CN105209667B - Manganese (III) ion in strength sulfuric acid it is electrolytically generated - Google Patents
Manganese (III) ion in strength sulfuric acid it is electrolytically generated Download PDFInfo
- Publication number
- CN105209667B CN105209667B CN201480014056.0A CN201480014056A CN105209667B CN 105209667 B CN105209667 B CN 105209667B CN 201480014056 A CN201480014056 A CN 201480014056A CN 105209667 B CN105209667 B CN 105209667B
- Authority
- CN
- China
- Prior art keywords
- manganese
- ions
- acid
- solution
- iii
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 title claims description 119
- MMIPFLVOWGHZQD-UHFFFAOYSA-N manganese(3+) Chemical compound [Mn+3] MMIPFLVOWGHZQD-UHFFFAOYSA-N 0.000 title claims description 24
- 239000000243 solution Substances 0.000 claims abstract description 109
- -1 manganese(II) ions Chemical class 0.000 claims abstract description 104
- 229920003023 plastic Polymers 0.000 claims abstract description 68
- 239000004033 plastic Substances 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 66
- 239000002253 acid Substances 0.000 claims abstract description 40
- 239000003792 electrolyte Substances 0.000 claims abstract description 30
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 18
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 16
- 239000004917 carbon fiber Substances 0.000 claims abstract description 16
- 229910021397 glassy carbon Inorganic materials 0.000 claims abstract description 16
- 229910000978 Pb alloy Inorganic materials 0.000 claims abstract description 11
- 238000006056 electrooxidation reaction Methods 0.000 claims abstract description 5
- 238000005530 etching Methods 0.000 claims description 38
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 claims description 34
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 32
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 25
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 21
- 239000010936 titanium Substances 0.000 claims description 21
- 229910052719 titanium Inorganic materials 0.000 claims description 21
- 239000000203 mixture Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 17
- 229940098779 methanesulfonic acid Drugs 0.000 claims description 17
- 230000003647 oxidation Effects 0.000 claims description 16
- 238000007254 oxidation reaction Methods 0.000 claims description 16
- 238000005868 electrolysis reaction Methods 0.000 claims description 15
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 15
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 14
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 13
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 12
- 239000011702 manganese sulphate Substances 0.000 claims description 12
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 11
- 229940099596 manganese sulfate Drugs 0.000 claims description 11
- 235000007079 manganese sulphate Nutrition 0.000 claims description 11
- OPUAWDUYWRUIIL-UHFFFAOYSA-N methanedisulfonic acid Chemical compound OS(=O)(=O)CS(O)(=O)=O OPUAWDUYWRUIIL-UHFFFAOYSA-N 0.000 claims description 11
- 229910052697 platinum Inorganic materials 0.000 claims description 10
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 8
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 claims description 8
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 8
- 150000001261 hydroxy acids Chemical class 0.000 claims description 8
- 239000002904 solvent Substances 0.000 claims description 8
- 229910000457 iridium oxide Inorganic materials 0.000 claims description 7
- 238000009825 accumulation Methods 0.000 claims description 6
- 239000004310 lactic acid Substances 0.000 claims description 6
- 235000014655 lactic acid Nutrition 0.000 claims description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 6
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims description 5
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 5
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 5
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 claims description 4
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims description 4
- 239000000174 gluconic acid Substances 0.000 claims description 4
- 235000012208 gluconic acid Nutrition 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 2
- 229910003460 diamond Inorganic materials 0.000 claims description 2
- 239000011656 manganese carbonate Substances 0.000 claims description 2
- 235000006748 manganese carbonate Nutrition 0.000 claims description 2
- 229940093474 manganese carbonate Drugs 0.000 claims description 2
- IPJKJLXEVHOKSE-UHFFFAOYSA-L manganese dihydroxide Chemical compound [OH-].[OH-].[Mn+2] IPJKJLXEVHOKSE-UHFFFAOYSA-L 0.000 claims description 2
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 claims description 2
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 claims description 2
- 229910003446 platinum oxide Inorganic materials 0.000 claims description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims 3
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims 3
- 150000001875 compounds Chemical class 0.000 claims 1
- 239000010405 anode material Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 description 19
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 16
- 238000007747 plating Methods 0.000 description 15
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 14
- 150000002500 ions Chemical class 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 229910001437 manganese ion Inorganic materials 0.000 description 13
- 239000011572 manganese Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 229910052748 manganese Inorganic materials 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 229920006942 ABS/PC Polymers 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 238000013019 agitation Methods 0.000 description 5
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000007323 disproportionation reaction Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000010802 sludge Substances 0.000 description 4
- 238000002791 soaking Methods 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000005062 Polybutadiene Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 3
- 229920002857 polybutadiene Polymers 0.000 description 3
- 230000002035 prolonged effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000008929 regeneration Effects 0.000 description 3
- 238000011069 regeneration method Methods 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 241000167854 Bourreria succulenta Species 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- XYDQMRVDDPZFMM-UHFFFAOYSA-N [Ag+2] Chemical compound [Ag+2] XYDQMRVDDPZFMM-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 235000019693 cherries Nutrition 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- JAWGVVJVYSANRY-UHFFFAOYSA-N cobalt(3+) Chemical compound [Co+3] JAWGVVJVYSANRY-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910000357 manganese(II) sulfate Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000010137 moulding (plastic) Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- KHIWWQKSHDUIBK-UHFFFAOYSA-N periodic acid Chemical compound OI(=O)(=O)=O KHIWWQKSHDUIBK-UHFFFAOYSA-N 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- JOJPFQVZNUNZBO-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2].[Mn+2] JOJPFQVZNUNZBO-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001845 chromium compounds Chemical class 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- PIJPYDMVFNTHIP-UHFFFAOYSA-L lead sulfate Chemical compound [PbH4+2].[O-]S([O-])(=O)=O PIJPYDMVFNTHIP-UHFFFAOYSA-L 0.000 description 1
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- LBSANEJBGMCTBH-UHFFFAOYSA-N manganate Chemical compound [O-][Mn]([O-])(=O)=O LBSANEJBGMCTBH-UHFFFAOYSA-N 0.000 description 1
- 229910000471 manganese heptoxide Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- BECVLEVEVXAFSH-UHFFFAOYSA-K manganese(3+);phosphate Chemical compound [Mn+3].[O-]P([O-])([O-])=O BECVLEVEVXAFSH-UHFFFAOYSA-K 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000007719 peel strength test Methods 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/21—Manganese oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/2006—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
- C23C18/2046—Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
- C23C18/2073—Multistep pretreatment
- C23C18/2086—Multistep pretreatment with use of organic or inorganic compounds other than metals, first
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/20—Pretreatment of the material to be coated of organic surfaces, e.g. resins
- C23C18/22—Roughening, e.g. by etching
- C23C18/24—Roughening, e.g. by etching using acid aqueous solutions
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/042—Electrodes formed of a single material
- C25B11/043—Carbon, e.g. diamond or graphene
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
- C25B11/081—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
- C25D5/56—Electroplating of non-metallic surfaces of plastics
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Chemically Coating (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
本申请描述了一种电解池以及在该电解池中将锰(II)离子电化学氧化为锰(III)离子的方法。该电解池包含(1)处于至少一种酸的溶液中的锰(II)离子的电解质溶液;(2)浸在该电解质溶液中的阴极;和(3)浸在该电解质溶液中并且与该阴极相隔的阳极。描述了各种阳极材料,包括玻璃碳、网状玻璃碳、编织碳纤维、铅与铅合金。一旦该电解质被氧化而形成锰(III)离子的亚稳态络合物,则可将可镀塑料与该亚稳态络合物接触以蚀刻该可镀塑料。此外,在该可镀塑料与该亚稳态络合物接触之前,还可在该可镀塑料上进行预处理步骤以调理该塑料表面的状况。The present application describes an electrolytic cell and a method for the electrochemical oxidation of manganese(II) ions to manganese(III) ions in the electrolytic cell. The electrolytic cell comprises (1) an electrolyte solution of manganese (II) ions in a solution of at least one acid; (2) a cathode immersed in the electrolyte solution; and (3) immersed in the electrolyte solution and in contact with the Anodes separated by cathodes. Various anode materials are described, including glassy carbon, reticulated glassy carbon, braided carbon fibers, lead and lead alloys. Once the electrolyte is oxidized to form a metastable complex of manganese (III) ions, the platable plastic can be contacted with the metastable complex to etch the platable plastic. In addition, pretreatment steps may also be performed on the platable plastic to condition the surface of the plastic prior to contacting the platable plastic with the metastable complex.
Description
交叉引用相关申请Cross reference to related applications
本申请为2012年11月15日提交的目前仍在审查中的申请号13/677,798的部分继续,该申请为2012年1月23日提交的目前仍在审查中的申请号13/356,004的部分继续,它们各自的主题皆通过引用以其整体并入本文。This application is a continuation-in-part of currently pending application number 13/677,798 filed November 15, 2012 which is a continuation-in-part of currently pending application number 13/356,004 filed January 23, 2012 Continuing, their respective subject matter is hereby incorporated by reference in its entirety.
技术领域technical field
本发明总体而言涉及一种用于蚀刻例如ABS和ABS/PC的可镀塑料的改良方法。The present invention generally relates to an improved method for etching platable plastics such as ABS and ABS/PC.
背景技术Background technique
本领域中已知为了多种目的而用金属镀敷非导电性基板(即,塑料)。塑料成型生产相对便宜,并且镀金属塑料被用于许多应用。例如,镀金属塑料用于装饰以及用于制造电子设备。装饰用途的范例包括汽车零件,例如汽车内饰。电子用途的范例包括印刷电路板,其中以选择性图案电镀的金属包括印刷电路板的导体,以及用于EMI屏蔽的镀金属塑料。ABS树脂是用于装饰目的最常被镀敷的塑料,而酚树脂与环氧树脂是印刷电路板制造中最常被镀敷的塑料。Plating non-conductive substrates (ie, plastics) with metals is known in the art for a variety of purposes. Plastic molding is relatively cheap to produce, and metallized plastics are used in many applications. For example, metallized plastics are used for decoration and for the manufacture of electronic devices. Examples of decorative uses include automotive parts, such as automotive interiors. Examples of electronic uses include printed circuit boards, where metal plated in selective patterns comprises the conductors of the printed circuit board, and metallized plastics for EMI shielding. ABS resins are the most commonly plated plastics for decorative purposes, while phenolic and epoxy resins are the most commonly plated plastics in printed circuit board manufacturing.
在塑料表面上的镀敷被用于生产各种消费项目。塑料成型的生产相对便宜,并且镀敷塑料用于许多应用,包括汽车内饰。塑料的镀敷涉及许多阶段。第一阶段涉及蚀刻塑料,以提供后续金属覆膜的机械黏着,并且提供合适的表面用于钯催化剂的吸附,该钯催化剂典型地用以从自动催化镍或镀铜工艺中催化初始金属层的沉积。接着,可施敷铜、镍和/或铬的沉积层。Plating on plastic surfaces is used in the production of various consumer items. Plastic molding is relatively cheap to produce, and plated plastics are used in many applications, including automotive interiors. Plating of plastics involves many stages. The first stage involves etching the plastic to provide mechanical adhesion of the subsequent metal coating and to provide a suitable surface for adsorption of the palladium catalyst typically used to catalyze the detachment of the initial metal layer from an autocatalytic nickel or copper plating process. deposition. Next, a deposited layer of copper, nickel and/or chromium may be applied.
塑料组件的初始蚀刻是整个工序的重要部分。然而,仅有一定类型的塑料组件适合电镀。最常见用于电镀的塑料类型是丙烯腈/丁二烯/苯乙烯(ABS)或是ABS与聚碳酸酯的掺合物(ABS/PC)。ABS由两相组成。第一相是由丙烯腈/苯乙烯共聚物组成的相对硬的相,第二相是较软的聚丁二烯相。The initial etching of plastic components is an important part of the overall process. However, only certain types of plastic components are suitable for electroplating. The most common type of plastic used for plating is acrylonitrile/butadiene/styrene (ABS) or a blend of ABS and polycarbonate (ABS/PC). ABS consists of two phases. The first phase is a relatively hard phase consisting of acrylonitrile/styrene copolymer and the second phase is a softer polybutadiene phase.
目前,此材料几乎都是使用铬酸与硫酸的混合物来蚀刻,这对于ABS与ABS/PC是非常有效的蚀刻剂。该塑料的聚丁二烯相在聚合物的骨干中含有双键,其被铬酸氧化,因而造成暴露在该塑料表面的聚丁二烯相的完全断裂和溶解,达到该塑料表面的有效蚀刻。Currently, this material is almost always etched using a mixture of chromic acid and sulfuric acid, which is a very effective etchant for ABS and ABS/PC. The polybutadiene phase of the plastic contains double bonds in the backbone of the polymer, which are oxidized by chromic acid, thus causing complete fracture and dissolution of the polybutadiene phase exposed on the plastic surface, achieving effective etching of the plastic surface .
传统铬酸蚀刻步骤的一个问题是铬酸被认为是致癌物,并且管制越加严格,需要尽可能用更安全的替代物取代铬酸。铬酸蚀刻剂的使用还具有已知的严重缺点,包括铬化合物的毒性,造成其处置困难,留在聚合物表面上的铬酸残留物抑制无电沉积,以及在处理后从该聚合物表面冲洗铬酸残留物困难。此外,热的六价铬硫酸溶液对于工作者有天然危险。日常接触这些铬蚀刻溶液的工作者常有灼伤与上呼吸道出血。因此,非常期待发展酸性铬蚀刻溶液的更安全的替代物。One problem with the traditional chromic acid etch step is that chromic acid is considered a carcinogen, and as regulations become more stringent, there is a need to replace chromic acid with safer alternatives wherever possible. The use of chromic acid etchants also has known serious disadvantages, including the toxicity of chromium compounds, which makes their disposal difficult, the chromic acid residues left on polymer surfaces which inhibit electroless deposition, and the removal of Difficulty rinsing off chromic acid residue. In addition, hot hexavalent chromium sulfuric acid solutions are a natural hazard for workers. Workers exposed to these chromium etching solutions on a daily basis often experience burns and upper respiratory bleeding. Therefore, the development of safer alternatives to acidic chromium etching solutions is highly desirable.
早期对取代蚀刻塑料用铬酸的尝试通常聚焦在使用高锰酸根离子作为铬酸的替代物。Tubergen等人的美国专利第4,610,895号中描述了高锰酸盐与酸的组合使用,其全文以引用方式并入本文。后来,Bengston的美国专利申请公开第2005/0199587号建议高锰酸盐与离子性钯活化阶段组合使用,其全文以引用方式并入本文。Satou的美国专利申请公开第2009/0092757号描述了酸高锰酸盐溶液与高卤素离子(例如,高氯酸根或高碘酸根)组合使用,其全文以引用方式并入本文。最后,Enthone的国际公开第WO 2009/023628号描述了在没有碱金属或碱土金属阳离子的情况下使用高锰酸根离子,其全文以引用方式并入本文。Early attempts to replace chromic acid for etching plastics generally focused on the use of permanganate ions as a substitute for chromic acid. The use of permanganates in combination with acids is described in US Patent No. 4,610,895 to Tubergen et al., which is incorporated herein by reference in its entirety. Later, US Patent Application Publication No. 2005/0199587 by Bengston suggested the use of permanganate in combination with an ionic palladium activation stage, which is hereby incorporated by reference in its entirety. US Patent Application Publication No. 2009/0092757 to Satou, which is incorporated herein by reference in its entirety, describes the use of acid permanganate solutions in combination with perhalide ions (eg, perchlorate or periodate). Finally, Enthone's International Publication No. WO 2009/023628 describes the use of permanganate ions in the absence of alkali metal or alkaline earth metal cations, which is hereby incorporated by reference in its entirety.
Stahl等人的美国专利第3,625,758号也描述了高锰酸盐溶液,其全文以引用方式并入本文。Stahl建议了铬与硫酸浴或是高锰酸盐溶液用于制备表面的适合性。此外,Courduvelis等人的美国专利第4,948,630号全文以引用方式并入本文,其描述了一种热的碱性高锰酸盐溶液,其还含有一种材料,例如次氯酸钠,其氧化电位高于高锰酸盐溶液的氧化电位。Cane的美国专利第5,648,125号全文以引用方式并入本文,其描述了使用包括高锰酸钾与氢氧化钠的碱性高锰酸盐溶液,其中该高锰酸盐溶液被维持在高温,即约165℉至200℉。Permanganate solutions are also described in US Patent No. 3,625,758 to Stahl et al., which is hereby incorporated by reference in its entirety. Stahl suggested the suitability of chromium and sulfuric acid baths or permanganate solutions for preparing surfaces. In addition, U.S. Patent No. 4,948,630 to Courduvelis et al., incorporated herein by reference in its entirety, describes a hot alkaline permanganate solution that also contains a material, such as sodium hypochlorite, that has an oxidation potential higher than that of high Oxidation potential of manganate solutions. U.S. Patent No. 5,648,125 to Cane, incorporated herein by reference in its entirety, describes the use of an alkaline permanganate solution comprising potassium permanganate and sodium hydroxide, wherein the permanganate solution is maintained at an elevated temperature, i.e. About 165℉ to 200℉.
可见,已经建议许多种蚀刻溶液取代铬酸用于制备金属化用非导电性基板的工艺中。然而,由于各种经济、性能和/或环境的原因,这些工艺均尚未被证实是令人满意的,因此这些工艺尚未达到商业成功或是被产业接受成为适合铬酸蚀刻的替代品。此外,这些以高锰酸盐为基础的蚀刻溶液的稳定性也可能不佳,导致二氧化锰污泥的形成。It can be seen that many etching solutions have been proposed to replace chromic acid in the process of preparing non-conductive substrates for metallization. However, none of these processes have proven satisfactory for various economic, performance, and/or environmental reasons, and thus have not yet achieved commercial success or been accepted by the industry as suitable alternatives to chromic acid etching. In addition, the stability of these permanganate-based etching solutions may also be poor, leading to the formation of manganese dioxide sludge.
本案发明人已研究了以高锰酸盐为基础的溶液形成污泥且发生自身分解的倾向。在强酸性环境下,根据以下反应,高锰酸根离子可与氢离子反应,产生锰(II)离子与水:The present inventors have investigated the tendency of permanganate-based solutions to form sludge and undergo self-decomposition. In a strongly acidic environment, permanganate ions can react with hydrogen ions to produce manganese(II) ions and water according to the following reaction:
4MnO4 -+12H+→4Mn2++6H2O+5O2 (1)4MnO 4 - +12H + → 4Mn 2+ +6H 2 O+5O 2 (1)
此反应形成的锰(II)离子然后可与高锰酸根离子进行进一步反应,根据以下反应,形成二氧化锰污泥:The manganese(II) ions formed by this reaction can then undergo a further reaction with permanganate ions to form manganese dioxide sludge according to the following reaction:
2MnO4 -+2H2O+3Mn2+→5MnO2+4H+ (2)2MnO 4 - +2H 2 O+3Mn 2+ →5MnO 2 +4H + (2)
因此,无论是通过高锰酸盐的碱金属盐而添加的高锰酸根离子还是原位电化学产生的高锰酸根离子,基于强酸性高锰酸盐溶液的配方本质上不稳定。相较于目前使用的铬酸蚀刻,酸性高锰酸盐的不良化学稳定性使其对于大规模商业应用而言切实无用。碱性高锰酸盐蚀刻更稳定,并且广泛使用在印刷电路板工业,用于蚀刻环氧系印刷电路板,但是碱性高锰酸盐对于例如ABS或ABS/PC的塑料而言并不是有效的蚀刻剂。因此,锰(VII)无法作为这些材料的蚀刻剂而获得广泛的商业接受度。Thus, formulations based on strongly acidic permanganate solutions are inherently unstable, whether permanganate ions added via the alkali metal salt of permanganate or permanganate ions generated electrochemically in situ. The poor chemical stability of acidic permanganates compared to currently used chromic acid etching makes them practically useless for large-scale commercial applications. Alkaline permanganate etch is more stable and is widely used in the printed circuit board industry for etching epoxy-based printed circuit boards, but alkaline permanganate is not effective for plastics such as ABS or ABS/PC of etchant. Consequently, manganese(VII) has not gained wide commercial acceptance as an etchant for these materials.
不使用铬酸而蚀刻ABS的尝试已经包括使用电化学产生的银(II)与钴(III)。某些金属可被阳极氧化为高氧化的氧化状态。例如,钴可从钴(II)氧化为钴(III)并且银可从银(I)氧化为银(II)。Attempts to etch ABS without the use of chromic acid have included the use of electrochemically generated silver(II) and cobalt(III). Certain metals can be anodized to a highly oxidized oxidation state. For example, cobalt can be oxidized from cobalt(II) to cobalt(III) and silver can be oxidized from silver(I) to silver(II).
然而,目前没有适用于塑料的基于高锰酸盐(无论为酸或碱形式)或任何其它氧化状态的锰或通过使用其它酸或氧化剂的合适的商业成功蚀刻剂。However, there are currently no suitable commercially successful etchants for plastics based on permanganate (whether in acid or base form) or manganese in any other oxidation state or through the use of other acids or oxidizing agents.
因此,本领域仍需要一种不含铬酸且为商业可接受的改良的蚀刻剂,其用于制备后续电镀使用的塑料基板。Therefore, there is still a need in the art for an improved etchant that does not contain chromic acid and is commercially acceptable for preparing plastic substrates for subsequent electroplating.
发明内容Contents of the invention
本发明的一个目的是提供一种用于塑料基板的不含铬酸的蚀刻剂。It is an object of the present invention to provide a chromic acid-free etchant for plastic substrates.
本发明的另一目的是提供一种用于塑料基板的商业可接受的蚀刻剂。Another object of the present invention is to provide a commercially acceptable etchant for plastic substrates.
本发明的另一目的是提供一种用于塑料基板的基于锰离子的蚀刻剂。Another object of the present invention is to provide a manganese ion based etchant for plastic substrates.
本发明的还一目的是提供一种适合用于强酸氧化电解质中但不被该电解质降解的电极。It is a further object of the present invention to provide an electrode which is suitable for use in strong acid oxidizing electrolytes but which is not degraded by the electrolyte.
本发明的还一目的是提供一种商业可接受的适合用于在强硫酸中产生锰(III)离子的电极。Yet another object of the present invention is to provide a commercially acceptable electrode suitable for generating manganese (III) ions in strong sulfuric acid.
本发明的还一目的是提供一种用于在蚀刻之前调理塑料基板的改良的预处理步骤。Yet another object of the present invention is to provide an improved pretreatment step for conditioning plastic substrates prior to etching.
在一个实施方式中,本发明总体而言涉及一种电解池,其包含:In one embodiment, the present invention relates generally to an electrolytic cell comprising:
电解质溶液,其包含处于硫酸和附加酸的溶液中的锰(III)离子,该附加酸选自于由甲烷磺酸、甲烷二磺酸及其组合所组成的群组;an electrolyte solution comprising manganese(III) ions in a solution of sulfuric acid and an additional acid selected from the group consisting of methanesulfonic acid, methanedisulfonic acid, and combinations thereof;
阴极,其与该电解质溶液接触;以及a cathode in contact with the electrolyte solution; and
阳极,其与该电解质溶液接触。an anode, which is in contact with the electrolyte solution.
在另一实施方式中,本发明总体而言涉及一种电解池,其包含:In another embodiment, the present invention relates generally to an electrolytic cell comprising:
电解质溶液,其包含处于至少一种酸的溶液中的锰(III)离子;an electrolyte solution comprising manganese(III) ions in a solution of at least one acid;
阴极,其与该电解质溶液接触;以及a cathode in contact with the electrolyte solution; and
阳极,其与该电解质溶液接触,其中该阳极包含从由玻璃碳、网状玻璃碳、编织碳纤维、铅、铅合金以及前述一种或多种的组合所组成的群组中选出的材料。An anode in contact with the electrolyte solution, wherein the anode comprises a material selected from the group consisting of glassy carbon, reticulated glassy carbon, woven carbon fibers, lead, lead alloys, and combinations of one or more of the foregoing.
在另一实施方式中,本发明总体而言涉及一种制备可蚀刻塑料基板的溶液的方法,该方法包括以下步骤:In another embodiment, the present invention relates generally to a method of preparing a solution for etching a plastic substrate, the method comprising the steps of:
在电解池中提供电解质,该电解质包含处于至少一种酸的溶液中的锰(II)离子的溶液,其中该电解池包含阳极与阴极;以及providing an electrolyte in an electrolytic cell comprising a solution of manganese(II) ions in a solution of at least one acid, wherein the electrolytic cell comprises an anode and a cathode; and
施加电流至该电解池的阳极与阴极;以及applying electric current to the anode and cathode of the electrolytic cell; and
氧化该电解质以形成锰(III)离子,其中该锰(III)离子形成亚稳态络合物。The electrolyte is oxidized to form manganese(III) ions, wherein the manganese(III) ions form metastable complexes.
在另一实施方式中,本发明总体而言涉及适合用于在强酸溶液中将锰(II)离子电化学氧化为锰(III)离子的电极。In another embodiment, the present invention relates generally to electrodes suitable for the electrochemical oxidation of manganese(II) ions to manganese(III) ions in a strong acid solution.
在另一实施方式中,本发明总体而言涉及一种将锰(II)离子电化学氧化成为锰(III)离子的方法,包括以下步骤:In another embodiment, the present invention relates generally to a method of electrochemically oxidizing manganese(II) ions to manganese(III) ions comprising the steps of:
在电解池中提供电解质,该电解质包含在至少一种酸的溶液中的锰(II)离子的溶液,其中该至少一种酸包含硫酸与附加酸,该附加酸选自于由甲烷磺酸、甲烷二磺酸以及其组合所组成的群组,其中该电解池包含阳极与阴极;An electrolyte is provided in the electrolytic cell comprising a solution of manganese(II) ions in a solution of at least one acid, wherein the at least one acid comprises sulfuric acid and an additional acid selected from the group consisting of methanesulfonic acid, The group consisting of methanedisulfonic acid and combinations thereof, wherein the electrolytic cell comprises an anode and a cathode;
在该阳极与该阴极之间施加电流;以及applying a current between the anode and the cathode; and
氧化该电解质以形成锰(III)离子,其中该锰(III)离子形成亚稳态络合物。The electrolyte is oxidized to form manganese(III) ions, wherein the manganese(III) ions form metastable complexes.
在还一实施方式中,本发明总体而言涉及一种蚀刻塑料部件的方法,该方法包括将该塑料部件与包含锰(III)离子和至少一种酸的溶液接触。In yet another embodiment, the present invention relates generally to a method of etching a plastic part comprising contacting the plastic part with a solution comprising manganese(III) ions and at least one acid.
具体实施方式detailed description
本发明的发明人已经发现可在强酸溶液中,优选在强硫酸溶液中,最优选在至少8M的硫酸溶液中,在低电流密度下电解二价锰离子以容易地产生三价锰。更特别地,本发明的发明人已经发现在强酸性溶液中的三价锰离子溶液能够蚀刻ABS。The inventors of the present invention have found that manganese ions can be readily produced by electrolysis at low current densities in strong acid solutions, preferably in strong sulfuric acid solutions, most preferably in at least 8M sulfuric acid solutions. More particularly, the inventors of the present invention have found that a solution of trivalent manganese ions in a strongly acidic solution is capable of etching ABS.
三价锰不稳定并且具有高氧化性(相对于标准氢电极的标准氧化还原电位为1.51)。在溶液中,其经由以下反应而非常快速地歧化(disproportionate)为二氧化锰与二价锰:Trivalent manganese is unstable and highly oxidizing (standard redox potential of 1.51 versus standard hydrogen electrode). In solution, it disproportionates very rapidly to manganese dioxide and manganese via the following reaction:
2Mn3++2H2O→MnO2+Mn2++4H+ (3)2Mn 3+ +2H 2 O→MnO 2 +Mn 2+ +4H + (3)
然而,在强硫酸溶液中,三价锰离子变成亚稳(meta-stable),并且形成樱桃紫/红颜色的硫酸盐络合物。发明人已经发现此硫酸盐络合物是适合蚀刻ABS的介质,并且具有许多优于现有技术的无铬蚀刻的优点。However, in strong sulfuric acid solutions, manganese ions become meta-stable and form cherry purple/red colored sulfate complexes. The inventors have found that this sulfate complex is a suitable medium for etching ABS and has many advantages over prior art chrome free etching.
因此,在一个实施方式中,本发明总体而言涉及一种制备能蚀刻塑料基板的溶液的方法,该方法包括以下步骤:Accordingly, in one embodiment, the present invention generally relates to a method of preparing a solution capable of etching a plastic substrate, the method comprising the steps of:
在电解池中提供电解质,该电解质包含处于至少一种酸的溶液中的锰(II)离子溶液,其中该电解池包括阳极与阴极;以及providing an electrolyte in an electrolytic cell comprising a solution of manganese(II) ions in a solution of at least one acid, wherein the electrolytic cell includes an anode and a cathode; and
施加电流至该电解池的该阳极与该阴极;以及applying current to the anode and the cathode of the electrolytic cell; and
氧化该电解质以形成锰(III)离子,其中该锰(III)离子形成亚稳态络合物。The electrolyte is oxidized to form manganese(III) ions, wherein the manganese(III) ions form metastable complexes.
在优选的实施方式中,该塑料基板包含ABS或ABS/PC。In a preferred embodiment, the plastic substrate comprises ABS or ABS/PC.
虽然考虑磷酸与硫酸皆适合于本发明的组合物,但是在优选的实施方式中,该酸为硫酸。在室温下,在7M硫酸中锰(III)离子的半衰期为2年左右。对比而言,在7M磷酸中相同浓度的锰(III)离子的半衰期为约12天。推测锰(III)离子在硫酸中的更高的稳定性是由于形成了锰-硫酸盐络合物以及在硫酸溶液中可获得的氢离子浓度较高。使用磷酸的另一问题是磷酸锰(III)的有限的溶解度。因此,虽然本发明的组合物中可使用例如磷酸的其它无机酸,但是通常优选使用硫酸。While both phosphoric acid and sulfuric acid are considered suitable for the compositions of the present invention, in a preferred embodiment the acid is sulfuric acid. The half-life of manganese(III) ions in 7M sulfuric acid is about 2 years at room temperature. In contrast, the half-life of manganese(III) ions at the same concentration in 7M phosphoric acid is about 12 days. It is speculated that the higher stability of manganese(III) ions in sulfuric acid is due to the formation of manganese-sulfate complexes and the higher concentration of hydrogen ions available in sulfuric acid solutions. Another problem with the use of phosphoric acid is the limited solubility of manganese(III) phosphate. Thus, while other mineral acids such as phosphoric acid may be used in the compositions of the present invention, the use of sulfuric acid is generally preferred.
在使用中,锰(III)离子在强硫酸中的显著稳定性提供以下优点:In use, the remarkable stability of manganese(III) ions in strong sulfuric acid provides the following advantages:
1)由于锰(III)离子在低电流密度下形成,该工艺的电力需求通常非常低。1) Since the manganese(III) ions are formed at low current densities, the power requirements of the process are usually very low.
2)由于该阳极在非常低的电流密度下运作,因此能够使用相对于阳极面积而言小的阴极,以防止锰(III)离子的阴极还原。这排除了分隔池的需求,并且使得蚀刻剂再生池的工程较简单。2) Since the anode operates at very low current densities, it is possible to use a small cathode relative to the anode area to prevent cathodic reduction of manganese(III) ions. This eliminates the need for a separate tank and makes the engineering of the etchant regeneration tank simpler.
3)由于该工艺不产生高锰酸根离子,因此在该溶液中不可能产生七氧化二锰(这是安全危害物,因为它极具爆炸性)。3) Since the process does not produce permanganate ions, it is impossible to produce manganese heptoxide (which is a safety hazard because it is highly explosive) in the solution.
4)由于在强硫酸中锰(III)离子的高稳定性,因此该蚀刻剂可直接销售使用。在生产中,该蚀刻剂仅需要在槽的一侧的一个小再生池,以维持蚀刻液的锰(III)含量并且防止锰(II)离子的累积。4) Due to the high stability of manganese (III) ions in strong sulfuric acid, the etchant can be directly sold and used. In production, the etchant requires only a small regeneration tank on one side of the tank to maintain the manganese(III) content of the etchant and prevent the buildup of manganese(II) ions.
5)由于其它蚀刻工艺基于高锰酸盐,因此高锰酸盐与锰(II)离子的反应的结果造成二氧化锰的快速“污泥化”以及该蚀刻液非常短的生命期。这对于以锰(III)为基础的蚀刻液应该不是问题(虽然随着时间可能产生一些歧化)。5) Since other etching processes are based on permanganate, the result of the reaction of permanganate with manganese(II) ions results in a rapid "sludge" of manganese dioxide and a very short lifetime of the etchant. This should not be a problem with manganese(III) based etchants (although some disproportionation may occur over time).
6)根据本发明,锰(III)的电解生成不会产生任何毒性气体。虽然在阴极可产生一些氢气,由于低电流需求,这少于许多电镀工艺所产生的氢气。6) According to the present invention, the electrolytic generation of manganese(III) does not generate any toxic gas. While some hydrogen may be produced at the cathode, this is less than that produced by many electroplating processes due to the low current requirements.
如本文所述,在优选的实施方式中,该酸为硫酸。硫酸的浓度优选为至少8摩尔,更加优选为约9至约15摩尔。在该工艺中,硫酸的浓度是重要的。浓度低于约9摩尔,蚀刻速率变慢,超过14摩尔,则溶液中锰离子的溶解度变低。此外,非常高浓度的硫酸倾向于从空气吸收水分,并且对于操作有危害。因此,在最优选的实施方式中,硫酸的浓度为约12至13摩尔,其足够稀以安全添加水至蚀刻,并且足够强以优化塑料的蚀刻速率。在此浓度的硫酸下,在蚀刻的优选操作温度可溶解最高达约0.08M的硫酸锰。为了最佳的蚀刻,溶液中锰离子的浓度应该为其能达到多高就多高。As described herein, in preferred embodiments, the acid is sulfuric acid. The concentration of sulfuric acid is preferably at least 8 molar, more preferably from about 9 to about 15 molar. In this process, the concentration of sulfuric acid is important. At concentrations below about 9 molar, the etch rate becomes slower, and above 14 molar, the solubility of manganese ions in solution becomes lower. Additionally, very high concentrations of sulfuric acid tend to absorb moisture from the air and are hazardous to handle. Thus, in the most preferred embodiment, the concentration of sulfuric acid is about 12 to 13 molar, dilute enough to safely add water to the etch, and strong enough to optimize the etch rate of the plastic. At this concentration of sulfuric acid, up to about 0.08M manganese sulfate can be dissolved at the preferred operating temperature of the etch. For optimal etching, the concentration of manganese ions in the solution should be as high as it can be achieved.
虽然在本发明的实施中也可以使用本领域中已知的其它类似来源的锰(II)离子,但该锰(II)离子优选选自于由硫酸锰、碳酸锰与氢氧化锰所组成的群组。锰(II)离子的浓度范围可为约0.005摩尔至饱和。在一个实施方式中,该电解质还包含胶态二氧化锰。这可以是在某种程度上溶液中锰(III)歧化的自然结果而形成的,或可以是被特意添加的。The manganese (II) ions are preferably selected from the group consisting of manganese sulfate, manganese carbonate, and manganese hydroxide, although other similar sources of manganese (II) ions known in the art may also be used in the practice of the present invention. group. The concentration of manganese(II) ions may range from about 0.005 molar to saturation. In one embodiment, the electrolyte also includes colloidal manganese dioxide. This may be to some extent a natural result of manganese(III) disproportionation in solution, or it may be added on purpose.
可藉由电化学装置通过锰(II)离子的氧化而方便地产生锰(III)离子。此外,通常优选该电解质不包含任何高锰酸根离子。Manganese(III) ions can be conveniently generated by oxidation of manganese(II) ions by electrochemical means. Furthermore, it is generally preferred that the electrolyte does not contain any permanganate ions.
如本文所述,为了得到对于ABS塑料的快速蚀刻速率,需要使用高浓度的酸。需要硫酸根或硫酸氢根离子的存在,以与锰离子形成络合物,并且至少需要8M的硫酸摩尔浓度以得到蚀刻的良好稳定性。为了良好的塑料蚀刻,发现快速蚀刻需要至少约12M的硫酸浓度。这具有降低浴中锰离子溶解度的效果,并且在操作温度下浴中锰离子最大溶解度为约0.08M。由于蚀刻速率取决于溶液中锰(III)离子的浓度且用于维持稳定性的最大转化百分比为约50%,期望增加可溶解在浴中的锰量。As described herein, in order to obtain a fast etch rate for ABS plastic, a high concentration of acid needs to be used. The presence of sulfate or bisulfate ions is required to form complexes with manganese ions, and a molar concentration of sulfuric acid of at least 8M is required for good stability of the etch. For good plastic etching, it was found that a sulfuric acid concentration of at least about 12M was required for rapid etching. This has the effect of reducing the solubility of manganese ions in the bath, and the maximum solubility of manganese ions in the bath is about 0.08M at operating temperature. Since the etch rate depends on the concentration of manganese(III) ions in the solution and the maximum conversion percentage for stability is about 50%, it is desirable to increase the amount of manganese that can be dissolved in the bath.
发明人已经发现可通过另一种酸置换一部分硫酸而增加可溶解在浴中的锰量,其中锰离子可更具溶解性。The inventors have found that the amount of manganese that can be dissolved in the bath can be increased by displacing a portion of the sulfuric acid with another acid, where the manganese ions can be more soluble.
合适的酸选择有限。例如,盐酸会在阳极产生氯,而硝酸会在阴极产生一氧化氮。高氯酸与高碘酸被预期会产生高锰酸根离子,其会分解成二氧化锰。有机酸一般会被锰(III)离子快速氧化。因此,对于氧化作用具有所需稳定性并增加浴中锰离子溶解度的能力的酸是甲烷磺酸以及甲烷二磺酸。由于锰(II)的溶解度在甲烷磺酸(与硫酸)中比在甲烷二磺酸中显著更好,前者的选择产生更好的性能。因此,甲烷磺酸是优选的附加酸,并且硫酸是优选的主要酸。The choice of suitable acids is limited. For example, hydrochloric acid produces chlorine at the anode, while nitric acid produces nitric oxide at the cathode. Perchloric acid and periodate are expected to produce permanganate ions, which decompose into manganese dioxide. Organic acids are generally rapidly oxidized by manganese(III) ions. Thus, acids with the required stability for oxidation and the ability to increase the solubility of manganese ions in the bath are methanesulfonic acid and methanedisulfonic acid. Since the solubility of manganese(II) is significantly better in methanesulfonic acid (and sulfuric acid) than in methanedisulfonic acid, the choice of the former yields better performance. Thus, methanesulfonic acid is the preferred additional acid and sulfuric acid is the preferred primary acid.
基于以上,本发明总体而言还涉及一种用于蚀刻ABS与ABS/PC塑料的电解质,包含硫酸,并且组合使用甲烷磺酸或甲烷二磺酸,以得到浴中更好的锰离子溶解度,其中该电解质含有至少8M的硫酸并且包含约0M至约6M的甲烷磺酸或甲烷二磺酸,优选约1M至约6M的甲烷磺酸。Based on the above, the present invention also generally relates to an electrolyte for etching ABS and ABS/PC plastics, comprising sulfuric acid, and using methanesulfonic acid or methanedisulfonic acid in combination to obtain a better solubility of manganese ions in the bath, wherein the electrolyte contains at least 8M sulfuric acid and contains from about 0M to about 6M methanesulfonic acid or methanedisulfonic acid, preferably from about 1M to about 6M methanesulfonic acid.
更特别地,本发明总体而言涉及一种电解池,包含:More particularly, the present invention relates generally to an electrolytic cell comprising:
电解质溶液,包含处于硫酸和附加酸的溶液中的锰(III)离子,该附加酸选自于由甲烷磺酸、甲烷二磺酸及其组合所组成的群组;an electrolyte solution comprising manganese(III) ions in a solution of sulfuric acid and an additional acid selected from the group consisting of methanesulfonic acid, methanedisulfonic acid, and combinations thereof;
阴极,其与该电解质溶液接触;以及a cathode in contact with the electrolyte solution; and
阳极,其与该电解质溶液接触。an anode, which is in contact with the electrolyte solution.
此外,本发明总体而言还涉及一种电解池,包含:Furthermore, the present invention generally relates to an electrolytic cell comprising:
电解质溶液,包含处于至少一种酸的溶液中的锰(III)离子;an electrolyte solution comprising manganese(III) ions in a solution of at least one acid;
阴极,其与该电解质溶液接触;以及a cathode in contact with the electrolyte solution; and
阳极,其与该电解质溶液接触,其中该阳极包含从由玻璃碳、网状玻璃碳、编织碳纤维、铅、铅合金以及前述一种或多种的组合所组成的群组中选出的材料。An anode in contact with the electrolyte solution, wherein the anode comprises a material selected from the group consisting of glassy carbon, reticulated glassy carbon, woven carbon fibers, lead, lead alloys, and combinations of one or more of the foregoing.
此外,本发明总体而言还涉及一种将锰(II)离子电化学氧化为锰(III)离子的方法,包括以下步骤:In addition, the present invention generally relates to a method for the electrochemical oxidation of manganese (II) ions to manganese (III) ions, comprising the steps of:
在电解池中提供电解质,其中该电解质包含处于至少一种酸的溶液中的锰(II)离子溶液,其中该电解池包括阳极与阴极;providing an electrolyte in an electrolytic cell, wherein the electrolyte comprises a solution of manganese(II) ions in a solution of at least one acid, wherein the electrolytic cell includes an anode and a cathode;
在该阳极与该阴极之间施加电流;以及applying a current between the anode and the cathode; and
氧化该电解质以形成锰(III)离子,其中该锰(III)离子形成亚稳态络合物。The electrolyte is oxidized to form manganese(III) ions, wherein the manganese(III) ions form metastable complexes.
一旦该电解质已经被氧化以形成亚稳态络合物,可将该可镀塑料浸在该亚稳态络合物中一段时间,以蚀刻该可镀塑料的表面,在一个实施方式中,在30至80℃的温度下,该可镀塑料被浸在该亚稳态络合物中。蚀刻速率随着温度升高而增加并且在50℃以下缓慢。Once the electrolyte has been oxidized to form a metastable complex, the platable plastic may be immersed in the metastable complex for a period of time to etch the surface of the platable plastic, in one embodiment, at The platable plastic is immersed in the metastable complex at a temperature of 30 to 80°C. The etch rate increases with temperature and is slow below 50 °C.
温度的上限是由被蚀刻的塑料的性质决定的。ABS在70℃以上开始变形,因此在优选的实施方式中,特别是当蚀刻ABS材料时,电解质的温度被维持在约50至约70℃。塑料浸在电解质中的时间优选为约10至约30分钟。The upper temperature limit is determined by the nature of the plastic being etched. ABS begins to deform above 70°C, so in a preferred embodiment, especially when etching ABS material, the temperature of the electrolyte is maintained at about 50 to about 70°C. The time the plastic is immersed in the electrolyte is preferably from about 10 to about 30 minutes.
可以使用用于被镀塑料的常规预处理来对以此方式蚀刻的物体进行后续电镀,或者可以使用该塑料的蚀刻的表面来促进涂料、漆或是其它表面涂层的黏着。Objects etched in this manner may be subsequently plated using conventional pretreatments for the plastic being plated, or the etched surface of the plastic may be used to promote adhesion of paint, lacquer, or other surface coating.
本发明的蚀刻中使用的锰(II)离子的浓度可通过伏安循环法来确定。氧化作用受到扩散控制,因此在该电解氧化过程中需要有效搅拌蚀刻溶液。The concentration of manganese(II) ions used in the etching of the present invention can be determined by voltammetric cycling. Oxidation is diffusion controlled, so efficient agitation of the etching solution is required during this electrolytic oxidation.
在本文所描述的电解池中可使用的阳极与阴极可包括各种材料。阴极可包括从由铂、镀铂钛、铌、氧化铱包覆的钛以及铅所组成的群组选出的材料。在一个优选的实施方式中,阴极包括铂或镀铂钛。在另一优选的实施方式中,阴极包括铅。阳极也可包括镀铂钛、铂、铱/钽氧化物、铌、硼掺杂的钻石、或任何其它合适的材料。Anodes and cathodes that may be used in the electrolytic cells described herein may comprise a variety of materials. The cathode may comprise a material selected from the group consisting of platinum, platinized titanium, niobium, iridium oxide coated titanium, and lead. In a preferred embodiment, the cathode comprises platinum or platinized titanium. In another preferred embodiment, the cathode comprises lead. The anode may also comprise platinized titanium, platinum, iridium/tantalum oxide, niobium, boron doped diamond, or any other suitable material.
发明人发现,虽然锰(III)离子与强硫酸(即,8~15摩尔)的结合可以蚀刻ABS塑料,但是该蚀刻剂还对产生锰(III)离子所必需的电极非常具有侵蚀性。特别地,具有钛基板的阳极可被该蚀刻剂快速降解。The inventors found that while the combination of manganese(III) ions and strong sulfuric acid (ie, 8-15 molar) can etch ABS plastic, this etchant is also very aggressive to the electrodes necessary to generate manganese(III) ions. In particular, anodes with titanium substrates are rapidly degraded by this etchant.
因此,在确定更适当的电极材料的尝试中,测试了各种其它电极材料,包含铅与石墨。玻璃碳与网状玻璃碳被认为是更坚固的,并且当施加优选为0.1~0.4A/dm2(基于标称表面积)的电流时,可产生锰(III)离子。此外,由于在商业应用中玻璃碳与网状玻璃碳作为电极并不具成本有效性,因此阳极也可由编织碳纤维制造而得。Therefore, in an attempt to identify more appropriate electrode materials, various other electrode materials were tested, including lead and graphite. Glassy carbon and reticulated glassy carbon are considered stronger and can generate manganese(III) ions when a current of preferably 0.1-0.4 A/dm 2 (based on nominal surface area) is applied. In addition, since glassy carbon and reticulated glassy carbon are not cost-effective as electrodes in commercial applications, anodes can also be fabricated from woven carbon fibers.
碳纤维是从聚丙烯腈(PAN)的纤维制造而得。这些纤维在增加的温度下经过氧化工艺,接着在非常高的温度且在惰性气氛下进行碳化步骤。该碳纤维而后被编制为片状,其通常与各种树脂体系结合使用,产生高强度组件。碳纤维片还具有良好的电传导性,并且该纤维通常具有乱层(turbostratic)(即,无序层)结构。不想受限于理论,相信此结构使得碳纤维作为电极是有效的。在晶格中SP2杂化的碳原子提供良好的电传导性,而SP3杂化的碳原子与石墨层连结在一起,将它们的位置固定,因而提供良好的耐化学性。Carbon fibers are manufactured from fibers of polyacrylonitrile (PAN). These fibers are subjected to an oxidation process at elevated temperatures, followed by a carbonization step at very high temperatures and under an inert atmosphere. The carbon fibers are then woven into sheets, which are often combined with various resin systems to produce high-strength components. Carbon fiber sheets also have good electrical conductivity, and the fibers typically have a turbostratic (ie, disordered layer) structure. Without wishing to be bound by theory, it is believed that this structure makes the carbon fibers effective as electrodes. The SP 2 hybridized carbon atoms in the crystal lattice provide good electrical conductivity, while the SP 3 hybridized carbon atoms bond the graphitic layers together, fixing their positions and thus providing good chemical resistance.
用于本发明的电极中的优选材料包括含有至少95%的碳并且未浸渍任何树脂的编织碳纤维。为了便于处理与编织工艺,碳纤维通常以环氧树脂上浆(sizing),并且这可占据纤维重量的最多2%。以此低百分比率,当作为电极时,环氧上浆被蚀刻的高硫酸含量快速移除。这可造成蚀刻液的初始轻微变色,但不会影响性能。在这初始“磨合”阶段之后,阳极显示出可抵抗该电解质,并且有效氧化锰(II)离子成为锰(III)。Preferred materials for use in electrodes of the present invention include woven carbon fibers containing at least 95% carbon and not impregnated with any resin. To facilitate the handling and weaving process, carbon fibers are usually sized with epoxy resin, and this can account for up to 2% of the fiber weight. At this low percentage, the epoxy sizing is quickly removed by the high sulfuric acid content of the etch when used as an electrode. This can cause an initial slight discoloration of the etchant, but will not affect performance. After this initial "run-in" phase, the anode appears to be resistant to the electrolyte and effectively oxidizes manganese(II) ions to manganese(III).
可通过在合适的提供有电接触的框架中固定该编织碳纤维材料而建构阳极。还可在产生锰(III)离子时使用碳纤维材料作为阴极,但是使用铅更为方便,特别是在如果使用未分隔池时阴极大幅小于阳极的情况下。The anode can be constructed by securing the woven carbon fiber material in a suitable frame provided with electrical contacts. Carbon fiber material can also be used as the cathode in the generation of manganese(III) ions, but it is more convenient to use lead, especially if the cathode is substantially smaller than the anode if an undivided cell is used.
在该电解池中施加的电流密度部分受限于所选择的阳极材料上的氧过电位。例如,在镀铂钛阳极的情况下,电流密度约0.4A/dm2之上,阳极电位足够高以释放氧气。此时,锰(II)离子成为锰(III)离子的转化效率下降,因而浪费任何进一步增加的电流密度。再者,产生更高电流密度所需的在更高过电位操作阳极倾向于在阳极表面产生二氧化锰而非锰(III)离子。The applied current density in the electrolytic cell is limited in part by the oxygen overpotential across the chosen anode material. For example, in the case of platinized titanium anodes, above a current density of about 0.4 A /dm2, the anode potential is high enough to release oxygen. At this point, the conversion efficiency of manganese(II) ions to manganese(III) ions decreases, thus wasting any further increase in current density. Furthermore, operating the anode at a higher overpotential required to generate higher current densities tends to produce manganese dioxide rather than manganese(III) ions at the anode surface.
令人惊讶地发现,铅阳极可被有效使用于本文所描述的电解池中。由于在表面形成硫酸铅层,其在硫酸中具有非常有限的溶解度,因此在强酸中铅变得钝化。这使得阳极钝化,直到达到非常高的过电位(相对于标准氢电极超过2V)。在高于此水平的电位,产生氧气与二氧化铅的混合物。虽然预期此高操作电位有利于氧气产生以及高锰酸根离子而非锰(III)离子的形成,但是使用铅阳极的实验仅产生锰(III)离子且无高锰酸盐。这可通过用水稀释蚀刻液而确认,锰(III)离子歧化产生棕色二氧化锰与锰(II)离子。该溶液的过滤产生实际上无色的锰(II)离子溶液特性而非紫色的高锰酸根离子。It has surprisingly been found that lead anodes can be effectively used in the electrolytic cells described herein. Lead becomes passivated in strong acids due to the formation of a lead sulfate layer on the surface, which has very limited solubility in sulfuric acid. This deactivates the anode until a very high overpotential is reached (more than 2 V versus a standard hydrogen electrode). At potentials above this level, a mixture of oxygen and lead dioxide is produced. Although this high operating potential is expected to favor oxygen generation and the formation of permanganate ions rather than manganese(III) ions, experiments with lead anodes produced only manganese(III) ions and no permanganate. This can be confirmed by diluting the etchant with water, and the disproportionation of manganese(III) ions produces brown manganese dioxide and manganese(II) ions. Filtration of this solution produced a practically colorless solution characteristic of manganese(II) ions rather than the purple permanganate ions.
本发明的发明人已经发现,由于这些阳极对于锰(II)离子的氧化有非常高的效率,因此当使用铅阳极时,需要监视氧化的速率。因而,如果氧化的速率不被监视与控制,则有太高比例的锰(II)离子被氧化,留下非常低浓度的锰(II)。在无锰(II)离子时,阳极开始氧化锰(III)离子成为锰(IV),其快速形成不可溶的二氧化锰。The inventors of the present invention have found that due to the very high efficiency of these anodes for the oxidation of manganese(II) ions, when using lead anodes, the rate of oxidation needs to be monitored. Thus, if the rate of oxidation is not monitored and controlled, too high a proportion of the manganese(II) ions are oxidized, leaving very low concentrations of manganese(II). In the absence of manganese(II) ions, the anode begins to oxidize manganese(III) ions to manganese(IV), which rapidly forms insoluble manganese dioxide.
基于以上所述,重要的是不超过原始浓度50%,且优选不超过25%的锰(II)离子被氧化为锰(III)离子,以维持该电解质的稳定性。在铅阳极的情况下,这涉及通过该蚀刻溶液的滴定或使用氧化还原电极来监视锰(III)离子的累积并且当锰(III)含量达到期望量时,停止该电解。在硫酸浓度为12.5M时,需要具有超过0.01M的浓度的锰(III)离子用于有效蚀刻与最大稳定性,并且基于总锰含量0.08M不超过0.04M。Based on the above, it is important that no more than 50% of the original concentration, and preferably no more than 25%, of the manganese(II) ions are oxidized to manganese(III) ions in order to maintain the stability of the electrolyte. In the case of lead anodes, this involves monitoring the accumulation of manganese(III) ions by titration of the etching solution or using a redox electrode and stopping the electrolysis when the manganese(III) content reaches the desired amount. At a sulfuric acid concentration of 12.5M, manganese(III) ions are required to have a concentration in excess of 0.01M for efficient etching and maximum stability and not to exceed 0.04M based on the total manganese content of 0.08M.
阳极可包括铅或合适的铅合金,以及所选择的合金类型可影响转换效率。纯铅或包含小比例锡的铅特别有效,并且产生的转换效率约为70%。还发现,用合理程度的搅拌,令人惊讶的是可施加高电流密度而仍维持此转换速率。The anode can comprise lead or a suitable lead alloy, and the type of alloy chosen can affect conversion efficiency. Pure lead or lead containing a small proportion of tin is particularly effective and yields a conversion efficiency of about 70%. It was also found that, with a reasonable degree of agitation, surprisingly high current densities could be applied and still maintain this switching rate.
在使用铅阳极进行长时间电解之后,发现最终形成二氧化锰的膜。一旦显著量的二氧化锰已经集结在电极表面,其倾向于非常快速地变厚。然而,二氧化锰可容易地被电化学还原为锰(II)离子。因此,可通过周期性地使池中电流反向的方法,减轻或排除二氧化锰的累积。多次电流反向之间的时间周期不是关键,只要在反向阶段施加足够的库伦电荷以将已沉积在表面的二氧化锰的量还原回锰(II)离子即可。After prolonged electrolysis using a lead anode, it was found that a film of manganese dioxide eventually formed. Once a significant amount of manganese dioxide has accumulated on the electrode surface, it tends to thicken very rapidly. However, manganese dioxide can be readily electrochemically reduced to manganese(II) ions. Therefore, manganese dioxide buildup can be mitigated or eliminated by periodically reversing the current in the cell. The time period between multiple current reversals is not critical, as long as sufficient Coulombic charge is applied during the reversal phase to reduce the amount of manganese dioxide that has deposited on the surface back to manganese(II) ions.
基于以上所述,当使用铅与铅合金电极以在硫酸溶液中产生锰(III)离子而达到蚀刻ABS或ABS/PC的目的时,在锰(III)离子已经达到合适的工作浓度,即基于总锰含量0.08M该合适的工作浓度可为0.01至0.04M时,此时优选中断电解程序,使得在溶液中留下有效量的锰(II)离子,因而浴稳定并且不会沉积过量的二氧化锰。优选的电极材料包括例如纯铅、含有约4%锑的铅锑、含有最多达5%锡的铅锡阳极、以及铅/锡/钙阳极。本发明的实施也可使用其它合适的铅合金。此外,周期性反向的电流的使用防止在阳极累积二氧化锰膜。这有效地维持了阳极的转化效率,并且减少或排除从蚀刻槽或再生池移除与清理阳极的需求。Based on the above, when using lead and lead alloy electrodes to generate manganese (III) ions in sulfuric acid solution to achieve the purpose of etching ABS or ABS/PC, the manganese (III) ions have reached a suitable working concentration, that is, based on A total manganese content of 0.08 M. A suitable working concentration may be 0.01 to 0.04 M, at which point the electrolysis procedure is preferably interrupted so that an effective amount of manganese(II) ions is left in solution so that the bath is stable and does not deposit excess di manganese oxide. Preferred electrode materials include, for example, pure lead, lead antimony containing about 4% antimony, lead tin anodes containing up to 5% tin, and lead/tin/calcium anodes. Other suitable lead alloys may also be used in the practice of the present invention. Furthermore, the use of periodically reversed currents prevents the accumulation of manganese dioxide film at the anode. This effectively maintains the conversion efficiency of the anode and reduces or eliminates the need to remove and clean the anode from the etch tank or regeneration tank.
此外,为了有效产生锰(III)离子,通常需要使用比阴极面积更大的阳极面积。优选地,阳极对阴极的面积比例为至少约10:1。藉此,阴极可被直接浸在电解质中,并且不需要具有分隔池。虽然该工艺可使用分隔池配置工作,但是这会带来不必要的复杂性与费用。Furthermore, in order to efficiently generate Mn(III) ions, it is generally necessary to use a larger anode area than the cathode area. Preferably, the area ratio of anode to cathode is at least about 10:1. Thereby, the cathode can be directly immersed in the electrolyte and there is no need to have a separate cell. While the process can work using a split cell configuration, this introduces unnecessary complexity and expense.
现在参照以下非限制性实施例说明本发明:The invention will now be illustrated with reference to the following non-limiting examples:
比较例1:Comparative example 1:
将0.08摩尔硫酸锰(II)的12.5摩尔硫酸(500毫升)溶液加热至70℃,并且将一片可镀等级的ABS浸在该溶液中。即使是在浸入此溶液中1小时之后,该测试板也没有可识别的蚀刻,并且在清洗之后,该表面并未“润湿”,并且不会支撑未破裂的水膜。A solution of 0.08 molar manganese(II) sulfate in 12.5 molar sulfuric acid (500 ml) was heated to 70°C and a piece of platable grade ABS was dipped in the solution. Even after 1 hour of immersion in this solution, the test panel showed no discernible etching, and after cleaning, the surface did not "wet" and would not support an unbroken water film.
实施例1:Example 1:
通过浸入面积为1dm2的镀铂钛阳极与表面积0.01dm2的镀铂钛阴极于比较例1的溶液中并且施加200mA的电流5小时,电解该溶液。The solution was electrolyzed by immersing a platinum-coated titanium anode with an area of 1 dm 2 and a platinum-coated titanium cathode with a surface area of 0.01 dm 2 in the solution of Comparative Example 1 and applying a current of 200 mA for 5 hours.
在此电解过程中,发现该溶液颜色从几乎无色改变至非常深紫/红色。确认没有高锰酸根离子的存在。During this electrolysis, the solution was found to change color from almost colorless to very dark purple/red. Confirm the absence of permanganate ions.
而后此溶液被加热至70℃,并且将一片可镀等级的ABS浸在该溶液中。在浸泡10分钟之后,该测试片完全润湿,并且在冲洗之后可支撑未破裂的水膜。在浸泡20分钟之后,该样本在水中清洗、干燥并且用扫描式电子显微镜(SEM)检测。此检测显示该测试片被实质蚀刻,并且可见许多蚀刻凹处。The solution was then heated to 70°C and a piece of platable grade ABS was dipped in the solution. After soaking for 10 minutes, the test piece wets out completely and supports an unbroken water film after rinsing. After soaking for 20 minutes, the samples were rinsed in water, dried and examined with a scanning electron microscope (SEM). This inspection showed that the test piece was substantially etched and many etch pits were visible.
实施例2:Example 2:
以电流密度0.2A/dm2使用镀铂钛阳极,电解含有12.5M硫酸与0.08M硫酸锰(II)的溶液。使用面积小于1%阳极面积的镀铂钛阴极,以防止在阳极产生的锰(III)离子的阴极还原。电解进行长时间足够传送足量的库伦以将所有的锰(II)离子氧化为锰(III)。所得到的溶液为深樱桃紫/红色。在此步骤中不产生高锰酸根离子。这还由可见光谱确认,该锰(III)离子产生完全不同于高锰酸盐溶液的吸收光谱。A solution containing 12.5M sulfuric acid and 0.08M manganese(II) sulfate was electrolyzed using a platinum-plated titanium anode at a current density of 0.2A/dm 2 . A platinized titanium cathode with an area of less than 1% of the anode area is used to prevent cathodic reduction of manganese(III) ions generated at the anode. Electrolysis is performed long enough to deliver a sufficient amount of coulombs to oxidize all manganese(II) ions to manganese(III). The resulting solution was a deep cherry purple/red color. No permanganate ions are generated during this step. This is also confirmed by the visible spectrum, the manganese(III) ion produces an absorption spectrum quite different from that of the permanganate solution.
实施例3:Example 3:
将如上述实施例2所制备的蚀刻溶液在磁搅拌器/加热板上加热至65~70℃,并且将ABS的试片在该溶液中浸入20~30分钟的一段时间。通过SEM检测这些试片中的一些,以及一些试片以正常电镀塑料预处理顺序(在M中和里还原、预浸泡、活化、加速、无电镍、铜镀至25~30微米)来处理。而后这些试片被退火并且使用Instron机器进行剥离强度测试。The etching solution prepared as in Example 2 above was heated to 65-70° C. on a magnetic stirrer/hot plate, and a test piece of ABS was immersed in the solution for a period of 20-30 minutes. Some of these coupons were examined by SEM, and some coupons were processed in the normal electroplating plastic pretreatment sequence (reduction in M neutralization, pre-soaking, activation, acceleration, electroless nickel, copper plating to 25-30 microns) . These coupons were then annealed and tested for peel strength using an Instron machine.
在被镀的试片上进行30分钟剥离强度测试,表明剥离强度在约1.5与4N/cm之间变化。A 30 minute peel strength test was performed on the plated coupons and showed that the peel strength varied between about 1.5 and 4 N/cm.
使用表面积为0.196cm2的铂转盘电极(RDE)于不同转速,从包含12.5M硫酸与0.08M硫酸锰的溶液获得伏安循环图。与RDE连同使用型号263A的定电位计(potentiostat)和银/氯化银参考电极。Voltammetric cycles were obtained from a solution containing 12.5M sulfuric acid and 0.08M manganese sulfate using a platinum rotating disk electrode (RDE) with a surface area of 0.196 cm2 at different rotational speeds. A model 263A potentiostat and a silver/silver chloride reference electrode were used in conjunction with RDE.
在所有情况下,正向扫描显示在约1.6V相对于Ag/AgCl有一峰,而后为平坦区至1.75V附近,而后电流增加。反向扫描产生类似的在稍低电流的平坦区以及在1.52V附近的峰。这些结果对电极旋转速度的依赖性表明,质量运输控制是该机制中的主要因子。该平坦区指示了电位范围,在此电位范围之上锰(III)离子藉由电化学氧化作用而形成。In all cases, the forward scan showed a peak at about 1.6 V vs. Ag/AgCl, followed by a plateau to around 1.75 V, followed by an increase in current. The reverse scan produces a similar plateau at slightly lower currents and a peak around 1.52V. The dependence of these results on the electrode rotation speed suggests that mass transport control is a major factor in this mechanism. The plateau indicates the potential range above which manganese(III) ions are formed by electrochemical oxidation.
在1.7V进行定电位计扫描。发现电流一开始降落,在一段时间之后增加。在此电位的电流密度在0.15与0.4A/dm2之间变化。A constant potentiometer sweep was performed at 1.7V. It is found that the current drops initially and increases after a while. The current density at this potential varied between 0.15 and 0.4 A/dm 2 .
在此实验之后,以固定电流密度0.3A/dm2进行定电流放电(galvanostatic)量测试。一开始,通过约1.5V的电位达到施加的电流密度,但是随着实验进行,在约2400秒之后,发现电位增加至约1.75V。After this experiment, a galvanostatic amount test was performed at a fixed current density of 0.3 A/dm 2 . Initially, the applied current density was reached by a potential of about 1.5V, but as the experiment progressed, after about 2400 seconds, the potential was found to increase to about 1.75V.
在蚀刻超过10分钟之后,发现该ABS试片的表面完全润湿,并且在清洗之后支撑未破裂的水膜。在20或30分钟的一段时间之后,该板明显被蚀刻。After etching for more than 10 minutes, the surface of the ABS coupon was found to be completely wet and supported an unbroken water film after cleaning. After a period of 20 or 30 minutes, the plate was visibly etched.
实施例4:Example 4:
配制包括10.5M硫酸与2M甲烷磺酸的溶液。在温度68~70℃下,可轻易溶解0.16M的硫酸锰,然而在12.5M硫酸溶液中溶解硫酸锰的用于比较的情况下,仅可溶解0.08M。将该配制的溶液电解以产生锰(III)浓度为0.015M的锰(III)离子,其提供的蚀刻速率可与从具有0.015M锰(III)浓度的12.5M硫酸溶液得到的速率相媲美。A solution was prepared comprising 10.5M sulfuric acid and 2M methanesulfonic acid. At a temperature of 68-70°C, 0.16M manganese sulfate can be easily dissolved, but only 0.08M can be dissolved in the case of dissolving manganese sulfate in a 12.5M sulfuric acid solution for comparison. The formulated solution was electrolyzed to produce manganese(III) ions at a manganese(III) concentration of 0.015M, which provided an etch rate comparable to that obtained from a 12.5M sulfuric acid solution having a manganese(III) concentration of 0.015M.
持续在实施例4的浴中的电解,直到锰(III)含量达到0.04M并且另一板被蚀刻。在这种较高浓度的锰(III)离子下得到增进的蚀刻速率(比浓度0.015M所得速率高约25%)。The electrolysis in the bath of Example 4 was continued until the manganese(III) content reached 0.04M and another plate was etched. An enhanced etch rate (about 25% higher than that obtained at a concentration of 0.015M) was obtained at this higher concentration of manganese(III) ions.
比较例2:Comparative example 2:
在65℃的温度下将包含石墨以及标称量测表面积为1dm2的电极浸入500毫升的在12.5M硫酸中含有0.08M硫酸锰的溶液中。在此池中的阴极为标称量测表面积为0.1dm2的铅片。施加0.25安培的电流至该池,得到0.25A/dm2的标称阳极电流密度和2.5A/dm2的标称阴极电流密度。An electrode comprising graphite and having a nominal measured surface area of 1 dm2 was immersed in 500 ml of a solution containing 0.08M manganese sulfate in 12.5M sulfuric acid at a temperature of 65°C. The cathode in this cell is a lead sheet with a nominal measuring surface area of 0.1 dm2. A current of 0.25 amps was applied to the cell, resulting in a nominal anodic current density of 0.25 A/dm 2 and a nominal cathodic current density of 2.5 A/dm 2 .
发现在小于1小时的电解内,石墨阳极快速破裂并降解。此外,未发现锰(II)离子氧化成为锰(III)离子。It was found that the graphite anode cracked and degraded rapidly within less than 1 hour of electrolysis. Furthermore, no oxidation of manganese(II) ions to manganese(III) ions was found.
比较例3:Comparative example 3:
在65℃的温度下将包含涂覆有混合的钽/铱氧化物涂层(50%氧化钽、50%氧化铱)的钛基板且标称量测表面积为1dm2的电极浸入500毫升的在12.5M硫酸中含有0.08M硫酸锰的溶液中。在此池中的阴极是标称量测表面积为0.1dm2的铅片。施加0.25安培的电流至该池,得到0.25A/dm2的标称阳极电流密度和2.5A/dm2的标称阴极电流密度。An electrode comprising a titanium substrate coated with a mixed tantalum/iridium oxide coating (50% tantalum oxide, 50% iridium oxide) and having a nominal measurement surface area of 1 dm2 was immersed in 500 ml of 12.5M sulfuric acid containing 0.08M manganese sulfate solution. The cathode in this cell is a lead sheet with a nominal measuring surface area of 0.1 dm2. A current of 0.25 amps was applied to the cell, resulting in a nominal anodic current density of 0.25 A/dm 2 and a nominal cathodic current density of 2.5 A/dm 2 .
发现该溶液中快速形成锰(III),并且所得溶液可以蚀刻ABS塑料并且可以在后续电镀被处理的塑料时产生良好的黏着。然而,在操作两周(电解该溶液8小时/天)的时间之后,发现涂覆层从钛基板起皱,且钛基板本身溶解在溶液中。It was found that manganese(III) formed rapidly in this solution and that the resulting solution could etch ABS plastic and could give good adhesion when subsequently plating the treated plastic. However, after a period of two weeks of operation (electrolyzing the solution for 8 hours/day), it was found that the coating layer was wrinkled from the titanium substrate, and the titanium substrate itself was dissolved in the solution.
比较例4:Comparative example 4:
在65℃的温度下将包含涂有铂的钛基板且标称量测表面积为1dm2的电极浸入500毫升的在12.5M硫酸中含有0.08M硫酸锰的溶液中。在此池中的阴极是标称量测表面积为0.1dm2的铅片。施加0.25安培的电流至该池,得到0.25A/dm2的标称阳极电流密度和2.5A/dm2的标称阴极电流密度。An electrode comprising a platinum-coated titanium substrate with a nominal measured surface area of 1 dm2 was immersed in 500 ml of a solution containing 0.08M manganese sulfate in 12.5M sulfuric acid at a temperature of 65 °C. The cathode in this cell is a lead sheet with a nominal measuring surface area of 0.1 dm2. A current of 0.25 amps was applied to the cell, resulting in a nominal anodic current density of 0.25 A/dm 2 and a nominal cathodic current density of 2.5 A/dm 2 .
发现该溶液中快速形成锰(III),以及所得溶液可以蚀刻ABS塑料,并且可以在后续电镀被处理的塑料时产生良好的黏着。然而,在操作两周(电解该溶液8小时/天)的时间之后,发现涂覆从钛基板起皱,并且钛基板本身溶解在溶液中。It was found that manganese(III) was formed rapidly in this solution and that the resulting solution could etch ABS plastic and could produce good adhesion when subsequently plating the treated plastic. However, after a period of two weeks of operation (electrolyzing the solution for 8 hours/day), it was found that the coating was wrinkled from the titanium substrate and the titanium substrate itself dissolved in the solution.
实施例5:Example 5:
在65℃的温度下将包含玻璃碳且标称量测表面积为0.125dm2的电极浸入100毫升的在12.5M硫酸中含有0.08M硫酸锰的溶液中。在此池中的阴极是标称量测表面积为0.0125dm2的铂线片。施加0.031安培的电流至该池,得到0.25A/dm2的标称阳极电流密度和2.5A/dm2的标称阴极电流密度。An electrode comprising glassy carbon and having a nominal measured surface area of 0.125 dm2 was immersed in 100 ml of a solution containing 0.08M manganese sulfate in 12.5M sulfuric acid at a temperature of 65°C. The cathode in this cell is a platinum wire sheet with a nominal gauge surface area of 0.0125 dm2. A current of 0.031 amps was applied to the cell, resulting in a nominal anodic current density of 0.25 A/dm 2 and a nominal cathodic current density of 2.5 A/dm 2 .
发现该溶液中快速形成锰(III),以及所得溶液可以蚀刻ABS塑料,并且可以在后续电镀被处理的塑料时产生良好的黏着。该电极显然并未受到电解时间延长的影响。It was found that manganese(III) was formed rapidly in this solution and that the resulting solution could etch ABS plastic and could produce good adhesion when subsequently plating the treated plastic. The electrode was apparently not affected by prolonged electrolysis time.
实施例6:Embodiment 6:
将包含编织碳纤维片(得自Zoltek公司,具有1.5%环氧上浆的Panex 3550K Tow)的电极固定在由聚偏二氟乙烯(PVDF)建构的塑料框架中。在65℃的温度下将标称量测表面积为1dm2的电极浸入500毫升的在12.5M硫酸中含有0.08M硫酸锰的溶液中。在此池中的阴极是标称量测表面积为0.1dm2的铅片。施加0.25安培的电流至该池,得到0.25A/dm2的标称阳极电流密度和2.5A/dm2的标称阴极电流密度。Electrodes comprising woven carbon fiber sheets (from the company Zoltek, Panex 3550K Tow with 1.5% epoxy sizing) were fixed in a plastic frame constructed of polyvinylidene fluoride (PVDF). An electrode with a nominal measuring surface area of 1 dm2 was immersed in 500 ml of a solution containing 0.08M manganese sulfate in 12.5M sulfuric acid at a temperature of 65 °C. The cathode in this cell is a lead sheet with a nominal measuring surface area of 0.1 dm2. A current of 0.25 amps was applied to the cell, resulting in a nominal anodic current density of 0.25 A/dm 2 and a nominal cathodic current density of 2.5 A/dm 2 .
发现该溶液中快速形成锰(III),且所得溶液可以蚀刻ABS塑料,并且可以在后续电镀被处理的塑料时产生良好的黏着。该电极显然并未受到电解时间延长的影响。使用此电极进行电解超过两周,并且检测未发现降解。此材料的低成本与快速可利用性使其适合用于许多商业应用。It was found that manganese(III) was rapidly formed in this solution and that the resulting solution etched ABS plastic and gave good adhesion when subsequently plating the treated plastic. The electrode was apparently not affected by prolonged electrolysis time. The electrode was used for electrolysis for more than two weeks and no degradation was detected. The low cost and rapid availability of this material make it suitable for many commercial applications.
实施例7:Embodiment 7:
在68~70℃的温度下,将由具有0.4dm2的有效表面积(即,不计算电极背部)的铅构成的阳极浸入含有2升在12.5M硫酸中含有0.08M硫酸锰的溶液的烧杯中。在该池中的另一电极由铅阴极组成,该铅阴极具有约为0.04dm2的表面积。使用磁搅拌器搅拌该溶液,以于该电解质的表面得到适度的搅动。施加0.4A/dm2的电流密度至该阳极,并且确定锰(III)相对于电解时间的速率。通过磷酸稀释该浴的样品来确定锰(III)的量以防止锰(III)歧化,并且用硫酸亚铁铵溶液滴定,使用溶解在酸中的二苯胺做为指示剂。An anode consisting of lead having an effective surface area of 0.4 dm2 (ie not counting the back of the electrode) was immersed in a beaker containing 2 liters of a solution containing 0.08M manganese sulfate in 12.5M sulfuric acid at a temperature of 68-70°C. The other electrode in the cell consisted of a lead cathode having a surface area of approximately 0.04 dm 2 . The solution was stirred using a magnetic stirrer to obtain moderate agitation on the surface of the electrolyte. A current density of 0.4 A/dm 2 was applied to the anode, and the rate of manganese(III) versus electrolysis time was determined. The amount of manganese(III) was determined by diluting a sample of the bath with phosphoric acid to prevent manganese(III) disproportionation and titrating with ferrous ammonium sulfate solution using diphenylamine dissolved in acid as indicator.
使用0.8A/dm2与1.6A/dm2的电流密度重复实验。在实验的流体动力学条件下(即,使用磁性搅拌器的适度搅动),由于转换效率与在0.4A/dm2所得到的相同(70%),显然在电流密度为1.6A/dm2,氧化作用并不被质量传输限制。在3.2A/dm2进行进一步的实验,并且发现转换效率已经降至42%,而锰(III)的产生速率仅比在1.6A/dm2所得到的高10%。这表明,在该实验中使用的搅动条件下,用于锰产生的整体限制电流密度约为1.6A/dm2。这相当于转换速率为由镀铂钛阳极所能达到的转换速率约四倍那么高。Experiments were repeated using current densities of 0.8 A/dm 2 and 1.6 A/dm 2 . Under the experimental hydrodynamic conditions (i.e., moderate agitation using a magnetic stirrer), since the conversion efficiency is the same (70%) as that obtained at 0.4 A/dm 2 , it is evident that at a current density of 1.6 A/dm 2 , Oxidation is not limited by mass transport. Further experiments were performed at 3.2 A/dm 2 and it was found that the conversion efficiency had dropped to 42%, while the manganese(III) production rate was only 10% higher than that obtained at 1.6 A/dm 2 . This indicates that the overall limiting current density for manganese production is about 1.6 A/dm 2 under the agitation conditions used in this experiment. This corresponds to a switching rate about four times as high as that achieved by a platinized titanium anode.
这些实验的结果说明,可通过在相对高浓度的硫酸中使用锰(II)离子以及使用铂或镀铂钛阳极在低电流密度下操作的电解而产生锰(III)离子,并且通过使用各种其它阳极材料可以进一步改善该方法,该各种其它阳极材料包括玻璃碳、碳纤维、铅以及铅合金阳极。The results of these experiments demonstrate that manganese(III) ions can be produced by electrolysis using manganese(II) ions in relatively high concentrations of sulfuric acid and operating at low current densities with platinum or Other anode materials can further improve the method, including glassy carbon, carbon fiber, lead and lead alloy anodes.
再者,相较于从铬酸蚀刻得到的蚀刻速率,本发明的以锰为基础的蚀刻的较慢蚀刻速率已经说明需要提供预处理步骤,用以产生较高的黏着值并且使得能够进行较短的蚀刻时间。Furthermore, the slower etch rate of the manganese-based etch of the present invention compared to that obtained from chromic acid etch has demonstrated the need to provide a pretreatment step in order to produce higher adhesion values and to enable higher short etching time.
该预处理步骤的目的是调整待蚀刻的塑料的表面的状况,使其蚀刻更快速且均匀,造成较短的蚀刻时间与更好的黏着。The purpose of this pretreatment step is to condition the surface of the plastic to be etched so that it etches more quickly and uniformly, resulting in shorter etching times and better adhesion.
使用溶剂调整ABS塑料的表面的状况是已知的。然而,最近的规范严格限制在镀线上使用挥发性溶剂的可行性,因为它们通常可燃并且具有健康与安全问题(许多为生殖毒性并且可造成肝伤害)。因此,溶剂的选择有限。The use of solvents to condition the surface of ABS plastic is known. However, recent regulations have severely limited the feasibility of using volatile solvents on plating lines because they are often flammable and have health and safety concerns (many are reproductively toxic and can cause liver damage). Therefore, the choice of solvents is limited.
碳酸丙二酯是相对安全的溶剂,具有良好的水溶性、低毒性以及低可燃性(闪点为135℃),并且从健康与安全角度而言是理想的。γ-丁内酯也可行,但是更具毒性,并且在一些国家由于其娱乐性使用而为管制药物。Propylene carbonate is a relatively safe solvent with good water solubility, low toxicity and low flammability (flash point of 135°C), and is desirable from a health and safety standpoint. Gamma-butyrolactone is also available, but is more toxic and is a regulated drug in some countries due to its recreational use.
在本发明中,发现当碳酸丙二酯的使用与例如乳酸、乙醇酸或葡萄糖酸等有机羟酸组合时,结合本申请所描述以锰为基础的蚀刻溶液可得到更好的结果。碳酸丙二酯单独使用或与湿润剂一起使用提供良好的黏着与缩短的蚀刻时间,但是在蚀刻、活化与后续镀敷之后,由于ABS/PC掺合物有产生凹痕的倾向,因此外观不良。在该预处理阶段中,将碳酸丙二酯与这些羟酸组合使用可有效避免此问题。In the present invention, it was found that better results were obtained in combination with the manganese-based etching solutions described herein when the use of propylene carbonate was combined with organic hydroxy acids such as lactic acid, glycolic acid or gluconic acid. Propylene carbonate alone or with a wetting agent provides good adhesion and reduced etch times, but after etch, activation, and subsequent plating, has a poor appearance due to the tendency of ABS/PC blends to sink . The use of propylene carbonate in combination with these hydroxyacids during this pretreatment stage effectively avoids this problem.
通常,碳酸丙二酯的浓度为约100至约500mL/L,并且该有机酸的浓度为约100至约500mL/L。此外,操作温度通常为约20℃至70℃,且浸泡时间为约2至约10分钟。Typically, the concentration of propylene carbonate is from about 100 to about 500 mL/L, and the concentration of the organic acid is from about 100 to about 500 mL/L. In addition, the operating temperature is generally about 20°C to 70°C, and the soaking time is about 2 to about 10 minutes.
因此,本发明总体而言还涉及一种用于可镀塑料基板的预处理组合物,包含γ-丁内酯或碳酸丙二酯,与例如乳酸、乙醇酸或葡萄糖酸等有机羟酸组合使用。The present invention therefore also generally relates to a pretreatment composition for platable plastic substrates comprising gamma-butyrolactone or propylene carbonate in combination with organic hydroxyacids such as lactic acid, glycolic acid or gluconic acid .
比较例5:Comparative example 5:
将由45%聚碳酸酯组成的ABS/PC掺合物所组成的试片浸入含有150mL/L碳酸丙二酯的溶液中,浸泡时间与温度如表1所示。此后,清洗该板,并且在含有12.5M硫酸与0.08M锰的溶液中蚀刻,其中0.015M的锰离子已经被电解氧化为锰(III)。蚀刻在68~70℃的温度下进行30分钟。在此处理之后,清洗该板,在塑料预处理顺序(根据技术数据说明,MacDermidD34钯活化剂、MacDermid加速剂以及MacDermid J64无电镍)上使用标准镀敷来活化该板,接着在铜中电镀。检查该板的装饰外观,并且使用Instron张力测试机器从该基板拉下沉积层来进行定量黏着测试。得到的黏着值如表1所示。The test piece composed of ABS/PC blend composed of 45% polycarbonate was immersed in the solution containing 150mL/L propylene carbonate, and the immersion time and temperature are shown in Table 1. Thereafter, the plate was cleaned and etched in a solution containing 12.5M sulfuric acid and 0.08M manganese, where 0.015M manganese ions had been electrolytically oxidized to manganese(III). Etching is performed at a temperature of 68-70° C. for 30 minutes. After this treatment, the board was cleaned and the board was activated using standard plating on top of the plastic pretreatment sequence (MacDermid D34 Palladium Activator, MacDermid Accelerator and MacDermid J64 Electroless Nickel as specified in the technical data), followed by electroplating in copper . The panel was inspected for decorative appearance and quantitative adhesion testing was performed by pulling the deposited layer from the substrate using an Instron tensile testing machine. The obtained adhesion values are shown in Table 1.
表1.黏着值Table 1. Adhesion Values
该黏着值相当多变,并且在该被镀部分上发现污点与凹痕。铜镀层也有凹痕。The adhesion values were quite variable, and spots and pits were found on the plated part. The copper plating is also pitted.
实施例8:Embodiment 8:
重复比较例5中进行的实验,不同之处在于使用包含150mL/L碳酸丙二酯与250mL/L的88%乳酸溶液的预调理剂。这些测试的结果如表2所示。The experiment performed in Comparative Example 5 was repeated except that a preconditioner comprising 150 mL/L propylene carbonate and 250 mL/L 88% lactic acid solution was used. The results of these tests are shown in Table 2.
表2.黏着值Table 2. Adhesion Values
使用包含乳酸的此预调理剂,改良了黏着的一致性。在镀敷之后,发现装饰外观极佳,并且没有污点与凹痕。With this pre-conditioner containing lactic acid, the sticky consistency is improved. After plating, the decorative appearance was found to be excellent and free from blemishes and dents.
Claims (52)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/795,382 | 2013-03-12 | ||
US13/795,382 US9534306B2 (en) | 2012-01-23 | 2013-03-12 | Electrolytic generation of manganese (III) ions in strong sulfuric acid |
PCT/US2014/021618 WO2014164272A1 (en) | 2013-03-12 | 2014-03-07 | Electrolytic generation of manganese (iii) ions in strong sulfuric acid |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105209667A CN105209667A (en) | 2015-12-30 |
CN105209667B true CN105209667B (en) | 2017-12-05 |
Family
ID=51658840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201480014056.0A Active CN105209667B (en) | 2013-03-12 | 2014-03-07 | Manganese (III) ion in strength sulfuric acid it is electrolytically generated |
Country Status (18)
Country | Link |
---|---|
EP (1) | EP2971260B1 (en) |
JP (1) | JP6167222B2 (en) |
KR (1) | KR101749947B1 (en) |
CN (1) | CN105209667B (en) |
AU (1) | AU2014249521B2 (en) |
BR (1) | BR112015021067B1 (en) |
CA (2) | CA2955467C (en) |
DK (1) | DK2971260T3 (en) |
ES (1) | ES2745071T3 (en) |
HR (1) | HRP20191626T1 (en) |
HU (1) | HUE045344T2 (en) |
LT (1) | LT2971260T (en) |
MX (1) | MX379432B (en) |
PL (1) | PL2971260T3 (en) |
PT (1) | PT2971260T (en) |
SI (1) | SI2971260T1 (en) |
TW (1) | TWI489007B (en) |
WO (1) | WO2014164272A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9267077B2 (en) * | 2013-04-16 | 2016-02-23 | Rohm And Haas Electronic Materials Llc | Chrome-free methods of etching organic polymers with mixed acid solutions |
EP2937446B1 (en) * | 2013-10-22 | 2018-06-13 | Okuno Chemical Industries Co., Ltd. | Composition for etching treatment of resin material |
CN105483715B (en) * | 2015-12-09 | 2018-01-30 | 哈尔滨工业大学 | The template 3D etching preparation methods of the micro-nano combined multi-stage Porous materials of magnesium based metal |
CN106830204B (en) * | 2017-03-13 | 2020-04-28 | 重庆大学 | Method and device for degrading pollutants in water by exciting permanganate through electrochemical cathode |
CN110869529B (en) * | 2017-07-10 | 2021-07-06 | Srg全球有限责任公司 | Hexavalent chromium-free etching manganese recovery system |
CN109256180B (en) * | 2018-07-03 | 2022-02-11 | 南昌立德生物技术有限公司 | Sensitivity analysis algorithm for computer-aided pilot medicament optimization design |
JP7336126B2 (en) * | 2019-03-11 | 2023-08-31 | 国立研究開発法人産業技術総合研究所 | High-value manganese production method and production apparatus |
EP3825441A1 (en) * | 2019-11-21 | 2021-05-26 | COVENTYA S.p.A. | An electrolytic treatment device for preparing plastic parts to be metallized and a method for etching plastic parts |
US11842958B2 (en) * | 2022-03-18 | 2023-12-12 | Chun-Ming Lin | Conductive structure including copper-phosphorous alloy and a method of manufacturing conductive structure |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5213665A (en) * | 1988-02-29 | 1993-05-25 | Nippon Shokubai Kagaku Kogyo, Co., Ltd. | Process for producing 1-aminoanthraquinones |
JPH09316019A (en) * | 1996-05-31 | 1997-12-09 | Daiwa Kasei Kenkyusho:Kk | Production of naphthalene aldehydes |
CN104838044A (en) * | 2012-11-15 | 2015-08-12 | 麦克德米德尖端有限公司 | Electrolytic generation of manganese (III) ions in strong sulfuric acid |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3065155A (en) | 1960-09-02 | 1962-11-20 | Manganese Chemicals Corp | Electrolytic manganese dioxide process |
US3793171A (en) * | 1970-09-04 | 1974-02-19 | Carrier Corp | Process for removing pollutants from gas streams |
JPS51764A (en) * | 1974-06-25 | 1976-01-06 | Mitsui Mining & Smelting Co | MUDENKAIDOMETSUKIHAISUINO SHORIHOHO |
US3941677A (en) * | 1974-06-27 | 1976-03-02 | Carrier Corporation | Electrolytic regeneration cell |
AU4083878A (en) * | 1977-11-02 | 1980-04-24 | Diamond Shamrock Techn | Dislodging electrolytic manganese dioxide |
US4279705A (en) * | 1980-02-19 | 1981-07-21 | Kerr-Mcgee Corporation | Process for oxidizing a metal of variable valence by constant current electrolysis |
JPS6013087A (en) * | 1983-07-05 | 1985-01-23 | Kawasaki Kasei Chem Ltd | Electrolysis method of cerous sulfate |
JPS6447890A (en) * | 1987-08-13 | 1989-02-22 | Kenzo Yamaguchi | Electrolytic synthesis method |
US4911802A (en) * | 1988-03-09 | 1990-03-27 | Macdermid, Incorporated | Conversion of manganate to permanganate |
US4936970A (en) * | 1988-11-14 | 1990-06-26 | Ebonex Technologies, Inc. | Redox reactions in an electrochemical cell including an electrode comprising Magneli phase titanium oxide |
US5318803A (en) * | 1990-11-13 | 1994-06-07 | International Business Machines Corporation | Conditioning of a substrate for electroless plating thereon |
JPH05112872A (en) * | 1991-10-21 | 1993-05-07 | Okuno Seiyaku Kogyo Kk | Method for electroless-plating polyimide resin and pre-etching composition |
US5246553A (en) * | 1992-03-05 | 1993-09-21 | Hydro-Quebec | Tetravalent titanium electrolyte and trivalent titanium reducing agent obtained thereby |
GB9714275D0 (en) * | 1997-07-08 | 1997-09-10 | Ciba Geigy Ag | Oxidation process |
US6616828B2 (en) * | 2001-08-06 | 2003-09-09 | Micron Technology, Inc. | Recovery method for platinum plating bath |
EP1824945A4 (en) * | 2004-11-19 | 2008-08-06 | Honeywell Int Inc | Selective removal chemistries for semiconductor applications, methods of production and uses thereof |
WO2008143190A1 (en) * | 2007-05-22 | 2008-11-27 | Okuno Chemical Industries Co., Ltd. | Pretreatment process for electroless plating of resin molded body, method for plating resin molded body, and pretreatment agent |
ATE445667T1 (en) * | 2007-08-10 | 2009-10-15 | Enthone | CHROME-FREE STAIN FOR PLASTIC SURFACES |
CN102341946B (en) * | 2010-03-12 | 2013-05-01 | 住友电气工业株式会社 | Redox flow battery |
US10260000B2 (en) * | 2012-01-23 | 2019-04-16 | Macdermid Acumen, Inc. | Etching of plastic using acidic solutions containing trivalent manganese |
US8603352B1 (en) * | 2012-10-25 | 2013-12-10 | Rohm and Haas Electroncis Materials LLC | Chrome-free methods of etching organic polymers |
-
2014
- 2014-03-07 AU AU2014249521A patent/AU2014249521B2/en active Active
- 2014-03-07 PT PT14779082T patent/PT2971260T/en unknown
- 2014-03-07 ES ES14779082T patent/ES2745071T3/en active Active
- 2014-03-07 EP EP14779082.8A patent/EP2971260B1/en active Active
- 2014-03-07 PL PL14779082T patent/PL2971260T3/en unknown
- 2014-03-07 WO PCT/US2014/021618 patent/WO2014164272A1/en active Application Filing
- 2014-03-07 MX MX2015012584A patent/MX379432B/en unknown
- 2014-03-07 KR KR1020157028235A patent/KR101749947B1/en active Active
- 2014-03-07 SI SI201431343T patent/SI2971260T1/en unknown
- 2014-03-07 HR HRP20191626 patent/HRP20191626T1/en unknown
- 2014-03-07 CN CN201480014056.0A patent/CN105209667B/en active Active
- 2014-03-07 CA CA2955467A patent/CA2955467C/en active Active
- 2014-03-07 BR BR112015021067-8A patent/BR112015021067B1/en active IP Right Grant
- 2014-03-07 LT LTEP14779082.8T patent/LT2971260T/en unknown
- 2014-03-07 DK DK14779082.8T patent/DK2971260T3/en active
- 2014-03-07 JP JP2016500796A patent/JP6167222B2/en active Active
- 2014-03-07 CA CA2901589A patent/CA2901589C/en active Active
- 2014-03-07 HU HUE14779082A patent/HUE045344T2/en unknown
- 2014-03-11 TW TW103108294A patent/TWI489007B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5213665A (en) * | 1988-02-29 | 1993-05-25 | Nippon Shokubai Kagaku Kogyo, Co., Ltd. | Process for producing 1-aminoanthraquinones |
JPH09316019A (en) * | 1996-05-31 | 1997-12-09 | Daiwa Kasei Kenkyusho:Kk | Production of naphthalene aldehydes |
CN104838044A (en) * | 2012-11-15 | 2015-08-12 | 麦克德米德尖端有限公司 | Electrolytic generation of manganese (III) ions in strong sulfuric acid |
Non-Patent Citations (1)
Title |
---|
Electrochemical Production of Manganic Sulfate in Concentrated H2SO4;Ch. Comninellis等;《Journal of the Electrochemical Society》;19820430;第129卷(第4期);第749-752页 * |
Also Published As
Publication number | Publication date |
---|---|
CA2901589C (en) | 2019-01-22 |
AU2014249521B2 (en) | 2018-03-01 |
TWI489007B (en) | 2015-06-21 |
BR112015021067A2 (en) | 2017-07-18 |
JP2016512574A (en) | 2016-04-28 |
EP2971260A4 (en) | 2017-04-19 |
CN105209667A (en) | 2015-12-30 |
MX2015012584A (en) | 2016-01-14 |
EP2971260B1 (en) | 2019-06-19 |
JP6167222B2 (en) | 2017-07-19 |
BR112015021067B1 (en) | 2021-06-08 |
HUE045344T2 (en) | 2019-12-30 |
LT2971260T (en) | 2019-09-25 |
DK2971260T3 (en) | 2019-09-23 |
KR101749947B1 (en) | 2017-06-22 |
CA2901589A1 (en) | 2014-10-09 |
HRP20191626T1 (en) | 2019-12-13 |
SI2971260T1 (en) | 2019-12-31 |
PL2971260T3 (en) | 2020-03-31 |
EP2971260A1 (en) | 2016-01-20 |
WO2014164272A1 (en) | 2014-10-09 |
KR20150126935A (en) | 2015-11-13 |
AU2014249521A1 (en) | 2015-08-27 |
PT2971260T (en) | 2019-09-27 |
ES2745071T3 (en) | 2020-02-27 |
CA2955467A1 (en) | 2014-10-09 |
CA2955467C (en) | 2021-03-16 |
MX379432B (en) | 2025-03-10 |
TW201500593A (en) | 2015-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105209667B (en) | Manganese (III) ion in strength sulfuric acid it is electrolytically generated | |
US10895016B2 (en) | Electrolytic generation of manganese (III) ions in strong sulfuric acid | |
US10221357B2 (en) | Etching of plastic using acidic solutions containing trivalent manganese | |
JP6060270B2 (en) | Electrolytic production of manganese (III) ions in concentrated sulfuric acid | |
US10246788B2 (en) | Electrolytic generation of manganese (III) ions in strong sulfuric acid using an improved anode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |