[go: up one dir, main page]

CN105205794B - A kind of synchronous enhancing denoising method of low-light (level) image - Google Patents

A kind of synchronous enhancing denoising method of low-light (level) image Download PDF

Info

Publication number
CN105205794B
CN105205794B CN201510705402.6A CN201510705402A CN105205794B CN 105205794 B CN105205794 B CN 105205794B CN 201510705402 A CN201510705402 A CN 201510705402A CN 105205794 B CN105205794 B CN 105205794B
Authority
CN
China
Prior art keywords
mrow
msub
image
msubsup
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510705402.6A
Other languages
Chinese (zh)
Other versions
CN105205794A (en
Inventor
朱光明
沈沛意
宋娟
张亮
彭希璐
张淑娥
刘欢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510705402.6A priority Critical patent/CN105205794B/en
Publication of CN105205794A publication Critical patent/CN105205794A/en
Application granted granted Critical
Publication of CN105205794B publication Critical patent/CN105205794B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)

Abstract

本发明公开了一种低照度图像的同步增强去噪方法,使用考虑噪声的雾天图像退化模型,结合迭代的联合双边滤波将低照度图像的对比度增强操作和噪声去除操作同时进行;在迭代的初始化阶段使用暗原色先验理论得到低照度图像反转图像的全局大气光、透射率和场景光的初始估计值;然后使用迭代的联合双边滤波方法进行雾图参数的交替修正,对各轮迭代的结果通过商值图像进行细节补偿;迭代的联合双边滤波方法在第一轮迭代时,导向图为噪声图像自身,在以后的迭代过程中,将每一轮迭代的结果作为下一轮迭代的导向图;最后通过对迭代结果进行再次反转操作获得增强后的复原图像;本发明能同时提高低照度图像可视化效果及去除图像噪声,具有良好的视觉效果。

The invention discloses a method for synchronous enhancement and denoising of low-illuminance images, which uses a foggy image degradation model considering noise and combines iterative joint bilateral filtering to simultaneously perform contrast enhancement and noise removal operations on low-illuminance images; in the iterative In the initialization stage, the dark channel prior theory is used to obtain the initial estimated values of the global atmospheric light, transmittance and scene light of the inverted image of the low-illumination image; The result of the iterative joint bilateral filtering method is used for detail compensation through the quotient image; in the first round of iteration, the guided image is the noise image itself, and in the subsequent iteration process, the result of each round of iteration is used as the next iteration guide map; finally, the enhanced restoration image is obtained by inverting the iterative result again; the invention can simultaneously improve the low-light image visualization effect and remove image noise, and has a good visual effect.

Description

一种低照度图像的同步增强去噪方法A Synchronous Enhancement Denoising Method for Low Illumination Images

技术领域technical field

本发明涉及图像增强、去噪技术领域,具体是一种低照度图像的同步增强去噪方法The invention relates to the technical field of image enhancement and denoising, in particular to a synchronous enhancement and denoising method for low-illuminance images

背景技术Background technique

低照度环境下,图像采集设备获得的图像不仅可辨识度低,而且含有大量噪声,低照度环境导致的图像降质不仅影响了人眼对图像的辨识,也使得智能交通、视频监控和目标识别等计算机视觉系统性能受到较大的影响,因此对低照度图像进行增强和降噪处理具有非常重要的价值;由于低照度环境采集到的图像灰度覆盖范围非常窄,并且像素值处于较低水平,因此对低照度图像进行增强的主要目的在于扩大图像的灰度范围,提高图像的整体亮度,以便原本无法辨别的图像信息能够被人眼或机器所识别;传统的图像增强方法可以分为空间域增强方法和频率域增强方法两大类:直方图均衡化是经典的空间域增强方法,它可以有效的增强图像对比度,但该方法可能导致原本较亮的像素点过饱和从而丢失图像结构信息;频率域增强方法如小波变换,通过将图像信号转换到频域后,对小波系数进行处理来达到增强的效果;Retinex方法是基于视网膜大脑皮层理论的一种图像增强方法,它将图像分为亮度图和反射图两部分,通过降低亮度图对反射图的影响来达到增强的效果,随着Retinex理论的提出,大量的研究者陆续提出了相关的改进算法,如单尺度Retinex、多尺度Retinex、带彩色因子恢复的多尺度Retinex等,这些算法均可以达到一定的增强效果。In a low-light environment, the images obtained by the image acquisition equipment not only have low recognizability, but also contain a lot of noise. The image degradation caused by the low-light environment not only affects the recognition of the image by the human eye, but also makes intelligent transportation, video surveillance and target recognition difficult. The performance of computer vision systems such as computer vision is greatly affected, so it is of great value to enhance and denoise low-light images; because the gray coverage of images collected in low-light environments is very narrow, and the pixel values are at a low level , so the main purpose of enhancing low-light images is to expand the gray range of the image and increase the overall brightness of the image, so that the image information that cannot be discerned can be recognized by human eyes or machines; traditional image enhancement methods can be divided into spatial There are two types of domain enhancement methods and frequency domain enhancement methods: histogram equalization is a classic spatial domain enhancement method, which can effectively enhance image contrast, but this method may cause the original brighter pixels to oversaturate and lose image structure information ; frequency domain enhancement methods such as wavelet transform, by converting the image signal to the frequency domain, the wavelet coefficients are processed to achieve the enhanced effect; the Retinex method is an image enhancement method based on the retinal cerebral cortex theory, which divides the image into There are two parts of the brightness map and the reflection map. The enhanced effect is achieved by reducing the influence of the brightness map on the reflection map. With the introduction of the Retinex theory, a large number of researchers have successively proposed related improved algorithms, such as single-scale Retinex and multi-scale Retinex. , multi-scale Retinex with color factor restoration, etc., these algorithms can achieve certain enhancement effects.

近年来,基于去雾技术的低照度图像增强方法的提出开辟了低照度增强的新途径,通过比较低照度图像的反转图像和雾天图像的相似性,将反转的低照度视频帧使用暗原色去雾方法进行处理可以得到较好的视觉效果,低照度图像不仅灰度水平低还具有噪声含量高的特点,并且大多数的增强方法在进行强度转换的同时噪声也会随之放大;目前有很多研究可以分别完成图像的增强和去噪,但针对低照度图像特征的增强和去噪方法却很少,基于暗原色去雾技术的低照度图像增强方法能有效的提升图像对比度,突出图像中的细节信息,然而由于暗原色去雾技术有没考虑噪声的影响,导致增强后噪声被显著放大。In recent years, the low-illumination image enhancement method based on defogging technology has opened up a new way of low-illumination enhancement. By comparing the similarity between the inverted image of the low-illumination image and the foggy image, the inverted low-illuminance video frame is used The dark primary color defogging method can get better visual effects. Low-illumination images not only have low gray levels but also have high noise content, and most enhancement methods will amplify the noise while performing intensity conversion; At present, there are many researches that can complete image enhancement and denoising separately, but there are few enhancement and denoising methods for low-illuminance image features. However, because the dark primary color dehazing technology does not consider the influence of noise, the noise is significantly amplified after enhancement.

申请号为CN201510260607的中国发明专利公开了一种具备图像增强功能的视频监控与采集系统,包括用于获取图像的图像获取装置、模数转换装置AD、用于对经模数转换的数字图像信号进行增强处理的图像处理模块、数模转换装置DA、视频存储模块、监视器终端,以及用于控制整个系统运行状态的控制中枢模块,该发明的视频监控与采集系统采用嵌入式硬件平台,并对软件算法进行了优化,从而使得图像处理硬件设备的体积和功耗都大为缩小,可以实现实时图像增强,并方便与图像采集设备的集成,模块化设计也有利于功能模块自由搭配,更加适合应用场合,降低采购成本。The Chinese invention patent with the application number CN201510260607 discloses a video monitoring and acquisition system with image enhancement function, including an image acquisition device for acquiring images, an analog-to-digital conversion device AD, and a digital image signal converted by analog-to-digital conversion. An image processing module for enhanced processing, a digital-to-analog conversion device DA, a video storage module, a monitor terminal, and a control center module for controlling the operation status of the entire system. The video monitoring and acquisition system of the invention adopts an embedded hardware platform, and The software algorithm is optimized, so that the size and power consumption of the image processing hardware equipment are greatly reduced, real-time image enhancement can be realized, and the integration with the image acquisition equipment is convenient. The modular design is also conducive to the free collocation of functional modules, which is more It is suitable for the application and reduces the purchase cost.

申请号为CN201510329457的中国发明专利公开了一种基于视网膜机制的灰度图像增强方法,具体流程包括估计全局亮度确定算法自适应参数、生成图像的亮度映射图、计算亮度增强图像和边缘加强处理,首先通过全局暗区域的亮度分布情况,对自适应参数进行估计;然后分别对图像进行全局的亮度增强处理,并由调制函数得出整幅图片的调制映射图,计算得出亮度增强的结果;最后基于自适应尺度的高斯差模型来实现边缘的增强,模型尺度由对比度所影响,最终可以在明亮区域加强更细小的纹理信息,黑暗区域则加强比较大的轮廓信息。The Chinese invention patent with the application number CN201510329457 discloses a grayscale image enhancement method based on the retinal mechanism. The specific process includes estimating the adaptive parameters of the global brightness determination algorithm, generating the brightness map of the image, calculating the brightness enhanced image and edge enhancement processing, Firstly, the adaptive parameters are estimated through the brightness distribution of the global dark area; then the global brightness enhancement processing is performed on the image respectively, and the modulation map of the whole picture is obtained by the modulation function, and the brightness enhancement result is calculated; Finally, the edge enhancement is realized based on the adaptive scale Gaussian difference model. The model scale is affected by the contrast, and finally the finer texture information can be enhanced in the bright area, and the larger outline information can be enhanced in the dark area.

上述公开的发明虽能有效的对图像进行对比度增强但均未考虑噪声条件对图像增强的影响,因此,需要对现有技术进行创造性的改良。Although the above disclosed inventions can effectively enhance the contrast of images, they do not take into account the influence of noise conditions on image enhancement. Therefore, creative improvements to the prior art are required.

发明内容Contents of the invention

本发明的目的在于提供一种低照度图像的同步增强去噪方法,利用考虑噪声的雾图退化模型和迭代的联合双边滤波算法将低照度图像的对比度增强操作和噪声去除操作同时进行,从而有效提升图像对比度并抑制噪声,增强图像的视觉效果。The purpose of the present invention is to provide a synchronously enhanced denoising method for low-illuminance images, which utilizes the noise-considered fog map degradation model and iterative joint bilateral filtering algorithm to simultaneously perform contrast-enhancing operations and noise removal operations for low-illuminance images, thereby effectively Improve image contrast and suppress noise to enhance the visual effect of the image.

为实现上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

一种低照度图像的同步增强去噪方法,低照度图像增强算法为基于暗原色去雾技术的增强算法,同步增强去噪操作通过迭代的联合双边滤波交替修正雾图退化模型参数完成,包括以下步骤:A synchronous enhancement denoising method for low-illumination images. The low-illuminance image enhancement algorithm is an enhancement algorithm based on dark channel color dehazing technology. The synchronous enhancement denoising operation is completed by iterative joint bilateral filtering and alternately correcting the fog image degradation model parameters, including the following step:

1)将原始低照度图像I(xi)输入计算机图像处理系统,并将其反转,得到反转后的图像Iinv(xi);1) Input the original low-light image I( xi ) into the computer image processing system, and invert it to obtain the inverted image I inv ( xi );

2)根据暗原色先验理论,求取反转图像Iinv(xi)中的全局大气光值Ac2) Calculate the global atmospheric light value A c in the inverted image I inv ( xi ) according to the dark channel prior theory;

3)根据反转图像Iinv(xi)的亮度图计算图像的初始透射率t03) Calculate the initial transmittance t 0 of the image according to the brightness map of the inverted image I inv ( xi );

4)将步骤2求得的全局大气光Ac和步骤3求得的初始透射率t0代入雾天图像退化模型得到场景光的初始估计值 4) Substitute the global atmospheric light A c obtained in step 2 and the initial transmittance t 0 obtained in step 3 into the foggy image degradation model to obtain the initial estimated value of scene light

5)使用迭代的联合双边滤波方法交替修正雾天图像退化模型中的参数,并对每一轮的结果使用商值图像方法进行细节补偿。5) Use the iterative joint bilateral filtering method to alternately modify the parameters in the foggy image degradation model, and use the quotient image method to compensate the details for the results of each round.

6)将步骤5中最终获得的场景光进行反转,得到最终的增强去噪结果。6) Use the scene light finally obtained in step 5 Inversion is performed to obtain the final enhanced denoising result.

作为本发明进一步的方案:所述步骤1中,对输入低照度图像进行反转操作时,反转算法如下:As a further solution of the present invention: in the step 1, for the input low-illuminance image When performing a reversal operation, the reversal algorithm is as follows:

其中,I表示输入的原始低照度图像,Iinv表示反转图像,c代表图像RGB三颜色通道中的一个颜色通道。Among them, I represents the original input low-light image, I inv represents the inverted image, and c represents a color channel in the RGB three color channels of the image.

作为本发明进一步的方案:所述步骤2包括以下步骤:As a further solution of the present invention: said step 2 includes the following steps:

a)对反转图像Iinv(xi)的各个颜色通道做最小值滤波,并对每个像素点求取三通道滤波结果的最小值作为该像素点的暗原色值,从而得到反转图像的暗原色图;a) Perform minimum value filtering on each color channel of the inverted image I inv ( xi ), and calculate the minimum value of the three-channel filtering results for each pixel as the dark primary color value of the pixel, thereby obtaining an inverted image The dark primary color map;

b)选取暗原色图中的所有像素点中强度值最大的0.1%个像素,将这些像素点的位置标记出来,在反转图像Iinv(xi)三个颜色通道中相对应的位置,找到各个通道最亮的点的强度值作为该颜色通道的大气光Acb) Select 0.1% of the pixels with the largest intensity value among all the pixels in the dark primary color map, and mark the positions of these pixels, corresponding to the positions in the three color channels of the inverted image I inv ( xi ), Find the intensity value of the brightest point of each channel as the atmospheric light A c of the color channel.

作为本发明进一步的方案:所述步骤3中,求取初始透射率t0的算法如下:As a further solution of the present invention : in the step 3, the algorithm for obtaining the initial transmittance t is as follows:

t0(xi)=C-Y(xi)t 0 ( xi )=CY( xi )

式中,C为用于削弱亮度图像Y的参数,C取值范围为[1.06,1.08],亮度图像Y(xi)的计算方式如下:In the formula, C is a parameter used to weaken the brightness image Y, and the value range of C is [1.06, 1.08], and the calculation method of the brightness image Y( xi ) is as follows:

Y(xi)=0.299×R+0.587×G+0.114×BY( xi )=0.299×R+0.587×G+0.114×B

式中:R、G、B分别代表图像RGB三通道分量值。In the formula: R, G, and B respectively represent the RGB three-channel component values of the image.

作为本发明进一步的方案:所述步骤4中,求取场景光初始估计值的算法如下As a further solution of the present invention: in the step 4, the algorithm for obtaining the initial estimated value of the scene light is as follows

式中,Iinv(xi)为输入图像的反转图像,t0(xi)为透射率的初始估计值,Ac为全局大气光,为透射率的下限,通常取0.01。where I inv ( xi ) is the inverse image of the input image, t 0 ( xi ) is the initial estimated value of transmittance, A c is the global atmospheric light, is the lower limit of the transmittance, usually 0.01.

作为本发明进一步的方案:所述步骤5中使用的考虑噪声的雾天图像退化模型的形式如下:As a further solution of the present invention: the form of the foggy image degradation model considering noise used in the step 5 is as follows:

Iinv(x)=Jinv(x)t(x)+A(1-t(x))+n(x)I inv (x)=J inv (x)t(x)+A(1-t(x))+n(x)

作为本发明进一步的方案:所述步骤5中的迭代的联合双边滤波方法在第一轮迭代时,导向图为噪声图像自身,在以后的迭代过程中,将每一轮迭代的结果作为下一轮迭代的导向图。As a further solution of the present invention: in the iterative joint bilateral filtering method in the step 5, during the first round of iteration, the guide map is the noise image itself, and in the subsequent iteration process, the result of each round of iteration is used as the next iteration A directed graph for round iterations.

作为本发明进一步的方案:所述步骤5中包括以下步骤:As a further solution of the present invention: the step 5 includes the following steps:

a)设置迭代过程中透射率和场景光的初始值分别为t0并置迭代次数k=1;a) Set the initial values of transmittance and scene light in the iterative process as t 0 and The number of collocation iterations k=1;

b)使用上一轮迭代中修正后的场景光修正本轮迭代中的透射率tk,修正透射率的算法如下:b) Use the corrected scene light from the previous iteration Correct the transmittance t k in this round of iterations, and the algorithm for correcting the transmittance is as follows:

式中,gd(xi-x)为空间域核函数,为值域核函数,Ω(x)是以x为中心的邻域;where g d ( xi -x) is the spatial domain kernel function, is the range kernel function, Ω(x) is the neighborhood centered on x;

c)使用本轮迭代中修正后的透射率值tk修正本轮迭代中的场景光修正场景光的算法如下:c) Use the corrected transmittance value t k in the current iteration to correct the scene light in the current iteration The algorithm for correcting scene light is as follows:

式中,gd(xi-x)空间域核函数,为值域核函数,Ω(x)是以x为中心的邻域;In the formula, g d ( xi -x) space domain kernel function, is the range kernel function, Ω(x) is the neighborhood centered on x;

d)对每一轮滤波结果的细节部分利用商值图像进行补偿,得到本轮迭代最终的场景光修正结果细节补偿算法如下:d) Use the quotient image to compensate the details of each round of filtering results, and obtain the final scene light correction result of this round of iterations The detail compensation algorithm is as follows:

式中,M用于平衡细节图像所占的权重,为商值图像,计算方法如下:In the formula, M is used to balance the weight of the detail image, is the quotient image, the calculation method is as follows:

作为本发明进一步的方案:所述步骤5中修正透射率时滤波窗口选取15×15,修正场景光时滤波窗口选取7×7。As a further solution of the present invention: in step 5, the filter window is selected to be 15×15 when the transmittance is corrected, and the filter window is selected to be 7×7 when the scene light is corrected.

与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:

(1)本发明提出了一种低照度图像的同步增强去噪方法,利用考虑噪声的雾图退化模型和迭代的联合双边滤波算法将低照度图像的对比度增强操作和噪声去除操作同时进行,从而有效提升图像对比度并抑制噪声,增强图像的视觉效果;(1) The present invention proposes a synchronously enhanced denoising method for low-illuminance images, using a fog map degradation model considering noise and an iterative joint bilateral filtering algorithm to simultaneously perform contrast enhancement and noise removal operations for low-illuminance images, thereby Effectively improve the image contrast and suppress noise, enhance the visual effect of the image;

(2)本发明在每轮增强去噪的迭代过程中,对迭代结果利用商值图像进行补偿,使处理结果包含丰富的细节信息;(2) In the iterative process of each round of enhanced denoising, the present invention uses the quotient image to compensate the iterative result, so that the processing result contains rich detail information;

(3)本发明充分考虑低照度图像的自身特征,针对低照度图像的特征建立物理模型,同步完成增强、去噪操作。(3) The present invention fully considers the characteristics of the low-illumination image, establishes a physical model for the characteristics of the low-illumination image, and simultaneously completes the enhancement and denoising operations.

附图说明Description of drawings

图1是本发明低照度图像同步增强去噪算法的流程图;Fig. 1 is the flow chart of low-illuminance image synchronous enhancement denoising algorithm of the present invention;

图2是未处理的照片。Figure 2 is the unprocessed photo.

图3是图2采用本发明低照度图像同步增强去噪算法的处理效果图。Fig. 3 is a processing effect diagram of Fig. 2 using the low-illuminance image synchronously enhanced denoising algorithm of the present invention.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

请参阅图1,一种低照度图像的同步增强去噪方法,首先使用基于暗原色先验理论的去雾技术估算低照度图像反转图像的全局大气光,透射率和场景光的初始估计值;然后通过迭代的联合双边滤波交替修正雾图退化模型中的未知参数实现同步增强去噪,最后反转图像获得最终的增强结果,包括以下步骤:Please refer to Figure 1, a synchronous enhancement denoising method for low-illumination images, first using the dehazing technique based on the dark channel prior theory to estimate the initial estimates of the global atmospheric light, transmittance and scene light of the inverted image of the low-illumination image ; Then through iterative joint bilateral filtering to alternately modify the unknown parameters in the fog map degradation model to achieve synchronous enhanced denoising, and finally reverse the image to obtain the final enhanced result, including the following steps:

1)将原始低照度图像I(xi)输入计算机图像处理系统,并将其反转,得到反转后的图像Iinv(xi),对输入低照度图像进行反转操作时,反转算法如下:1) Input the original low-illuminance image I( xi ) into the computer image processing system, and invert it to obtain the inverted image I inv ( xi ), for the input low-illuminance image When performing a reversal operation, the reversal algorithm is as follows:

2)根据暗原色先验理论,求取反转图像Iinv(xi)中的全局大气光值Ac,具体步骤如下:2) According to the dark channel prior theory, calculate the global atmospheric light value A c in the inverted image I inv ( xi ), the specific steps are as follows:

a)对反转图像Iinv(xi)的各个颜色通道做最小值滤波,并对每个像素点求取三通道滤波结果的最小值作为该像素点的暗原色值,从而得到反转图像的暗原色图;a) Perform minimum value filtering on each color channel of the inverted image I inv ( xi ), and calculate the minimum value of the three-channel filtering results for each pixel as the dark primary color value of the pixel, thereby obtaining an inverted image The dark primary color map;

b)选取暗原色图中的所有像素点中强度值最大的0.1%个像素,将这些像素点的位置标记出来,在反转图像Iinv(xi)三个颜色通道中相对应的位置,找到各个通道最亮的点的强度值作为该颜色通道的大气光Acb) Select 0.1% of the pixels with the largest intensity value among all the pixels in the dark primary color map, and mark the positions of these pixels, corresponding to the positions in the three color channels of the inverted image I inv ( xi ), Find the intensity value of the brightest point of each channel as the atmospheric light A c of the color channel;

3)根据反转图像Iinv(xi)的亮度图计算图像的初始透射率t0,求取初始透射率t0的算法如下:3) Calculate the initial transmittance t 0 of the image according to the brightness map of the inverted image I inv ( xi ), and the algorithm for calculating the initial transmittance t 0 is as follows:

t0(xi)=C-Y(xi)t 0 ( xi )=CY( xi )

式中,C为用于削弱亮度图像Y的参数,C取值范围为[1.06,1.08],亮度图像Y(xi)的计算方式如下:In the formula, C is a parameter used to weaken the brightness image Y, and the value range of C is [1.06, 1.08], and the calculation method of the brightness image Y( xi ) is as follows:

Y(xi)=0.299×R+0.587×G+0.114×BY( xi )=0.299×R+0.587×G+0.114×B

式中:R、G、B分别代表图像RGB三通道分量值。In the formula: R, G, and B respectively represent the RGB three-channel component values of the image.

4)将步骤2求得的全局大气光Ac和步骤3求得的初始透射率t0代入雾天图像退化模型得到场景光的初始估计值求取场景光初始估计值的算法如下:4) Substitute the global atmospheric light A c obtained in step 2 and the initial transmittance t 0 obtained in step 3 into the foggy image degradation model to obtain the initial estimated value of scene light The algorithm for obtaining the initial estimated value of the scene light is as follows:

式中,Iinv(xi)为输入图像的反转图像,t0(xi)为透射率的初始估计值,Ac为全局大气光,为透射率的下限,通常取0.01;where I inv ( xi ) is the inverse image of the input image, t 0 ( xi ) is the initial estimated value of transmittance, A c is the global atmospheric light, is the lower limit of transmittance, usually 0.01;

5)使用迭代的联合双边滤波方法交替修正考虑噪声的雾天图像退化模型中的参数,并对每一轮的结果使用商值图像方法进行细节补偿,具体步骤如下:5) Use the iterative joint bilateral filtering method to alternately modify the parameters in the foggy image degradation model considering noise, and use the quotient image method to perform detail compensation on the results of each round. The specific steps are as follows:

a)设置迭代过程中透射率和场景光的初始值分别为t0并置迭代次数k=1;a) Set the initial values of transmittance and scene light in the iterative process as t 0 and The number of collocation iterations k=1;

b)使用上一轮迭代中修正后的场景光修正本轮迭代中的透射率tk,修正透射率的算法如下:b) Use the corrected scene light from the previous iteration Correct the transmittance t k in this round of iterations, and the algorithm for correcting the transmittance is as follows:

式中,gd(xi-x)为空间域核函数,为值域核函数,Ω(x)是以x为中心的邻域;where g d ( xi -x) is the spatial domain kernel function, is the range kernel function, Ω(x) is the neighborhood centered on x;

c)使用本轮迭代中修正后的透射率值tk修正本轮迭代中的场景光修正场景光的算法如下:c) Use the corrected transmittance value t k in the current iteration to correct the scene light in the current iteration The algorithm for correcting scene light is as follows:

式中,gd(xi-x)空间域核函数,为值域核函数,Ω(x)是以x为中心的邻域;In the formula, g d ( xi -x) space domain kernel function, is the range kernel function, Ω(x) is the neighborhood centered on x;

d)对每一轮滤波结果的细节部分利用商值图像进行补偿,得到本轮迭代最终的场景光修正结果细节补偿算法如下:d) Use the quotient image to compensate the details of each round of filtering results, and obtain the final scene light correction result of this round of iterations The detail compensation algorithm is as follows:

式中,M用于平衡细节图像所占的权重,为商值图像,计算方法如下:In the formula, M is used to balance the weight of the detail image, is the quotient image, the calculation method is as follows:

在所述步骤5中的迭代的联合双边滤波方法在第一轮迭代时,导向图为噪声图像自身,在以后的迭代过程中,将每一轮迭代的结果作为下一轮迭代的导向图,并且修正透射率时滤波窗口选取15×15,修正场景光时滤波窗口选取7×7;In the iterative joint bilateral filtering method in the step 5, during the first round of iteration, the guide map is the noise image itself, and in the subsequent iteration process, the result of each round of iteration is used as the guide map of the next round of iteration, And when correcting the transmittance, the filter window is selected to be 15×15, and when the scene light is corrected, the filter window is selected to be 7×7;

6)将步骤5中最终获得的场景光进行反转,得到最终的增强去噪结果。6) Use the scene light finally obtained in step 5 Inversion is performed to obtain the final enhanced denoising result.

实施例:Example:

本发明提供了一种低照度图像的同步增强去噪方法,在提高低照度图像可视化效果的同时有效去除图像噪声,本发明的效果可以通过以下实验数据进一步说明:The present invention provides a synchronously enhanced denoising method for low-illuminance images, which effectively removes image noise while improving the visualization effect of low-illuminance images. The effect of the present invention can be further illustrated by the following experimental data:

请参阅图2-3,图2为一幅大小为1920×1080添加了标准差为5的高斯白噪声的低照度图像,使用本发明提出的同步增强去噪方法处理的最终结果如图3所示,由图2-3可以看出,本发明提出的低照度同步增强去噪方法可以有效的提升图像整体亮度并有效去除图像噪声,在增强结果中不但可以观察出台阶等原本不可见的场景信息,并且如车牌号码等细节信息仍清晰可见并没有受到去噪操作的影响。Please refer to Figure 2-3, Figure 2 is a low-illuminance image with a size of 1920×1080 and Gaussian white noise with a standard deviation of 5, the final result of processing using the synchronization enhancement denoising method proposed by the present invention is shown in Figure 3 As shown in Figure 2-3, it can be seen that the low-illuminance synchronous enhancement and denoising method proposed by the present invention can effectively improve the overall brightness of the image and effectively remove image noise. In the enhancement results, not only can you observe originally invisible scenes such as steps information, and details such as license plate numbers are still clearly visible and unaffected by the denoising operation.

本发明提出了一种低照度图像的同步增强去噪方法,利用考虑噪声的雾图退化模型和迭代的联合双边滤波算法将低照度图像的对比度增强操作和噪声去除操作同时进行,从而有效提升图像对比度并抑制噪声,增强图像的视觉效果;在每轮增强去噪的迭代过程中,对迭代结果利用商值图像进行补偿,使处理结果包含丰富的细节信息;充分考虑低照度图像的自身特征,针对低照度图像的特征建立物理模型,同步完成增强、去噪操作。The present invention proposes a synchronously enhanced denoising method for low-illuminance images, which uses the noise-considered fog map degradation model and iterative joint bilateral filtering algorithm to simultaneously perform contrast enhancement and noise removal operations on low-illuminance images, thereby effectively improving the image Contrast and suppress noise, enhance the visual effect of the image; in each round of iterative process of enhanced denoising, use the quotient image to compensate the iterative results, so that the processing results contain rich detailed information; fully consider the characteristics of low-light images, A physical model is established for the characteristics of low-illumination images, and the enhancement and denoising operations are completed simultaneously.

对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the invention is not limited to the details of the above-described exemplary embodiments, but that the invention can be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Accordingly, the embodiments should be regarded in all points of view as exemplary and not restrictive, the scope of the invention being defined by the appended claims rather than the foregoing description, and it is therefore intended that the scope of the invention be defined by the appended claims rather than by the foregoing description. All changes within the meaning and range of equivalents of the elements are embraced in the present invention. Any reference sign in a claim should not be construed as limiting the claim concerned.

此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although this specification is described according to implementation modes, not each implementation mode only includes an independent technical solution, and this description in the specification is only for clarity, and those skilled in the art should take the specification as a whole , the technical solutions in the various embodiments can also be properly combined to form other implementations that can be understood by those skilled in the art.

Claims (7)

1. the synchronous enhancing denoising method of a kind of low-light (level) image, it is characterised in that comprise the following steps:
1) by original low-light (level) image I (xi) input Computerized image processing system, and inverted, the image after being inverted Iinv(xi);
2) according to dark primary priori theoretical, reverse image I is asked forinv(xi) in global air light value Ac
3) according to reverse image Iinv(xi) luminance graph calculate image initial transmission t0
4) the global atmosphere light A for trying to achieve step 2cThe initial transmission t tried to achieve with step 30Misty Image degradation model is substituted into obtain To the initial estimate of scene light
5) parameter in the Misty Image degradation model for considering noise is alternately corrected using the joint bilateral filtering method of iteration, and Result to each round uses the progress details compensation of quotient image method;The greasy weather figure of the consideration noise used in the step 5 As the form of degradation model is as follows:
Iinv(x)=Jinv(x)t(x)+A(1-t(x))+n(x)
The joint bilateral filtering method of iteration in the step 5 is in first round iteration, and it is noise image itself to be oriented to figure, In later iterative process, using the result of each round iteration as next round iteration guiding figure;
The step 5 comprises the following steps implementation:
A) initial value for setting transmissivity and scene light in iterative process is respectively t0WithJuxtaposition iterations k=1;
B) using revised scene light in last round of iterationCorrect the transmissivity t in epicycle iterationk, amendment transmissivity Algorithm is as follows:
<mrow> <msup> <mi>t</mi> <mi>k</mi> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>&amp;Omega;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </munder> <msub> <mi>g</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>g</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <msup> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>A</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>&amp;Omega;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </munder> <msub> <mi>g</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>g</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <msup> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>A</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
In formula, gd(xi- x) it is spatial domain kernel function, gr(tk-1(xi)-tk-1(x) it is) codomain kernel function, Ω (x) is centered on x Neighborhood;
C) using revised transmittance values t in epicycle iterationkCorrect the scene light in epicycle iterationCorrect the calculation of scene light Method is as follows:
<mrow> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>&amp;Omega;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </munder> <msub> <mi>g</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>g</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>A</mi> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>t</mi> <mi>k</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <munder> <mo>&amp;Sigma;</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>&amp;Omega;</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </munder> <msub> <mi>g</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>g</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>(</mo> <mi>x</mi> <mo>)</mo> <mo>)</mo> </mrow> <msup> <mi>t</mi> <mi>k</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
In formula, gd(xi- x) spatial domain kernel function,For codomain kernel function, Ω (x) is centered on x Neighborhood;
D) detail section of each round filter result is compensated using quotient image, obtains the final scene light of epicycle iteration Correction resultDetails backoff algorithm is as follows:
<mrow> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mrow> <mi>k</mi> <mi>F</mi> <mi>i</mi> <mi>n</mi> <mi>a</mi> <mi>l</mi> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>M</mi> <mo>)</mo> </mrow> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mrow> <mi>k</mi> <mi>D</mi> <mi>e</mi> <mi>t</mi> <mi>a</mi> <mi>i</mi> <mi>l</mi> </mrow> </msubsup> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <msubsup> <mi>MJ</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mi>k</mi> </msubsup> </mrow>
In formula, M is used to balance the weight shared by detail pictures,For quotient image, computational methods are as follows:
<mrow> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mrow> <mi>k</mi> <mi>D</mi> <mi>e</mi> <mi>t</mi> <mi>a</mi> <mi>i</mi> <mi>l</mi> </mrow> </msubsup> <mo>=</mo> <mfrac> <mrow> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <mi>e</mi> </mrow> <mrow> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <mi>e</mi> </mrow> </mfrac> </mrow>
In formula, ε is used for the influence for weakening noise;
6) by the scene light finally obtained in step 5Inverted, obtain final enhancing denoising result.
2. the synchronous enhancing denoising method of low-light (level) image according to claim 1, it is characterised in that the scene light Initial estimateAsk for carried out simultaneously with noise remove.
3. the synchronous enhancing denoising method of low-light (level) image according to claim 1, it is characterised in that in the step 1, To input low-light (level) imageWhen carrying out reverse turn operation, specific reversion algorithm is as follows:
<mrow> <msubsup> <mi>I</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mi>c</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>255</mn> <mo>-</mo> <msup> <mi>I</mi> <mi>c</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow>
Wherein, I represents the original low-light (level) image of input, IinvRepresent in reverse image, the Color Channels of c representative images RGB tri- One Color Channel.
4. the synchronous enhancing denoising method of low-light (level) image according to claim 1, it is characterised in that the step 2 is wrapped Include following steps implementation:
A) to reverse image Iinv(xi) each Color Channel do mini-value filtering, and each pixel is asked for triple channel filtering As a result minimum value as the pixel dark primary value, so as to obtain the dark primary figure of reverse image;
B) 0.1% maximum pixel of intensity level in all pixels point in dark primary figure is chosen, by the position of these pixels It is marked, in reverse image Iinv(xi) position corresponding in three Color Channels, find the strong of each passage most bright point Angle value as the Color Channel atmosphere light Ac
5. the synchronous enhancing denoising method of low-light (level) image according to claim 1, it is characterised in that in the step 3, Ask for initial transmission t0Algorithm it is as follows:
t0(xi)=C-Y (xi)
In formula, C is the parameter for weakening luminance picture Y, and C spans are [1.06,1.08], luminance picture Y (xi) it is specific Calculation is as follows:
Y(xi)=0.299 × R+0.587 × G+0.114 × B
In formula:R, G, B distinguish representative image RGB triple channel component values.
6. the synchronous enhancing denoising method of low-light (level) image according to claim 1, it is characterised in that in the step 4, The algorithm for asking for scene light initial estimate is as follows:
<mrow> <msubsup> <mi>J</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> <mn>0</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>A</mi> <mi>c</mi> </msup> </mrow> <mrow> <mi>max</mi> <mrow> <mo>(</mo> <msup> <mi>t</mi> <mn>0</mn> </msup> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>t</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <msup> <mi>A</mi> <mi>c</mi> </msup> </mrow>
In formula, Iinv(xi) be input picture reverse image, t0(xi) be transmissivity initial estimate, AcFor global atmosphere light,For the lower limit of transmissivity, 0.01 is generally taken.
7. the synchronous enhancing denoising method of low-light (level) image according to claim 1, it is characterised in that in the step 5 Filter window size chooses 15 × 15 when correcting transmissivity, and filter window size chooses 7 × 7 during amendment scene light.
CN201510705402.6A 2015-10-27 2015-10-27 A kind of synchronous enhancing denoising method of low-light (level) image Active CN105205794B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510705402.6A CN105205794B (en) 2015-10-27 2015-10-27 A kind of synchronous enhancing denoising method of low-light (level) image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510705402.6A CN105205794B (en) 2015-10-27 2015-10-27 A kind of synchronous enhancing denoising method of low-light (level) image

Publications (2)

Publication Number Publication Date
CN105205794A CN105205794A (en) 2015-12-30
CN105205794B true CN105205794B (en) 2017-11-03

Family

ID=54953456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510705402.6A Active CN105205794B (en) 2015-10-27 2015-10-27 A kind of synchronous enhancing denoising method of low-light (level) image

Country Status (1)

Country Link
CN (1) CN105205794B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106204504B (en) * 2016-09-10 2019-05-21 天津大学 Enhancement method of low-illumination image based on dark channel prior and tone mapping
CN106327450A (en) * 2016-11-07 2017-01-11 湖南源信光电科技有限公司 Method for enhancing low-light video image based on space-time accumulation and image degradation model
CN106530249A (en) * 2016-11-07 2017-03-22 湖南源信光电科技有限公司 Low-illumination color image enhancement method based on physical model
CN106780381B (en) * 2016-12-09 2020-01-14 天津大学 Low-illumination image self-adaptive enhancement method based on dark primary color and bilateral filtering
CN110148188B (en) * 2019-05-27 2023-03-10 平顶山学院 A method for estimating the illumination distribution of low-illumination images based on the maximum difference image
CN110807742B (en) * 2019-11-21 2023-02-24 西安工业大学 A low-light image enhancement method based on integrated network
CN111127362A (en) * 2019-12-25 2020-05-08 南京苏胜天信息科技有限公司 Video dedusting method, system and device based on image enhancement and storage medium
CN113947535B (en) * 2020-07-17 2023-10-13 四川大学 A low-light image enhancement method based on illumination component optimization
CN113222866B (en) * 2021-07-08 2022-03-25 北方夜视科技(南京)研究院有限公司 Gray scale image enhancement method, computer readable medium and computer system
CN113450290B (en) * 2021-09-01 2021-11-26 中科方寸知微(南京)科技有限公司 Low-illumination image enhancement method and system based on image inpainting technology
CN113989141B (en) * 2021-10-22 2022-12-23 赛诺威盛科技(北京)股份有限公司 CT head image noise reduction method and device and storage medium
CN119850493B (en) * 2025-03-13 2025-06-24 潍坊学院 Low-illumination image enhancement method for simulating foggy weather degradation mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783012A (en) * 2010-04-06 2010-07-21 中南大学 Automatic image defogging method based on dark primary colour
CN103177424A (en) * 2012-12-07 2013-06-26 西安电子科技大学 Low-luminance image reinforcing and denoising method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7428333B2 (en) * 2004-01-23 2008-09-23 Old Dominion University Visibility improvement in color video stream

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783012A (en) * 2010-04-06 2010-07-21 中南大学 Automatic image defogging method based on dark primary colour
CN103177424A (en) * 2012-12-07 2013-06-26 西安电子科技大学 Low-luminance image reinforcing and denoising method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《低照度图像的增强及降噪技术研究》;罗玲利;《中国优秀硕士学位论文全文数据库 信息科技辑》;20131215(第S2期);第3.3.1节第1段倒数1-5行,第3.3.2节第2-5段,第5.3.1节第1段,第3.3.2节最后2段 *
《单幅雾天图像的同步去噪与复原》;方帅等;《模式识别与人工智能》;20120229;第25卷(第1期);全文 *

Also Published As

Publication number Publication date
CN105205794A (en) 2015-12-30

Similar Documents

Publication Publication Date Title
CN105205794B (en) A kind of synchronous enhancing denoising method of low-light (level) image
CN107767354B (en) An Image Dehazing Algorithm Based on Dark Primitive Color Prior
CN107527332B (en) Low-illumination image color retention enhancement method based on improved Retinex
CN109064426B (en) A method and device for suppressing glare and enhancing images in low-light images
Wang et al. Variational single nighttime image haze removal with a gray haze-line prior
WO2016206087A1 (en) Low-illumination image processing method and device
CN110148095A (en) A kind of underwater picture Enhancement Method and enhancement device
CN105046658B (en) A kind of low-light (level) image processing method and device
CN108564597B (en) Video foreground object extraction method fusing Gaussian mixture model and H-S optical flow method
Pang et al. Improved single image dehazing using guided filter
CN107895357B (en) A kind of real-time water surface thick fog scene image Enhancement Method based on FPGA
CN102968772A (en) Image defogging method based on dark channel information
Zotin Fast algorithm of image enhancement based on multi-scale retinex
CN107527325B (en) Monocular underwater vision enhancement method based on dark channel priority
CN112116536A (en) Low-illumination image enhancement method and system
CN107256539B (en) An Image Sharpening Method Based on Local Contrast
CN108154492B (en) An image haze removal method based on non-local mean filtering
CN109087254A (en) Unmanned plane image haze sky and white area adaptive processing method
CN109523474A (en) A kind of enhancement method of low-illumination image based on greasy weather degradation model
CN117408906B (en) Low-light image enhancement method and system
CN115170404A (en) Night image defogging method and device based on brightness compensation and layer separation
CN115760640A (en) Coal mine low-illumination image enhancement method based on noise-containing Retinex model
CN105513015A (en) Sharpness processing method for foggy-day images
CN116468636A (en) Low illumination enhancement method, device, electronic device and readable storage medium
CN113379631B (en) Image defogging method and device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhu Guangming

Inventor after: Shen Peiyi

Inventor after: Song Juan

Inventor after: Zhang Liang

Inventor after: Peng Xilu

Inventor after: Zhang Shue

Inventor after: Liu Huan

Inventor before: Shen Peiyi

Inventor before: Zhu Guangming

Inventor before: Song Juan

Inventor before: Zhang Liang

Inventor before: Peng Xilu

Inventor before: Zhang Shue

Inventor before: Liu Huan

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant