CN105205792A - Underwater image enhancement method based on brightness and chrominance separation - Google Patents
Underwater image enhancement method based on brightness and chrominance separation Download PDFInfo
- Publication number
- CN105205792A CN105205792A CN201510598932.5A CN201510598932A CN105205792A CN 105205792 A CN105205792 A CN 105205792A CN 201510598932 A CN201510598932 A CN 201510598932A CN 105205792 A CN105205792 A CN 105205792A
- Authority
- CN
- China
- Prior art keywords
- component
- underwater
- image
- luminance
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000000926 separation method Methods 0.000 title claims abstract description 8
- 238000012937 correction Methods 0.000 claims abstract description 14
- 230000003044 adaptive effect Effects 0.000 claims abstract description 6
- 238000012545 processing Methods 0.000 claims description 21
- 238000010586 diagram Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 230000002708 enhancing effect Effects 0.000 claims 1
- 238000005516 engineering process Methods 0.000 description 11
- 238000001914 filtration Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241000023320 Luma <angiosperm> Species 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- OSWPMRLSEDHDFF-UHFFFAOYSA-N methyl salicylate Chemical compound COC(=O)C1=CC=CC=C1O OSWPMRLSEDHDFF-UHFFFAOYSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
Landscapes
- Image Processing (AREA)
Abstract
本发明涉及一种基于亮度色度分离的水下图像增强方法,包括:输入水下彩色图像的亮度色度分量分离;基于中值滤波器的亮度分量去噪;基于自适应直方图均衡的亮度分量对比度增强;4)色度分量偏色校正;提高色度分量饱和度;恢复图像。本发明可提高水下图像可视质量。
The invention relates to an underwater image enhancement method based on luminance and chrominance separation, comprising: separation of luminance and chrominance components of an input underwater color image; denoising of luminance components based on a median filter; brightness equalization based on an adaptive histogram Component contrast enhancement; 4) chroma component color cast correction; increase chroma component saturation; restore image. The invention can improve the visible quality of underwater images.
Description
技术领域technical field
本发明涉及计算机视觉领域中的图像增强技术,尤其是涉及针对水下摄像机拍摄得到的降质图像增强技术。The invention relates to the image enhancement technology in the field of computer vision, in particular to the degraded image enhancement technology for underwater cameras.
背景技术Background technique
我国是个海洋大国,拥有1.8万公里长的海岸线和300多万平方公里的海洋国土,对海洋资源的探索和开发对我国的国民经济和军事都有重要的意义和价值。自主式水下机器人(简称AUV)在海上资源的勘探开发(铺设管道、海底考察等)、海洋生态监测,以及军事领域都有广泛的应用。现在的AUV大多都配备了光学成像及图像处理识别系统,可见光图像是AUV的主要信息来源之一。但受到水下恶劣成像环境的限制,获取到的水下图像普遍存在对比度低、模糊、偏色等不利因素。图像可视质量的下降会严重影响后续特征提取和目标识别的性能。因此,借助图像处理技术提高原始水下图像可视质量的研究越来越受到研究者的关注,相关研究日益增多,已成为当前图像处理的研究热点问题之一[1]。my country is a large ocean country, with a coastline of 18,000 kilometers and an ocean territory of more than 3 million square kilometers. The exploration and development of marine resources are of great significance and value to our national economy and military. Autonomous underwater vehicles (AUV for short) are widely used in the exploration and development of offshore resources (pipeline laying, seabed investigation, etc.), marine ecological monitoring, and military fields. Most of the current AUVs are equipped with optical imaging and image processing recognition systems, and visible light images are one of the main sources of information for AUVs. However, due to the limitation of the harsh underwater imaging environment, the acquired underwater images generally have unfavorable factors such as low contrast, blur, and color cast. The degradation of image visual quality will seriously affect the performance of subsequent feature extraction and object recognition. Therefore, the research on improving the visual quality of the original underwater image with the help of image processing technology has attracted more and more attention from researchers, and the related research has been increasing, which has become one of the hot research issues in current image processing [1] .
国内外有关水下图像增强技术的研究,始于本世纪初,经过十几年的发展,研究者提出了很多方法。根据各种方法所使用的图像增强技术不同,可将已有方法分为三类:基于经典图像增强技术的方法[2,3,4]、基于颜色恒常性理论的方法[5,6]、以及混合方法[7,8]。国内发明专利方面,陈名松等人[9](申请号CN201310628073)提出了一种基于同态滤波和双正交小波阈值滤波法相结合水下图像增强技术。他们首先借助同态滤波技术降低光照不均匀情况的影响,然后双正交小波阈值滤波法去除图像的噪声。李一兵等人[10](申请号CN201310628073)提出了一种基于Retinex理论的水下图像增强方法。他们首先将水下图像转换到HSV色彩空间,采用S分量用于去噪,采用V分量进行Retinex增强。The research on underwater image enhancement technology at home and abroad began at the beginning of this century. After more than ten years of development, researchers have proposed many methods. According to the different image enhancement techniques used in various methods, the existing methods can be divided into three categories: methods based on classical image enhancement techniques [2,3,4] , methods based on color constancy theory [5,6] , and hybrid methods [7,8] . In terms of domestic invention patents, Chen Mingsong et al. [9] (application number CN201310628073) proposed an underwater image enhancement technology based on the combination of homomorphic filtering and biorthogonal wavelet threshold filtering. They first reduced the influence of uneven illumination with the help of homomorphic filtering technology, and then biorthogonal wavelet threshold filtering method removed the noise of the image. Li Yibing et al. [10] (application number CN201310628073) proposed an underwater image enhancement method based on Retinex theory. They first converted the underwater image to the HSV color space, using the S component for denoising and the V component for Retinex enhancement.
参考文献references
[1]RaimondoSchettiniandSilviaCorchs,“UnderwaterImageProcessing:StateoftheArtofRestorationandImageEnhancementMethods”,EURASIPJournalonAdvancesinSignalProcessing,2012.[1] Raimondo Schettini and Silvia Corchs, "Underwater Image Processing: State of the Art of Restoration and Image Enhancement Methods", EURASIP Journalon Advances in Signal Processing, 2012.
[2]Garcia,R.,Nicosevici,T.,andCufí,X.,“OnTheWaytoSolveLightingProblemsinUnderwaterImaging”,ProceedingsoftheIEEEOCEANSConference(OCEANS),2002,pp.1018-1024.[2] Garcia, R., Nicosevici, T., and Cufí, X., "On The Way to Solve Lighting Problems in Underwater Imaging", Proceeding of the IEEE OCEANS Conference (OCEANS), 2002, pp.1018-1024.
[3]Hitam,M.S.,KualaTerengganu,Yussof,W.N.J.H.W.,Awalludin,E.A.,Bachok,Z.,“Mixturecontrastlimitedadaptivehistogramequalizationforunderwaterimageenhancement”,ComputerApplicationsTechnology(ICCAT),2013InternationalConferenceon,2013,1-5.[3] Hitam, M.S., Kuala Terengganu, Yussof, W.N.J.H.W., Awalludin, E.A., Bachok, Z., "Mixturecontrastlimitedadaptivehistogramequalizationforunderwaterimageenhancement", ComputerApplicationsTechnology (ICCAT), 2013InternationalConferenceon, 2013, 1-5.
[4]陈从平,王健,邹雷,张发军,“一种有效的低对比度水下图像增强方法”,激光与红外,42(5),2012,pp.567-571.[4] Chen Congping, Wang Jian, Zou Lei, Zhang Fajun, "An effective method for enhancing low-contrast underwater images", Laser and Infrared, 42(5), 2012, pp.567-571.
[5]BirgitHenke,MatthiasVahl,andZhiliangZhou,“RemovingColorCastofUnderwaterImagesthroughNon-ConstantColorConstancyHypothesis”,ISPA2013,20-24[5] Birgit Henke, Matthias Vahl, and Zhiliang Zhou, "Removing Color Cast of Underwater Images through Non-Constant Color Constancy Hypothesis", ISPA2013, 20-24
[6]XueyangFu,PeixianZhuang,andYinghaoLiao,“ARetinex-basedEnhancementApproachforSingleUnderwaterImage”,IEEEInternationalConferenceonImageProcessing(ICIP),pp.4572-4576,2014.[6] Xueyang Fu, Peixian Zhuang, and Yinghao Liao, "ARetinex-based Enhancement Approach for Single Underwater Image", IEEE International Conference on Image Processing (ICIP), pp.4572-4576, 2014.
[7]K.Iqbal,Odetayo,M.,James,A.,Salam,R.A.,Talib,A.Z.H.,“EnhancingthelowqualityimagesusingUnsupervisedColourCorrectionMethod”,2010IEEEInternationalConferenceonSystemsManandCybernetics(SMC),vol.,no.,pp.1703,1709,10-13Oct.2010.[7] K.Iqbal, Odetayo, M., James, A., Salam, R.A., Talib, A.Z.H., "Enhancing the low quality images using Unsupervised ColourCorrection Method", 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), vol., no., pp.1703, 1709, 10-13 Oct. 2010.
[8]CosminAncuti,CodrutaOrnianaAncuti,TomHaberandPhilippeBekaert,“EnhancingUnderwaterImagesandVideosbyFusion”,CVPR2012.[8] Cosmin Ancuti, Codruta Orniana Ancuti, Tom Haber and Philippe Bekaert, "Enhancing Underwater Images and Videos by Fusion", CVPR2012.
[9]陈名松,秦琳,康艳梅,等,“水下图像增强处理方法”,中国发明专利,申请号:CN201310628073[9] Chen Mingsong, Qin Lin, Kang Yanmei, etc., "Underwater image enhancement processing method", Chinese invention patent, application number: CN201310628073
[10]李一,付强,叶方,等“基于HSV色彩空间结合Retinex的水下图像增强方法”,申请号:CN201210359018,[10] Li Yi, Fu Qiang, Ye Fang, etc. "Underwater image enhancement method based on HSV color space combined with Retinex", application number: CN201210359018,
[11]林福宗,《多媒体技术基础》(第3版),2009年,清华大学出版社[11] Lin Fuzong, "Basics of Multimedia Technology" (3rd Edition), 2009, Tsinghua University Press
发明内容Contents of the invention
本发明针对水下降质图像,提出一种基于亮度色度分离的水下图像增强方法,实现提高水下图像可视质量的目的。本发明的技术方案如下:Aiming at underwater degraded images, the present invention proposes an underwater image enhancement method based on luminance and chrominance separation, so as to achieve the purpose of improving the visual quality of underwater images. Technical scheme of the present invention is as follows:
一种基于亮度色度分离的水下图像增强方法,包括下列步骤:An underwater image enhancement method based on luminance and chromaticity separation, comprising the following steps:
1)分离输入的水下彩色图像的亮度色度分量1) Separate the luminance and chrominance components of the input underwater color image
将输入的水下彩色图像从RGB色彩空间转换到YCbCr色彩空间来分离亮度和色度分量,在YCbCr色彩空间中,Y表示亮度分量,Cb和Cr分别代表蓝色和红色偏移量。Convert the input underwater color image from the RGB color space to the YCbCr color space to separate the luminance and chrominance components. In the YC b C r color space, Y represents the luminance component, and C b and C r represent the blue and red biases respectively. displacement.
2)基于中值滤波器的亮度分量去噪2) Luminance component denoising based on median filter
选用中值滤波器对亮度分量Y进行滤波处理,处理结果用Y1表示;Select the median filter to filter the brightness component Y, and the processing result is represented by Y1 ;
3)基于自适应直方图均衡的亮度分量对比度增强3) Brightness component contrast enhancement based on adaptive histogram equalization
选用对比度受限直方图均衡方法(CLAHE)提高去噪后的亮度分量Y1的对比度,处理结果用Y2表示;The contrast-limited histogram equalization method (CLAHE) is selected to improve the contrast of the denoised brightness component Y1 , and the processing result is represented by Y2 ;
4)色度分量偏色校正4) Chroma component color cast correction
用Cb和Cr表示YCbCr空间中的两色度分量图,用Mb和Mr分别表示Cb和Cr的均值,使用下式调整Cb和Cr两色度分量的取值,完成色度分量的偏色校正:Use C b and C r to represent the two chromaticity component diagrams in the YCbCr space, use M b and M r to represent the mean values of C b and C r respectively, and use the following formula to adjust the values of the two chromatic components of C b and C r , Complete the color cast correction of the chroma component:
式中,用Cb1和Cr1表示偏色校正结果;In the formula, use C b1 and C r1 to represent the color cast correction results;
5)提高色度分量饱和度5) Increase the saturation of the chroma component
使用Sigmoid函数拉伸经过偏色校正的色度分量,得到增强色度饱和度,所使用的Sigmoid函数为:Use the Sigmoid function to stretch the chroma component that has undergone color cast correction to obtain enhanced chroma saturation. The Sigmoid function used is:
式中,输入f为Cb1时,输出g表示蓝色色度分量的饱和度增强结果,用Cb2表示;输入f为Cr1时,输出g表示红色色度分量的饱和度增强结果,用Cr2表示;In the formula, when the input f is C b1 , the output g represents the saturation enhancement result of the blue chroma component, represented by C b2 ; when the input f is C r1 , the output g represents the saturation enhancement result of the red chroma component, represented by C r2 means;
6)恢复图像6) Restoring the image
将经过步骤3)处理后的亮度分量Y2和色度分量Cb2和Cr2组合,并重新变换回RGB色彩空间。Combine the luminance component Y 2 and the chrominance components C b2 and C r2 processed in step 3), and re-transform back to the RGB color space.
步骤3可采用“瑞利分布”。Step 3 can use "Rayleigh distribution".
附图说明Description of drawings
图1本发明的流程框图。Fig. 1 is a flow chart of the present invention.
图2列出了部分水下图像构造测试样本集及处理结果示例,左侧是彩色降质水下图像,右侧为增强结果图像。Figure 2 lists some underwater image construction test sample sets and processing results examples. The left side is the color degraded underwater image, and the right side is the enhanced result image.
图3为本发明与PhotoshopCS12提供“自动色调+自动对比度调整”方案的处理结果对比图。其中,第一行是原始输入图像,第二行是Photoshop处理结果,第三行是所提方法处理结果。Fig. 3 is a comparison chart of the processing results of the present invention and the "automatic color tone + automatic contrast adjustment" scheme provided by PhotoshopCS12. Among them, the first row is the original input image, the second row is the Photoshop processing result, and the third row is the processing result of the proposed method.
具体实施方式Detailed ways
本发明使用一种基于亮度色度分离的水下图像增强方法。所提方法首先将输入图像由RGB色彩空间转换到YCbCr色彩空间;对于代表亮度成分的Y分量,结合中值滤波技术滤除图像噪声,采用自适应直方图均衡技术拉伸图像的对比度;对于代表色度成分的Cb和Cr分量,采用一种新的方案校正色彩偏色并提高色彩饱和度;最后将增强后的各分量重新组合,变换回RGB色彩空间。参见图1,具体步骤如下:The invention uses an underwater image enhancement method based on brightness and chromaticity separation. The proposed method first converts the input image from the RGB color space to the YCbCr color space; for the Y component representing the brightness component, combined with the median filter technology to filter out the image noise, and using the adaptive histogram equalization technology to stretch the contrast of the image; for the representative For the Cb and Cr components of the chroma component, a new scheme is used to correct the color cast and improve the color saturation; finally, the enhanced components are recombined and transformed back to the RGB color space. See Figure 1, the specific steps are as follows:
1输入彩色图像亮度色度分量分离1 input color image luma chrominance component separation
本发明所提方法通过将输入彩色图像从RGB色彩空间转换到YCbCr色彩空间来分离亮度和色度分量。YCbCr色彩空间常用于图像/视频编码领域,人们熟知的JPEG、MPEG等文件格式均采用此色彩空间。在YCbCr色彩空间中,Y表示亮度分量,Cb和Cr分别代表蓝色和红色偏移量。从RGB色彩空间到YCbCr色彩空间的转换公式,可参考相关文献[11]。The proposed method of the present invention separates luminance and chrominance components by converting an input color image from RGB color space to YCbCr color space. The YC b C r color space is often used in the field of image/video coding, and well-known file formats such as JPEG and MPEG all use this color space. In the YC b C r color space, Y represents the luminance component, and C b and C r represent blue and red offsets, respectively. For the conversion formula from RGB color space to YC b C r color space, please refer to related literature [11].
2基于中值滤波器的亮度分量去噪2 Luminance component denoising based on median filter
水下图像在成像过程中,受到水中悬浮颗粒及环境光的影响,部分区域存在噪声,在进行图像增强处理之前,有必要去除噪声影响。图像中的噪声能量通常集中在高频,因此可以选用低通滤波器去噪。相对于普通的高斯平滑滤波器,中值滤波器在去噪同时,能很好地保留细节信息。基于上述分析,所提方法选用中值滤波器对亮度分量进行平滑处理,实现去噪的目的。During the imaging process of the underwater image, it is affected by suspended particles in the water and ambient light, and there is noise in some areas. It is necessary to remove the noise before image enhancement processing. The noise energy in the image is usually concentrated in high frequency, so a low-pass filter can be used for denoising. Compared with the ordinary Gaussian smoothing filter, the median filter can preserve the detail information well while denoising. Based on the above analysis, the proposed method uses a median filter to smooth the luminance component to achieve the purpose of denoising.
本发明所提方法选用窗口大小为5×5的中值滤波器,对亮度分量Y进行滤波处理,处理结果用Y1表示。The method proposed in the present invention selects a median filter with a window size of 5×5 to perform filtering processing on the brightness component Y, and the processing result is represented by Y 1 .
3基于自适应直方图均衡的亮度分量对比度增强3 Contrast enhancement of luminance component based on adaptive histogram equalization
传统的直方图均衡技术(简称HE)没有考虑位置信息,增强结果不佳。自适应直方图均衡技术(简称AHE)很好地克服了HE的不足,但仍存在局部区域噪声被过度放大的问题。对比度受限直方图均衡(简称CLAHE)作为一种典型的AHE方法,能够有效克服前者的不足,在图像增强技术中应用广泛。The traditional histogram equalization technique (HE for short) does not consider the location information, and the enhancement result is not good. Adaptive histogram equalization (AHE for short) overcomes the shortcomings of HE well, but there is still the problem of excessive amplification of noise in local areas. Contrast-Limited Histogram Equalization (CLAHE for short), as a typical AHE method, can effectively overcome the shortcomings of the former, and is widely used in image enhancement technology.
本发明选用CLAHE技术提高去噪后的亮度分量的对比度,其中每个子块大小为8×8,裁剪值设为0.01,分布采用“瑞利分布”,处理结果用Y2表示。The present invention selects CLAHE technology to improve the contrast of the brightness component after denoising, wherein the size of each sub-block is 8×8, the clipping value is set to 0.01, the distribution adopts “Rayleigh distribution”, and the processing result is represented by Y2 .
4色度分量偏色校正4 chroma component color cast correction
当光照条件发生变化时,场景中的物体反射分量发生改变,容易产生色彩偏色。对于水下图像,可见光在水中传输过程中,受到水中悬浮颗粒散射及吸收共同作用的影响,会出现明显偏色。实验表明,可见光中波长较长的光(如红光、黄光)比波长较短的光(如蓝光、绿光)更易被水分子吸收,即波长越长,吸收衰减越明显。因此常见的水下景物通常呈现蓝色(或绿色)。When the lighting conditions change, the reflection component of the object in the scene changes, which is prone to color cast. For underwater images, when visible light is transmitted in water, it is affected by the combined effects of scattering and absorption of suspended particles in the water, resulting in obvious color cast. Experiments have shown that light with longer wavelengths (such as red light and yellow light) in visible light is more easily absorbed by water molecules than light with shorter wavelengths (such as blue light and green light), that is, the longer the wavelength, the more obvious the absorption attenuation. Therefore, common underwater scenes usually appear blue (or green).
本发明提出了一种新的基于Cb-Cr色度空间上的偏色校正方案。用Cb和Cr表示YCbCr空间中的两色度分量图,用Mb和Mr分别表示Cb和Cr的均值。如果图像不存在偏色,在YCbCr空间Mb和Mr相等,即有:The invention proposes a new color cast correction scheme based on Cb-Cr chromaticity space. Use C b and C r to represent the two chromaticity component diagrams in the YCbCr space, and use M b and M r to represent the mean values of C b and C r , respectively. If there is no color cast in the image, M b and M r are equal in the YCbCr space, that is:
Mb=Mr=128(1)M b =M r =128(1)
所提方法使用下式调整Cb和Cr两色度分量的取值,完成偏色校正,即有:The proposed method uses the following formula to adjust the values of the two chrominance components C b and C r to complete the color cast correction, namely:
式中,用Cb1和Cr1表示偏色校正结果。In the formula, C b1 and C r1 represent the color cast correction results.
5色度分量饱和度提高5 Chroma component saturation increased
经偏色校正处理后的图像颜色较为暗淡。观察Cb1和Cr1的直方图发现,大部分数值都集中在中值128附近,且分布范围较窄。因此,本发明所提方法使用Sigmoid函数拉伸色度分量,得到增强色度饱和度。所用Sigmoid函数定义为:The color of the image after color cast correction is relatively dull. Observing the histograms of C b1 and C r1 , it is found that most of the values are concentrated around the median value of 128, and the distribution range is narrow. Therefore, the method proposed in the present invention uses the Sigmoid function to stretch the chroma component to obtain enhanced chroma saturation. The Sigmoid function used is defined as:
式中,输入f表示Cb1和Cr1,输出g表示两色度分量的饱和度增强结果,用Cb2和Cr2表示In the formula, the input f represents C b1 and C r1 , and the output g represents the saturation enhancement result of the two chroma components, represented by C b2 and C r2
6恢复图像6 Restoring the image
将处理后的亮度分量Y2和色度分量Cb2和Cr2组合,并重新变换回RGB色彩空间,以便于显示或保存。Combine the processed luminance component Y2 and chrominance components Cb2 and Cr2 , and re-transform back to the RGB color space for easy display or storage.
为了验证所提方法的有效性,采用了50幅水下图像构造测试样本集。图2列出了部分处理结果示例,左侧是彩色降质水下图像,右侧为增强结果图像。对比原图像,不难发现处理结果图像的对比度和色彩信息都得到了显著改观,验证了我们方法的有效性。In order to verify the effectiveness of the proposed method, 50 underwater images are used to construct a test sample set. Figure 2 lists some examples of processing results, the left side is the color degraded underwater image, and the right side is the enhanced result image. Compared with the original image, it is not difficult to find that the contrast and color information of the processed image have been significantly improved, which verifies the effectiveness of our method.
图3所示为所提方法与PhotoshopCS12提供“自动色调+自动对比度调整”方案的处理结果对比图。其中,第一行是原始输入图像,第二行是Photoshop处理结果,第三行是所提方法处理结果。对比两种方法处理结果不难发现,所提方法处理结果的对比度和颜色饱和度都优于Photoshop方法的结果。Figure 3 shows the comparison of the processing results of the proposed method and PhotoshopCS12's "automatic tone + automatic contrast adjustment" scheme. Among them, the first row is the original input image, the second row is the Photoshop processing result, and the third row is the processing result of the proposed method. Comparing the processing results of the two methods, it is not difficult to find that the contrast and color saturation of the processing results of the proposed method are better than those of the Photoshop method.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510598932.5A CN105205792A (en) | 2015-09-18 | 2015-09-18 | Underwater image enhancement method based on brightness and chrominance separation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510598932.5A CN105205792A (en) | 2015-09-18 | 2015-09-18 | Underwater image enhancement method based on brightness and chrominance separation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105205792A true CN105205792A (en) | 2015-12-30 |
Family
ID=54953454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510598932.5A Pending CN105205792A (en) | 2015-09-18 | 2015-09-18 | Underwater image enhancement method based on brightness and chrominance separation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105205792A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106454144A (en) * | 2016-09-08 | 2017-02-22 | 清华大学 | Correction method for over-exposure of Google glasses image |
CN107067386A (en) * | 2017-04-24 | 2017-08-18 | 上海海洋大学 | A kind of shallow sea underwater picture Enhancement Method stretched based on relative color histogram |
CN107845080A (en) * | 2017-11-24 | 2018-03-27 | 信雅达系统工程股份有限公司 | Card image enhancement method |
CN108062746A (en) * | 2016-11-09 | 2018-05-22 | 深圳市优朋普乐传媒发展有限公司 | A kind of method of video image processing and device, video coding system |
CN108846812A (en) * | 2018-05-30 | 2018-11-20 | 成都微光集电科技有限公司 | A kind of CLHAE image enchancing method based on gray-scale compression |
CN109580619A (en) * | 2018-12-03 | 2019-04-05 | 余姚市腾翔电子科技有限公司 | Bathtub blocks alarm mechanism |
CN110047051A (en) * | 2019-04-24 | 2019-07-23 | 郑州轻工业学院 | A kind of non-uniform lighting colour-image reinforcing method |
CN111507922A (en) * | 2020-04-21 | 2020-08-07 | 南京航空航天大学 | Histogram-based tunnel surface image adaptive enhancement method |
CN113379609A (en) * | 2020-03-10 | 2021-09-10 | Tcl科技集团股份有限公司 | Image processing method, storage medium and terminal equipment |
CN113658086A (en) * | 2021-08-06 | 2021-11-16 | 桂林日盛水务有限公司 | A Wavelet Fusion-Based CLAHE and Histogram Stretching Method for Underwater Image Enhancement |
WO2023284528A1 (en) * | 2021-07-13 | 2023-01-19 | 深圳市洲明科技股份有限公司 | Image enhancement method and apparatus, computer device, and storage medium |
CN117788303A (en) * | 2023-11-30 | 2024-03-29 | 江苏海洋大学 | Underwater image enhancement method based on adaptive histogram and G-MSRCR |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102930512A (en) * | 2012-09-25 | 2013-02-13 | 哈尔滨工程大学 | HSV (Hue, Saturation and Value) color space based underwater image enhancing method by combining with Retinex |
CN103679651A (en) * | 2013-11-29 | 2014-03-26 | 桂林电子科技大学 | Underwater image enhancement processing method |
CN103996178A (en) * | 2014-05-30 | 2014-08-20 | 天津大学 | Sand and dust weather color image enhancing method |
CN104616268A (en) * | 2015-02-17 | 2015-05-13 | 天津大学 | Underwater image restoration method based on turbulence model |
CN104637036A (en) * | 2015-02-17 | 2015-05-20 | 天津大学 | Chinese ancient painting enhancing method |
-
2015
- 2015-09-18 CN CN201510598932.5A patent/CN105205792A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102930512A (en) * | 2012-09-25 | 2013-02-13 | 哈尔滨工程大学 | HSV (Hue, Saturation and Value) color space based underwater image enhancing method by combining with Retinex |
CN103679651A (en) * | 2013-11-29 | 2014-03-26 | 桂林电子科技大学 | Underwater image enhancement processing method |
CN103996178A (en) * | 2014-05-30 | 2014-08-20 | 天津大学 | Sand and dust weather color image enhancing method |
CN104616268A (en) * | 2015-02-17 | 2015-05-13 | 天津大学 | Underwater image restoration method based on turbulence model |
CN104637036A (en) * | 2015-02-17 | 2015-05-20 | 天津大学 | Chinese ancient painting enhancing method |
Non-Patent Citations (4)
Title |
---|
MUHAMMAD SUZURI HITAM 等: "Mixture contrast limited adaptive histogram equalization for underwater image enhancement", 《COMPUTER APPLICATIONS TECHNOLOGY(ICCAT),2013 INTERNATIONAL CONFERENCE ON》 * |
XUEYANG FU 等: "A RETINEX-BASED ENHANCING APPROACH FOR SINGLE UNDERWATER IMAGE", 《ICIP 2014》 * |
刘丽梅: "HSV空间彩色X线医学图像增强研究", 《云南师范大学学报》 * |
王建 等: "基于CLAHE的X射线行李图像增强", 《天津大学学报》 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106454144A (en) * | 2016-09-08 | 2017-02-22 | 清华大学 | Correction method for over-exposure of Google glasses image |
CN106454144B (en) * | 2016-09-08 | 2019-04-02 | 清华大学 | A kind of bearing calibration of pair of Google glass image overexposure |
CN108062746A (en) * | 2016-11-09 | 2018-05-22 | 深圳市优朋普乐传媒发展有限公司 | A kind of method of video image processing and device, video coding system |
CN107067386A (en) * | 2017-04-24 | 2017-08-18 | 上海海洋大学 | A kind of shallow sea underwater picture Enhancement Method stretched based on relative color histogram |
CN107067386B (en) * | 2017-04-24 | 2020-05-01 | 上海海洋大学 | A Shallow Sea Underwater Image Enhancement Method Based on Relative Global Histogram Stretching |
CN107845080B (en) * | 2017-11-24 | 2020-03-20 | 信雅达系统工程股份有限公司 | Card image enhancement method |
CN107845080A (en) * | 2017-11-24 | 2018-03-27 | 信雅达系统工程股份有限公司 | Card image enhancement method |
CN108846812A (en) * | 2018-05-30 | 2018-11-20 | 成都微光集电科技有限公司 | A kind of CLHAE image enchancing method based on gray-scale compression |
CN109580619A (en) * | 2018-12-03 | 2019-04-05 | 余姚市腾翔电子科技有限公司 | Bathtub blocks alarm mechanism |
CN110047051A (en) * | 2019-04-24 | 2019-07-23 | 郑州轻工业学院 | A kind of non-uniform lighting colour-image reinforcing method |
CN110047051B (en) * | 2019-04-24 | 2022-09-13 | 郑州轻工业学院 | Non-uniform illumination color image enhancement method |
CN113379609A (en) * | 2020-03-10 | 2021-09-10 | Tcl科技集团股份有限公司 | Image processing method, storage medium and terminal equipment |
CN113379609B (en) * | 2020-03-10 | 2023-08-04 | Tcl科技集团股份有限公司 | Image processing method, storage medium and terminal equipment |
CN111507922A (en) * | 2020-04-21 | 2020-08-07 | 南京航空航天大学 | Histogram-based tunnel surface image adaptive enhancement method |
WO2023284528A1 (en) * | 2021-07-13 | 2023-01-19 | 深圳市洲明科技股份有限公司 | Image enhancement method and apparatus, computer device, and storage medium |
CN113658086A (en) * | 2021-08-06 | 2021-11-16 | 桂林日盛水务有限公司 | A Wavelet Fusion-Based CLAHE and Histogram Stretching Method for Underwater Image Enhancement |
CN117788303A (en) * | 2023-11-30 | 2024-03-29 | 江苏海洋大学 | Underwater image enhancement method based on adaptive histogram and G-MSRCR |
CN117788303B (en) * | 2023-11-30 | 2024-05-31 | 江苏海洋大学 | Underwater image enhancement method based on self-adaptive histogram and G-MSRCR |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105205792A (en) | Underwater image enhancement method based on brightness and chrominance separation | |
Zhou et al. | Auto color correction of underwater images utilizing depth information | |
CN108053374B (en) | Underwater image enhancement method combining bilateral filtering and Retinex | |
CN111161170B (en) | Underwater image comprehensive enhancement method for target recognition | |
CN107507145B (en) | An Underwater Image Enhancement Method Based on Adaptive Histogram Stretching in Different Color Spaces | |
CN104616268A (en) | Underwater image restoration method based on turbulence model | |
CN105761227A (en) | Underwater image enhancement method based on dark channel prior algorithm and white balance | |
CN112465727A (en) | Low-illumination image enhancement method without normal illumination reference based on HSV color space and Retinex theory | |
CN106780368A (en) | A kind of underwater picture Enhancement Method based on foreground model | |
CN111127359B (en) | Underwater image enhancement method based on selective compensation of colors and three-interval equalization | |
CN107316278A (en) | A kind of underwater picture clearness processing method | |
CN108596843B (en) | Underwater image color recovery algorithm based on bright channel | |
CN106056559A (en) | Dark-channel-prior-method-based non-uniform-light-field underwater target detection image enhancement method | |
Jiang et al. | DEANet: Decomposition enhancement and adjustment network for low-light image enhancement | |
CN103996178A (en) | Sand and dust weather color image enhancing method | |
CN110689504B (en) | Underwater image restoration method based on secondary guide transmission diagram | |
CN103700079A (en) | Image defogging method and device | |
CN103455979A (en) | A low-light video image enhancement method | |
CN106570839A (en) | Red Channel prior based underwater image sharpening method | |
CN107909552A (en) | Based on underwater prior-constrained image recovery method | |
CN107563980A (en) | Underwater picture clarification method based on Underwater Imaging model and the depth of field | |
CN115442613B (en) | A noise removal method based on inter-frame information using GAN | |
CN109118450B (en) | A low-quality image enhancement method under sand and dust weather conditions | |
CN116883290A (en) | Weak light image enhancement deep learning algorithm based on channel attention | |
CN109767399B (en) | Underwater image enhancement method based on unsupervised color correction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151230 |