed waveguide grating 20, an array of photodetectors 30, and an array of micromirrors 40 are processed on the substrate 10, and the arrayed waveguide grating 20 includes an array of input waveguides 50 and output waveguides 60, The output waveguide 60 array, the micromirror 40 array and the photodetector 30 array are arranged in one-to-one correspondence, and the light in the output waveguide 60 can be converted into an electrical signal without optical assembly.
阵列波导光栅20用于对通过输入波导50进入的输入光进行分光,以使不同特定波长的光进入输出波导60阵列的不同输出波导60中,用于使不同特定输出波导60输出不同特定波长的光。光信号从输入波导50进入阵列波导光栅20,光信号中具有特定波长的光分别从输出波导60阵列中的与特定波长对应的特定输出波导60输出,经微反射镜40阵列折射传导至光电探测器30阵列中对应的光电探测器30的光敏面70上,如图2所示,转换为电信号输出,实现光谱仪的功能。因此,光电探测器30阵列30中各个光电探测器30单元的输出信号的强弱依次代表了输入光各个波长光信号的强弱,从而实现了光谱仪的功能。The arrayed waveguide grating 20 is used to split the input light entering through the input waveguide 50, so that the light of different specific wavelengths enters different output waveguides 60 of the output waveguide 60 array, and is used to make different specific output waveguides 60 output different specific wavelengths. Light. The optical signal enters the arrayed waveguide grating 20 from the input waveguide 50, and the light with a specific wavelength in the optical signal is output from the specific output waveguide 60 corresponding to the specific wavelength in the output waveguide 60 array, and is refracted by the micro-mirror 40 array and transmitted to the photodetector. On the photosensitive surface 70 of the corresponding photodetector 30 in the array of the detector 30, as shown in FIG. 2, it is converted into an electrical signal output to realize the function of the spectrometer. Therefore, the strength of the output signal of each photodetector 30 unit in the photodetector 30 array 30 sequentially represents the strength of the light signal of each wavelength of the input light, thereby realizing the function of the spectrometer.
本发明所述的芯片,根据光信号的光谱组成,每个输出波导60输出的不同波长的光彼此分隔。In the chip according to the present invention, according to the spectral composition of the optical signal, the lights of different wavelengths output by each output waveguide 60 are separated from each other.
基板10可选用单晶硅片或其他半导体衬底材料。本实施例中,基板10选用N型外延单晶硅片,外延层厚度大于10微米,外延层掺杂浓度小于5×1014cm-3,所述阵列波导光栅20、光电探测器30阵列、微反射镜40阵列均采用微细加工技术制作集成在基板10上。基板10上加工有光波导下包层80、光波导芯层120、光波导上包层130,在平面结构上形成阵列波导光栅20,如图3所示。加工顺序依次为:光波导下包层80、光电探测器30、光波导芯层120、光波导上包层130、金属上电极150、金属下电极160、微反射镜40。The substrate 10 can be a single crystal silicon wafer or other semiconductor substrate materials. In this embodiment, the substrate 10 is an N-type epitaxial single crystal silicon wafer, the thickness of the epitaxial layer is greater than 10 microns, and the doping concentration of the epitaxial layer is less than 5×10 14 cm -3 , the arrayed waveguide grating 20, the array of photodetectors 30, The array of micro-mirrors 40 is fabricated and integrated on the substrate 10 using micro-fabrication technology. The substrate 10 is processed with an optical waveguide lower cladding layer 80 , an optical waveguide core layer 120 , and an optical waveguide upper cladding layer 130 , forming an arrayed waveguide grating 20 on a planar structure, as shown in FIG. 3 . The processing sequence is as follows: optical waveguide lower cladding layer 80 , photodetector 30 , optical waveguide core layer 120 , optical waveguide upper cladding layer 130 , metal upper electrode 150 , metal lower electrode 160 , and micro mirror 40 .
阵列波导光栅20的输出波导60的末端开设有光电探测器30的探测窗口90,在探测窗口90往基板10内注入与基板10极性相反的杂质层100,在探测窗口90表面设置防反射层110,在防反射层110外周设置电接触窗口140,杂质层100延伸至电接触窗口140,在电接触窗口140设置与杂质层100形成电接触的上电极,在基板10的底面设置下电极。The end of the output waveguide 60 of the arrayed waveguide grating 20 is provided with the detection window 90 of the photodetector 30, and the impurity layer 100 with the opposite polarity to the substrate 10 is injected into the substrate 10 through the detection window 90, and an anti-reflection layer is arranged on the surface of the detection window 90 110, an electrical contact window 140 is provided on the periphery of the anti-reflection layer 110, the impurity layer 100 extends to the electrical contact window 140, an upper electrode forming electrical contact with the impurity layer 100 is provided in the electrical contact window 140, and a lower electrode is provided on the bottom surface of the substrate 10.
本实施例中,通过光刻和湿法腐蚀形成光电探测器30的探测窗口90,在窗口处通过离子注入或硼扩散工艺形成500纳米厚的P型杂质层100;在探测窗口90处按照光信号的波长范围形成特定厚度的二氧化硅层作为防反射层110,在本实施例中,防反射层110的厚度为105纳米。In this embodiment, the detection window 90 of the photodetector 30 is formed by photolithography and wet etching, and a P-type impurity layer 100 with a thickness of 500 nanometers is formed at the window by ion implantation or boron diffusion process; The wavelength range of the signal forms a silicon dioxide layer with a specific thickness as the anti-reflection layer 110. In this embodiment, the thickness of the anti-reflection layer 110 is 105 nanometers.
通过等离子体增强的化学气相沉积制作1.5微米厚的氮氧化硅层作为光波导芯层120;在氮气气氛下800℃退火1小时;通过光刻和电感耦合等离子体刻蚀工艺在光波导芯层120上形成阵列波导光栅20的形状;通过低压化学气相沉积制作2微米厚的TEOS氧化硅层作为光波导上包层130。Fabricate a 1.5-micron thick silicon oxynitride layer as the optical waveguide core layer 120 by plasma-enhanced chemical vapor deposition; anneal at 800° C. for 1 hour in a nitrogen atmosphere; The shape of the arrayed waveguide grating 20 is formed on 120; a 2 micron thick TEOS silicon oxide layer is formed as the upper cladding layer 130 of the optical waveguide by low pressure chemical vapor deposition.
通过光刻和湿法腐蚀形成光电探测器30阵列的P型杂质层100的电接触窗口140,通过光刻、蒸发1微米厚的金属铝和湿法腐蚀形成光电探测器30的上电极150;在硅基板10的背面蒸发1微米厚的金属铝形成共同的下电极160。Form the electrical contact window 140 of the P-type impurity layer 100 of the photodetector 30 array by photolithography and wet etching, and form the upper electrode 150 of the photodetector 30 by photolithography, evaporating 1 micron thick metal aluminum and wet etching; A common lower electrode 160 is formed by evaporating metal aluminum with a thickness of 1 micron on the back surface of the silicon substrate 10 .
将微反射镜40的加工模具覆盖于输出波导60与光电探测器30的光敏面70的连接位置,然后进行微反射镜40加工。微反射镜40的加工模具设置有成型轮廓与注入通道,将加工模具对准键合在基板10上,成型轮廓覆盖输出波导60的未端与光敏面70。加工微反射镜40时,通过注入通道将紫外固化的光学树脂注入并固化;揭开加工模具后,基板10的表面旋涂光刻胶,去除微反射镜40表面的光刻胶,并通过镀膜工艺在微反射镜40表面形成反射层。Cover the processing mold of the micro-mirror 40 on the connection position between the output waveguide 60 and the photosensitive surface 70 of the photodetector 30 , and then process the micro-mirror 40 . The processing mold of the micromirror 40 is provided with a molding profile and an injection channel, and the processing mold is aligned and bonded on the substrate 10 , and the molding profile covers the end of the output waveguide 60 and the photosensitive surface 70 . When processing the micro-mirror 40, the UV-curable optical resin is injected and cured through the injection channel; after the processing mold is uncovered, the surface of the substrate 10 is spin-coated with photoresist, the photoresist on the surface of the micro-mirror 40 is removed, and the photoresist is passed through the coating The process forms a reflective layer on the surface of the micro-mirror 40 .
本实施例中,在另一片单晶硅基板上制作微反射镜40的加工模具,首先通过激光光刻工艺形成微反射镜40所需的成型轮廓的光刻胶图形,及连接各个图形的微通道(注入通道)。在本实施例中,光刻胶的截面为抛物面。在此基板上覆盖PDMS前聚体,PDMS固化后揭开后形成具有抛物面形状和微通道的加工模具。In this embodiment, the processing mold of the micro-mirror 40 is made on another single-crystal silicon substrate. First, the photoresist pattern of the molding profile required by the micro-mirror 40 is formed by a laser photolithography process, and the micro-mirrors connecting each pattern are formed. channel (injection channel). In this embodiment, the cross section of the photoresist is a paraboloid. The substrate is covered with PDMS prepolymer, and after the PDMS is cured, it is uncovered to form a processing mold with a parabolic shape and microchannels.
将加工模具对准键合到基板10上,使抛物面覆盖了输出波导60的末端和光电探测器30的光敏面70;通过微通道注入紫外固化的光学树脂并固化;揭开加工模具。通过旋涂光刻胶保护基板的表面,通过光刻工艺去除抛物面处的光刻胶,溅射100纳米厚的银形成反射层,通过剥离工艺去除其他地方溅射的金属反射层,仅在微反射镜40的表面保留银反射层。The processing mold is aligned and bonded to the substrate 10 so that the parabola covers the end of the output waveguide 60 and the photosensitive surface 70 of the photodetector 30; UV-curable optical resin is injected through the microchannel and cured; the processing mold is uncovered. Protect the surface of the substrate by spin-coating photoresist, remove the photoresist at the parabolic surface by photolithography, sputter 100 nanometers of silver to form a reflective layer, and remove the metal reflective layer sputtered elsewhere by lift-off process, only in the micro The surface of the mirror 40 retains the silver reflective layer.
上述实施例仅是用来说明本发明,而并非用作对本发明的限定。只要是依据本发明的技术实质,对上述实施例进行变化、变型等都将落在本发明的权利要求的范围内。The above-mentioned embodiments are only used to illustrate the present invention, but not to limit the present invention. As long as it is based on the technical spirit of the present invention, changes and modifications to the above embodiments will fall within the scope of the claims of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510660961.XA CN105222895A (en) | 2015-10-14 | 2015-10-14 | A kind of spectrometer chip being integrated with array waveguide grating and photodetector |
PCT/CN2016/075934 WO2017063330A1 (en) | 2015-10-14 | 2016-03-09 | Spectrometer integrated chip and manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510660961.XA CN105222895A (en) | 2015-10-14 | 2015-10-14 | A kind of spectrometer chip being integrated with array waveguide grating and photodetector |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105222895A true CN105222895A (en) | 2016-01-06 |
Family
ID=54991974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510660961.XA Pending CN105222895A (en) | 2015-10-14 | 2015-10-14 | A kind of spectrometer chip being integrated with array waveguide grating and photodetector |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105222895A (en) |
WO (1) | WO2017063330A1 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106158998A (en) * | 2016-06-30 | 2016-11-23 | 浙江大学 | A kind of visible ray and near infrared band silica-based fiber waveguide integrated photodetector |
CN106441573A (en) * | 2016-09-09 | 2017-02-22 | 电子科技大学 | Small spectrometer based on multimode optical waveguide |
WO2017063330A1 (en) * | 2015-10-14 | 2017-04-20 | 厦门大学 | Spectrometer integrated chip and manufacturing method |
CN107389190A (en) * | 2017-07-28 | 2017-11-24 | 华东师范大学 | A kind of micro spectrometer single chip integrated on silicon wafer and preparation method thereof |
US9977192B2 (en) | 2015-07-29 | 2018-05-22 | Industrial Technology Research Institute | Optical receiver and optical transceiver |
WO2018115566A1 (en) * | 2016-12-19 | 2018-06-28 | Nokia Technologies Oy | Spectroscopic detection apparatus and method |
CN108333123A (en) * | 2018-02-08 | 2018-07-27 | 南京邮电大学 | A CMOS spectrometer based on MIM waveguide technology |
CN109655084A (en) * | 2018-12-10 | 2019-04-19 | 上海交通大学 | It is a kind of can driving neural photoelectrode array preparation method |
CN110672205A (en) * | 2018-07-03 | 2020-01-10 | 浙江澍源智能技术有限公司 | Micro spectrometer device based on array waveguide grating |
CN111721414A (en) * | 2020-06-29 | 2020-09-29 | 中国电子科技集团公司信息科学研究院 | Spectrometer |
CN111780871A (en) * | 2019-04-04 | 2020-10-16 | 清华大学 | Optical device |
CN112924026A (en) * | 2021-01-29 | 2021-06-08 | 中国科学院长春光学精密机械与物理研究所 | Interference flat imaging method and system thereof |
CN113126218A (en) * | 2021-05-25 | 2021-07-16 | 菲尼萨光电通讯(上海)有限公司 | Array wavelength division multiplexing receiver assembly |
CN113280918A (en) * | 2021-04-28 | 2021-08-20 | 厦门大学 | Dispersion detection chip and manufacturing method thereof |
CN113295272A (en) * | 2020-02-21 | 2021-08-24 | 中国科学院半导体研究所 | Photoelectric monitoring system |
CN114420714A (en) * | 2022-02-24 | 2022-04-29 | 湖北九峰山实验室 | On-chip integrated spectrometer and its fabrication method and electronic device |
WO2024084295A1 (en) * | 2022-10-19 | 2024-04-25 | Ap Infosense Limited | Optical integrated chip and high resolution low-cost integrated handheld miniature spectrometer |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110346313A (en) * | 2019-07-31 | 2019-10-18 | 清华大学 | A kind of light modulation micro-nano structure, micro- integrated spectrometer and spectral modulation method |
CN113804630B (en) * | 2020-12-07 | 2024-01-23 | 宁波大学 | Micro-nano optical sensor for detecting chemical components and manufacturing and detecting method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01183606A (en) * | 1988-01-18 | 1989-07-21 | Fujitsu Ltd | Light receiving device |
CN1375947A (en) * | 2002-04-17 | 2002-10-23 | 符建 | Waveguide grating array wave splitting/composing device with channel monitoring function |
CN102243340A (en) * | 2011-07-05 | 2011-11-16 | 武汉电信器件有限公司 | Hybrid integrated planar waveguide detector chip based on coarse wave decomposing and multiplexing |
CN103528679A (en) * | 2013-09-29 | 2014-01-22 | 厦门大学 | Micro hybrid light splitting device |
WO2014026724A1 (en) * | 2012-08-17 | 2014-02-20 | Karlsruher Institut für Technologie | Single chip spectrometer with superconducting single photon detector |
CN103885141A (en) * | 2012-12-19 | 2014-06-25 | 深圳新飞通光电子技术有限公司 | Planar optical waveguide type parallel optical assembly and optical module |
CN204594579U (en) * | 2015-04-02 | 2015-08-26 | 中国计量学院 | A kind of sheet glazing spectrometer based on micro-ring and array waveguide grating |
CN104950382A (en) * | 2015-06-30 | 2015-09-30 | 中国科学院半导体研究所 | Integrated device for seamed butt joint of AWG (arrayed waveguide grating) output waveguide and detector and preparation method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102175319A (en) * | 2011-01-26 | 2011-09-07 | 浙江大学 | Discrete wavelength interval high-resolution microspectrometer based on planar integrated waveguide grating |
CN102495040B (en) * | 2011-11-11 | 2014-05-07 | 厦门大学 | Raman spectrometer chip adopting arrayed waveguide grating |
EP2898305A4 (en) * | 2012-09-24 | 2016-10-12 | Tornado Spectral Systems Inc | Wavenumber-linearized spectrometer on chip in a spectral-domain optical coherence tomography system |
CN105222895A (en) * | 2015-10-14 | 2016-01-06 | 厦门大学 | A kind of spectrometer chip being integrated with array waveguide grating and photodetector |
-
2015
- 2015-10-14 CN CN201510660961.XA patent/CN105222895A/en active Pending
-
2016
- 2016-03-09 WO PCT/CN2016/075934 patent/WO2017063330A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01183606A (en) * | 1988-01-18 | 1989-07-21 | Fujitsu Ltd | Light receiving device |
CN1375947A (en) * | 2002-04-17 | 2002-10-23 | 符建 | Waveguide grating array wave splitting/composing device with channel monitoring function |
CN102243340A (en) * | 2011-07-05 | 2011-11-16 | 武汉电信器件有限公司 | Hybrid integrated planar waveguide detector chip based on coarse wave decomposing and multiplexing |
WO2014026724A1 (en) * | 2012-08-17 | 2014-02-20 | Karlsruher Institut für Technologie | Single chip spectrometer with superconducting single photon detector |
CN103885141A (en) * | 2012-12-19 | 2014-06-25 | 深圳新飞通光电子技术有限公司 | Planar optical waveguide type parallel optical assembly and optical module |
CN103528679A (en) * | 2013-09-29 | 2014-01-22 | 厦门大学 | Micro hybrid light splitting device |
CN204594579U (en) * | 2015-04-02 | 2015-08-26 | 中国计量学院 | A kind of sheet glazing spectrometer based on micro-ring and array waveguide grating |
CN104950382A (en) * | 2015-06-30 | 2015-09-30 | 中国科学院半导体研究所 | Integrated device for seamed butt joint of AWG (arrayed waveguide grating) output waveguide and detector and preparation method |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9977192B2 (en) | 2015-07-29 | 2018-05-22 | Industrial Technology Research Institute | Optical receiver and optical transceiver |
WO2017063330A1 (en) * | 2015-10-14 | 2017-04-20 | 厦门大学 | Spectrometer integrated chip and manufacturing method |
CN106158998A (en) * | 2016-06-30 | 2016-11-23 | 浙江大学 | A kind of visible ray and near infrared band silica-based fiber waveguide integrated photodetector |
CN106158998B (en) * | 2016-06-30 | 2017-08-04 | 浙江大学 | A silicon-based optical waveguide integrated photodetector for visible and near-infrared bands |
CN106441573A (en) * | 2016-09-09 | 2017-02-22 | 电子科技大学 | Small spectrometer based on multimode optical waveguide |
CN106441573B (en) * | 2016-09-09 | 2018-03-27 | 电子科技大学 | A kind of miniature spectrometer based on multimode lightguide |
WO2018115566A1 (en) * | 2016-12-19 | 2018-06-28 | Nokia Technologies Oy | Spectroscopic detection apparatus and method |
CN107389190A (en) * | 2017-07-28 | 2017-11-24 | 华东师范大学 | A kind of micro spectrometer single chip integrated on silicon wafer and preparation method thereof |
CN108333123A (en) * | 2018-02-08 | 2018-07-27 | 南京邮电大学 | A CMOS spectrometer based on MIM waveguide technology |
CN110672205A (en) * | 2018-07-03 | 2020-01-10 | 浙江澍源智能技术有限公司 | Micro spectrometer device based on array waveguide grating |
CN109655084A (en) * | 2018-12-10 | 2019-04-19 | 上海交通大学 | It is a kind of can driving neural photoelectrode array preparation method |
CN111780871A (en) * | 2019-04-04 | 2020-10-16 | 清华大学 | Optical device |
CN111780871B (en) * | 2019-04-04 | 2021-10-22 | 清华大学 | Optical device |
CN113295272A (en) * | 2020-02-21 | 2021-08-24 | 中国科学院半导体研究所 | Photoelectric monitoring system |
CN113295272B (en) * | 2020-02-21 | 2024-05-07 | 中国科学院半导体研究所 | Photoelectric monitoring system |
CN111721414A (en) * | 2020-06-29 | 2020-09-29 | 中国电子科技集团公司信息科学研究院 | Spectrometer |
CN112924026A (en) * | 2021-01-29 | 2021-06-08 | 中国科学院长春光学精密机械与物理研究所 | Interference flat imaging method and system thereof |
CN112924026B (en) * | 2021-01-29 | 2022-04-26 | 中国科学院长春光学精密机械与物理研究所 | A method and system for interferometric flat panel imaging |
CN113280918A (en) * | 2021-04-28 | 2021-08-20 | 厦门大学 | Dispersion detection chip and manufacturing method thereof |
CN113126218A (en) * | 2021-05-25 | 2021-07-16 | 菲尼萨光电通讯(上海)有限公司 | Array wavelength division multiplexing receiver assembly |
CN114420714A (en) * | 2022-02-24 | 2022-04-29 | 湖北九峰山实验室 | On-chip integrated spectrometer and its fabrication method and electronic device |
WO2024084295A1 (en) * | 2022-10-19 | 2024-04-25 | Ap Infosense Limited | Optical integrated chip and high resolution low-cost integrated handheld miniature spectrometer |
Also Published As
Publication number | Publication date |
---|---|
WO2017063330A1 (en) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105222895A (en) | A kind of spectrometer chip being integrated with array waveguide grating and photodetector | |
Li et al. | Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab | |
US11543653B2 (en) | Device components formed of geometric structures | |
Bai et al. | Chip-integrated plasmonic flat optics for mid-infrared full-Stokes polarization detection | |
US10060791B2 (en) | Integrated spectral unit | |
US10082425B2 (en) | Integrated chromatic confocal sensor | |
US8045159B2 (en) | Optical apparatus of a stacked design, and method of producing same | |
US20200363323A1 (en) | Spectrometer | |
Correia et al. | High-selectivity single-chip spectrometer in silicon for operation in visible part of the spectrum | |
Lo et al. | A concave blazed-grating-based smartphone spectrometer for multichannel sensing | |
US20180052284A1 (en) | Optical zig-zags | |
CN111562004B (en) | Quantum dot light source chip spectrometer without light splitting system and spectrum reconstruction method | |
Jokerst et al. | Progress in chip-scale photonic sensing | |
Bruschini et al. | Challenges and prospects for multi-chip microlens imprints on front-side illuminated SPAD imagers | |
CN101303424A (en) | Three-cavity multi-channel spectral step integrated filter | |
CN100491971C (en) | Micro-integrated grating spectrometer based on blazed grating and thermal pile detector and its manufacturing method | |
Scattolo et al. | Near infrared efficiency enhancement of silicon photodiodes by integration of metal nanostructures supporting surface plasmon polaritrons | |
CN105651400A (en) | Ultrahigh-precision wavelength resolver based on Fano resonance | |
Nikolaidou et al. | Monolithic Integration of multi-spectral optical interference filter array on thin film amorphous silicon photodiodes | |
CN113267257A (en) | Infrared imaging module and infrared imager | |
CN111854953A (en) | An integrated miniature spectrometer optical system based on free-form surface prism | |
CN217112059U (en) | Portable quantum dot infrared spectrometer | |
CN211700289U (en) | Micro-lens component, biological identification module and electronic equipment | |
Kong et al. | Spectral performance of a micromachined infrared spectrum analyzer in silicon | |
KR101882141B1 (en) | Spectromtric sensor and method for manufacturing the same and spectromtric device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160106 |