[go: up one dir, main page]

CN105198047B - A kind of Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents - Google Patents

A kind of Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents Download PDF

Info

Publication number
CN105198047B
CN105198047B CN201510702974.9A CN201510702974A CN105198047B CN 105198047 B CN105198047 B CN 105198047B CN 201510702974 A CN201510702974 A CN 201510702974A CN 105198047 B CN105198047 B CN 105198047B
Authority
CN
China
Prior art keywords
aromatic hydrocarbon
fluorinated aromatic
rhodium
processing method
fluorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510702974.9A
Other languages
Chinese (zh)
Other versions
CN105198047A (en
Inventor
徐颖华
马红星
葛婷婕
李姗姗
马淳安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoujian Technology Co ltd
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201510702974.9A priority Critical patent/CN105198047B/en
Publication of CN105198047A publication Critical patent/CN105198047A/en
Application granted granted Critical
Publication of CN105198047B publication Critical patent/CN105198047B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

本发明公开了一种氟代芳烃污染废水的电化学氢化处理方法,所述的方法为:在氟代芳烃污染的废水中,加入支持电解质得到电解阴极液;在以铑修饰的导电材料为阴极、以化学惰性导电材料为阳极的隔膜电解槽中进行电解反应,电解过程中电解阴极液pH控制为1~6,温度为0~50℃,电流密度为0.1~10A/dm2;电解反应结束后,实现氟代芳烃中氟取代基和芳环的完全氢化;本发明反应可在常温常压和无有机溶剂的水体系中进行,能高电流密度(1~5A/dm2)、高效率地处理高浓度(1~50mmol/L)氟代芳烃废水,实现氟代芳烃的完全转化,氟取代基和芳环完全氢化率大于95%,氟离子收率大于95%。The invention discloses an electrochemical hydrogenation treatment method for wastewater polluted by fluorinated aromatic hydrocarbons. The method comprises: adding a supporting electrolyte to the wastewater polluted by fluorinated aromatic hydrocarbons to obtain electrolytic catholyte; , The electrolysis reaction is carried out in a diaphragm electrolyzer with a chemically inert conductive material as the anode. During the electrolysis process, the pH of the electrolytic catholyte is controlled at 1-6, the temperature is 0-50°C, and the current density is 0.1-10A/dm 2 ; the electrolysis reaction is over Finally, the complete hydrogenation of fluorine substituents and aromatic rings in fluorinated aromatic hydrocarbons is realized; the reaction of the present invention can be carried out at normal temperature and pressure and in a water system without organic solvents, and can achieve high current density (1-5A/dm 2 ) and high efficiency High-concentration (1-50mmol/L) fluorinated aromatics wastewater can be treated efficiently, and the complete conversion of fluorinated aromatics can be realized. The complete hydrogenation rate of fluorine substituents and aromatic rings is greater than 95%, and the yield of fluorine ions is greater than 95%.

Description

一种氟代芳烃污染废水的电化学氢化处理方法A kind of electrochemical hydrogenation treatment method of fluorinated aromatic hydrocarbon polluted wastewater

(一)技术领域(1) Technical field

本发明涉及氟代芳烃污染废水的电化学氢化处理方法,具体涉及废水中氟代芳烃污染物氟取代基和芳环的电化学完全氢化方法。The invention relates to an electrochemical hydrogenation treatment method for fluorinated aromatic hydrocarbon polluted wastewater, in particular to an electrochemical complete hydrogenation method for fluorine substituents and aromatic rings of fluorinated aromatic hydrocarbon pollutants in wastewater.

(二)背景技术(2) Background technology

氟代芳烃作为重要中间体和原料药广泛用于现代农药、医药制造中。1994年,氟代芳烃的全球产量为1万吨;2000年,其全球的产量则增长到了3.5万吨;2013年,全球30~40%的农药和25%的医药为含氟有机物,其中卖的最好的5种医药有3种是含氟有机物。氟代芳烃产量快速的增长来源于其氟原子对分子性能的优化,其一般具有更好的稳定性和生物药效性。Fluorinated aromatic hydrocarbons are widely used as important intermediates and raw materials in the manufacture of modern pesticides and medicines. In 1994, the global output of fluorinated aromatic hydrocarbons was 10,000 tons; in 2000, its global output increased to 35,000 tons; in 2013, 30-40% of the world’s pesticides and 25% of pharmaceuticals were fluorine-containing organic substances, of which sales Three of the top 5 medicines are fluorinated organics. The rapid increase in the production of fluorinated aromatic hydrocarbons comes from the optimization of the molecular properties of its fluorine atoms, which generally have better stability and biopharmaceutical efficacy.

由于氟代芳烃在全球范围内产量快速地增长以及其在自然环境的稳定性,其成为了潜在的环境污染物。由于氟代芳烃的高度稳定性,其污染的废水用常规的生物处理方法和高级氧化技术处理往往效率很低。因此,非常有必要开发高效降解氟代芳烃污染物的方法。目前,多种氧化技术已经被证明能有效降解氟代芳烃,这些氧化法包括双铁酞菁染料催化的双氧水氧化法[J.Am.Chem.Soc.2013,261(15),463-469]、氯过氧化酶催化氧化法[Biotechnol.Lett.2007,29:45–49]、二氧化钛光催化氧化法[Chem.Eng.J.2007,128,51–57]和电化学氧化法[J.Phys.Chem.C 2011,115,3888–3898]。这些氧化法尽管能将氟代芳烃氧化成二氧化碳和氟离子,但存在反应选择性差且可能产生高毒性不明中间产物和高稳定性含氟产物的风险。Due to the rapid increase in global production and the stability of fluorinated aromatic hydrocarbons in the natural environment, they have become potential environmental pollutants. Due to the high stability of fluorinated aromatic hydrocarbons, conventional biological treatment methods and advanced oxidation technologies are often used to treat wastewater polluted by them with low efficiency. Therefore, it is very necessary to develop efficient methods for the degradation of fluorinated aromatic hydrocarbon pollutants. At present, a variety of oxidation techniques have been proven to be effective in degrading fluorinated aromatics, including hydrogen peroxide oxidation catalyzed by bisiron phthalocyanine [J.Am.Chem.Soc.2013,261(15),463-469] , chloroperoxidase catalytic oxidation [Biotechnol.Lett.2007,29:45–49], titanium dioxide photocatalytic oxidation [Chem.Eng.J.2007,128,51–57] and electrochemical oxidation [J. Phys. Chem. C 2011, 115, 3888–3898]. Although these oxidation methods can oxidize fluorinated aromatics to carbon dioxide and fluoride ions, they have the risk of poor reaction selectivity and may produce highly toxic unknown intermediates and highly stable fluorine-containing products.

和氧化法相比,氢化还原法尽管不能实现彻底矿化但具有能实现完全脱氟和反应选择性高的优点。完全氢化脱氟的产物的可生化性将极大提高,其可作为化工原料回收、也可用常规生化处理方法进行彻底降解。高化学选择性的氟代芳烃完全氢化脱氟方法有:用可溶性钌钯双金属络合物[Na.Commun.2013,4,1-7]或碳载铂[Adv.Synth.Catal.2012,354,777-782]的催化加氢法可选择性地氢化氟代芳烃上的碳氟键使之生成氟离子和无氟芳烃;苯基阳离子催化的光催化氢化法[Green Chem.,2009,11,942–945]可选择性地氢化脱氟含推电子基团的单氟芳烃;NaBH4促进的电化学还原法[Tetrahedron Lett.,2015,56,1520-1523]能选择性氢化氟代芳烃的碳氟键使之生成无氟芳烃。遗憾的是,这些方法需要较为苛刻的反应条件(比如使用有毒有机溶剂或需要高温高压等),因此不适合作为氟代芳烃污染废水的实际处理。Compared with the oxidation method, although the hydrogenation reduction method cannot achieve complete mineralization, it has the advantages of complete defluorination and high reaction selectivity. The biodegradability of the fully hydrodefluorinated product will be greatly improved, and it can be recovered as a chemical raw material, and can also be completely degraded by conventional biochemical treatment methods. Highly chemoselective methods for complete hydrodefluorination of fluorinated aromatics include: using soluble ruthenium-palladium bimetallic complexes [Na.Commun.2013,4,1-7] or carbon-supported platinum [Adv.Synth.Catal.2012, 354,777-782]’s catalytic hydrogenation method can selectively hydrogenate the carbon-fluorine bonds on fluorinated aromatics to generate fluoride ions and fluorine-free aromatics; photocatalytic hydrogenation method catalyzed by phenyl cations [Green Chem.,2009,11,942– 945] Selective hydrogenation and defluorination of monofluoroaromatics containing electron-pushing groups; NaBH4 - promoted electrochemical reduction method [Tetrahedron Lett., 2015, 56, 1520-1523] can selectively hydrogenate fluorocarbons of fluoroaromatics bond to generate fluorine-free aromatic hydrocarbons. Unfortunately, these methods require relatively harsh reaction conditions (such as the use of toxic organic solvents or the need for high temperature and pressure, etc.), so they are not suitable for the actual treatment of fluorinated aromatic hydrocarbon-contaminated wastewater.

针对上述各种方法的各种不足,McNeill’s课题组开发了二氧化铝载铑的催化加氢方法[Environ.Sci.Technol.2012,46,10199-10205;Environ.Sci.Technol.2013,47,6545-6553],该方法在常温常压下和水介质中即可实现氟代苯氟取代基和苯环的完全氢化。该方法的主要缺点是,反应过程中需要通入大量氢气,在处理低浓度氟代芳烃污染废水时,有很高的爆炸隐患。For the various deficiencies of the above-mentioned various methods, McNeill's research group has developed the catalytic hydrogenation method [Environ.Sci.Technol.2012,46,10199-10205; Environ.Sci.Technol.2013,47, 6545-6553], this method can realize the complete hydrogenation of fluorobenzene fluorine substituent and benzene ring under normal temperature and pressure and in aqueous medium. The main disadvantage of this method is that a large amount of hydrogen needs to be introduced during the reaction process, and there is a high risk of explosion when treating low-concentration fluorinated aromatic hydrocarbon polluted wastewater.

(三)发明内容(3) Contents of the invention

本发明目的是提供一种氟代芳烃污染废水的电化学氢化处理方法。在氟代芳烃污染的废水中加入少量电解质作为阴极液,在以铑修饰的导电材料为阴极,以化学惰性导电材料为阳极的隔膜电解槽中对阴极液进行电解反应。废水中氟代芳烃污染物的氟取代基和芳环能被完全氢化从而实现废水的可生化学提高和毒性降低;如果必要,废水中被完全氢化的化合物也可用传统方法(吸附、萃取等)作为化工原料进行回收。本发明不仅能解决现有废水中氟代芳烃污染物处理技术反应选择性差、反应条件苛刻和大量使用爆炸性氢气等问题,而且能高电流密度(1~5 A/dm2)、高效率地处理高浓度(1~50 mmol/L)氟代芳烃废水。The purpose of the present invention is to provide an electrochemical hydrogenation treatment method for fluorinated aromatic hydrocarbon polluted wastewater. A small amount of electrolyte is added to waste water polluted by fluorinated aromatic hydrocarbons as catholyte, and the catholyte is electrolyzed in a diaphragm electrolyzer with rhodium-modified conductive material as cathode and chemically inert conductive material as anode. The fluorine substituents and aromatic rings of fluorinated aromatic hydrocarbon pollutants in wastewater can be completely hydrogenated to achieve biochemical improvement and toxicity reduction of wastewater; if necessary, fully hydrogenated compounds in wastewater can also be used by traditional methods (adsorption, extraction, etc.) Recycled as chemical raw materials. The present invention can not only solve the problems of poor reaction selectivity, harsh reaction conditions, and massive use of explosive hydrogen in existing waste water treatment technologies for fluoroaromatic pollutants, but also can treat them with high current density (1-5 A/dm 2 ) and high efficiency High concentration (1-50 mmol/L) fluorinated aromatic hydrocarbon wastewater.

本发明采用的技术方案是:The technical scheme adopted in the present invention is:

本发明提供一种氟代芳烃污染废水的电化学氢化处理方法,所述的方法为:在式(I)所示的氟代芳烃污染的废水中,加入支持电解质得到电解阴极液;在以铑修饰的导电材料为阴极、以化学惰性导电材料为阳极的隔膜电解槽中进行电解反应,电解过程中电解阴极液pH控制为1~6,温度为0~50℃,电流密度为0.1~10A/dm2;电解反应结束后,获得含式(II)所示化合物的阴极液,实现式(I)所示氟代芳烃中氟取代基和芳环的完全氢化;所述阴极液中式(II)所示化合物可用传统方法(如吸附、萃取等)作为化工原料回收,也可用常规生化处理方法对阴极液直接进行降解处理;The invention provides a method for electrochemical hydrogenation treatment of waste water polluted by fluorinated aromatic hydrocarbons. The method is as follows: in the waste water polluted by fluorinated aromatic hydrocarbons shown in formula (I), a supporting electrolyte is added to obtain electrolytic catholyte; The modified conductive material is used as the cathode, and the electrolysis reaction is carried out in a diaphragm electrolyzer with the chemically inert conductive material as the anode. During the electrolysis process, the pH of the electrolytic catholyte is controlled at 1-6, the temperature is 0-50°C, and the current density is 0.1-10A/ dm 2 ; After the electrolysis reaction finishes, obtain the catholyte containing the compound shown in formula (II), realize the complete hydrogenation of fluorine substituting group and aromatic ring in the fluorinated arene shown in formula (I); Formula (II) in described catholyte The shown compounds can be recovered as chemical raw materials by traditional methods (such as adsorption, extraction, etc.), and the catholyte can also be directly degraded by conventional biochemical treatment methods;

式(I)中,R为C或N;X为H、CH3、OH、OCH3、OCH2COOH、NH2、F、CF3、CN、COOH,n为1~5之间的正整数之一;In formula (I), R is C or N; X is H, CH 3 , OH, OCH 3 , OCH 2 COOH, NH 2 , F, CF 3 , CN, COOH, and n is a positive integer between 1 and 5 one;

式(II)中R和X同式(I)。In formula (II), R and X are the same as formula (I).

本发明所述废水中式(I)所示氟代芳烃的浓度为0.01~50mmol/L,优选1~50mmol/L。The concentration of fluoroaromatics represented by formula (I) in the waste water of the present invention is 0.01-50 mmol/L, preferably 1-50 mmol/L.

进一步,所述废水中式(I)所示氟代芳烃污染物为下列之一或两种及以上任意比例的混合:氟代苯、氟代甲苯、氟代苯酚、氟代苯甲醚、氟代苯氧乙酸、氟代苯胺、氟代三氟甲苯、氟代苯腈、氟代苯甲酸和氟代吡啶。Further, the fluoroaromatic pollutants represented by the formula (I) in the wastewater are one of the following or a mixture of two or more in any proportion: fluorobenzene, fluorotoluene, fluorophenol, fluoroanisole, fluoro Phenoxyacetic acid, fluoroaniline, fluorotrifluorotoluene, fluorobenzonitrile, fluorobenzoic acid, and fluoropyridine.

本发明所述阴极以铑修饰的导电材料中的导电材料为下列之一或导电聚合物修饰的下列材料之一:镍、铜、银、钛、石墨、碳纤维毡或含碳导电塑料。所述导电聚合物为聚吡咯,所述聚吡咯是将0.01~0.1mol/L吡咯单体在0.5mol/L硫酸水溶液中经阳极氧化制备而成。所述铑金属的质量负载量为0.1~10g/m2导电材料,优选为0.5~5g/m2,最优选2g/m2。所述阴极形状为板状、杆状、导线状、筛网状、网状、泡沫状、羊毛状或片状,优选扩展的筛网状。本发明所述阴极优选为铑修饰泡沫镍(2g Rh/m2)、铑修饰泡沫铜(2g Rh/m2)、铑修饰扩展银筛网(2g Rh/m2)、铑修饰钛网(2g Rh/m2)、铑修饰含聚吡咯的石墨板(2g Rh/m2)、铑修饰含碳导电塑料板(2g Rh/m2)、铑修饰石墨板(2g Rh/m2),更优选所述阴极为铑修饰的碳纤维毡(2g Rh/m2)。The conductive material in the rhodium-modified conductive material of the cathode in the present invention is one of the following materials or one of the following materials modified by conductive polymer: nickel, copper, silver, titanium, graphite, carbon fiber felt or carbon-containing conductive plastic. The conductive polymer is polypyrrole, and the polypyrrole is prepared by anodic oxidation of 0.01-0.1 mol/L pyrrole monomer in 0.5 mol/L sulfuric acid aqueous solution. The mass loading of the rhodium metal is 0.1-10 g/m 2 conductive material, preferably 0.5-5 g/m 2 , most preferably 2 g/m 2 . The shape of the cathode is plate, rod, wire, mesh, mesh, foam, wool or sheet, preferably expanded mesh. The cathode of the present invention is preferably rhodium-modified nickel foam (2g Rh/m 2 ), rhodium-modified copper foam (2g Rh/m 2 ), rhodium-modified extended silver screen (2g Rh/m 2 ), rhodium-modified titanium mesh ( 2g Rh/m 2 ), rhodium-modified graphite plate containing polypyrrole (2g Rh/m 2 ), rhodium-modified carbon-containing conductive plastic plate (2g Rh/m 2 ), rhodium-modified graphite plate (2g Rh/m 2 ), More preferably the cathode is a rhodium-modified carbon fiber felt (2 g Rh/m 2 ).

本发明导电材料上修饰铑的工艺是公知的,例如镍、铜、银等活性金属可以用化学置换法或电沉积法修饰铑;钛、石墨、碳纤维材料、导电塑料或者修饰了导电聚合物的上述导电材料可以用电沉积法修饰铑。The technique of modifying rhodium on the conductive material of the present invention is well known, such as active metals such as nickel, copper, silver can modify rhodium with chemical replacement method or electrodeposition method; Titanium, graphite, carbon fiber material, conductive plastic or modified conductive polymer The above conductive material can be modified with rhodium by electrodeposition.

进一步,所述的支持电解质在电解阴极液中的浓度为1~100mmol/L,优选5mmol/L。Further, the concentration of the supporting electrolyte in the electrolysis catholyte is 1-100 mmol/L, preferably 5 mmol/L.

本发明所述阳极不是关键因素,可以是任何化学惰性导电材料或合金,如铂、石墨、导电塑料等。阳极还可由涂覆到另一种材料上的导电涂层组成,例如:将诸如氧化钌之类的贵金属氧化物涂布到钛金属上。所述阳极的形状可以是板状、杆状、导线状、筛网状、网状、泡沫状、羊毛状或片状的形式,优选扩展的筛网状。最优选所述阳极为钛镀铂网。The anode in the present invention is not a key factor, and can be any chemically inert conductive material or alloy, such as platinum, graphite, conductive plastic, and the like. The anode can also consist of a conductive coating applied to another material, for example: a noble metal oxide such as ruthenium oxide applied to titanium metal. The shape of the anode may be in the form of a plate, a rod, a wire, a mesh, a mesh, a foam, a fleece or a sheet, preferably an expanded mesh. Most preferably the anode is titanium platinized mesh.

本发明所述的电解反应可间歇进行或以连续或半连续方式进行。电解槽可以是含有电极的搅拌槽或任何传统设计的流动电解槽。电解槽为隔膜电解槽。可用的隔膜材料有各种阴离子或阳离子交换膜、多孔的Teflon、石棉或玻璃,优选全氟磺酸阳离子膜作为电解槽的隔膜。The electrolysis reaction described in the present invention can be carried out batchwise or in a continuous or semi-continuous manner. The electrolyzer can be a stirred tank containing electrodes or a flow electrolyzer of any conventional design. The electrolyzer is a diaphragm electrolyzer. Available diaphragm materials include various anion or cation exchange membranes, porous Teflon, asbestos or glass, preferably perfluorosulfonic acid cationic membrane as the diaphragm of the electrolyzer.

虽然优选放出氧气作为阳极反应,但是也可以使用许多其他的阳极反应,包括氯分子和溴分子的放出或通过诸如甲酸盐或草酸盐之类的保护性物质的氧化来产生二氧化碳或者通过有机反应物的氧化来形成有价值的副产物。比如可以用1mol/L硫酸或盐酸水溶液为本发明的阳极液;也可以用1mol/L氢氧化钠水溶液为本发明的阳极液。While the evolution of oxygen is preferred as the anodic reaction, many other anodic reactions can be used, including the evolution of molecular chlorine and bromine or the production of carbon dioxide through the oxidation of protective species such as formate or oxalate or through organic Oxidation of reactants to form valuable by-products. For example, 1mol/L sulfuric acid or hydrochloric acid aqueous solution can be used as the anolyte of the present invention; 1mol/L sodium hydroxide aqueous solution can also be used as the anolyte of the present invention.

本发明所述的电解反应过程中,电流密度根据阴极液中氟代芳烃的浓度变化而变化,通常适合的电解阴极电流密度为0.1~10A/dm2,优选1~5A/dm2。本发明所述的电解反应液在反应过程中pH控制在1~6,优选2.5~3.5;温度不是关键因素,但考虑到控制方便,适合的温度为0~50℃,优选20~30℃。During the electrolysis reaction process of the present invention, the current density changes according to the concentration of fluorinated aromatic hydrocarbons in the catholyte. Usually, the suitable electrolysis cathode current density is 0.1-10A/dm 2 , preferably 1-5A/dm 2 . The pH of the electrolytic reaction solution of the present invention is controlled at 1-6, preferably 2.5-3.5 during the reaction process; temperature is not a key factor, but considering the convenience of control, the suitable temperature is 0-50°C, preferably 20-30°C.

本发明通过本领域通常公知的技术进行所需的电解还原。一般地,在有氟代芳烃污染的废水中,加入一定量的支持电解质和pH调节剂作为阴极液,在以铑修饰的导电材料为阴极、以化学惰性导电材料为阳极的隔膜电解槽中通入足够的电流,直到得到所需程度的还原。电解反应结束后,可利用传统的技术(如吸附、萃取等)回收阴极液中电解产物,或用传统的生化处理方法直接处理电解处理后的废水。The present invention performs the desired electrolytic reduction by techniques generally known in the art. Generally, in wastewater polluted by fluorinated aromatic hydrocarbons, a certain amount of supporting electrolyte and pH regulator are added as catholyte, which is passed through a diaphragm electrolyzer with a rhodium-modified conductive material as the cathode and a chemically inert conductive material as the anode. Sufficient current is applied until the desired degree of reduction is obtained. After the electrolysis reaction is over, traditional techniques (such as adsorption, extraction, etc.) can be used to recover the electrolysis products in the catholyte, or traditional biochemical treatment methods can be used to directly treat the electrolytically treated wastewater.

本发明所述的氟代芳烃污染废水的电化学氢化处理方法中所涉及的反应(以氟代苯酚为例):The reactions involved in the electrochemical hydrogenation treatment method of fluorinated aromatics polluted wastewater of the present invention (taking fluorophenol as example):

(1)阴极反应:(1) Cathode reaction:

(2)阳极反应:(2) Anode reaction:

(n+3)H2O-(2n+6)e-→(n+3)/2O2 +(2n+6)H+ (n+3)H 2 O-(2n+6)e - →(n+3)/2O 2 + (2n+6)H +

(3)总反应:(3) Total reaction:

本发明的有益效果主要体现在:(1)反应可在常温常压和无有机溶剂的水体系中进行;(2)反应过程中不使用高爆炸性的氢气;(3)废水中氟代芳烃污染物的氟取代基和芳环可选择性完全氢化,这能极大提高废水的可生化性和降低废水的毒性;(4)能高电流密度(1~5A/dm2)、高效率地处理高浓度(1~50mmol/L)氟代芳烃废水,实现氟代芳烃的完全转化,氟取代基和芳环完全氢化率大于95%,氟离子收率大于95%。The beneficial effects of the present invention are mainly reflected in: (1) the reaction can be carried out at normal temperature and pressure and in an organic solvent-free water system; (2) no highly explosive hydrogen is used in the reaction process; (3) fluorinated aromatic hydrocarbons in waste water are polluted The fluorine substituent and aromatic ring of the compound can be selectively hydrogenated, which can greatly improve the biodegradability of wastewater and reduce the toxicity of wastewater; (4) can be treated with high current density (1~5A/dm 2 ) and high efficiency High-concentration (1-50mmol/L) fluorinated aromatics wastewater can realize the complete conversion of fluorinated aromatics, the complete hydrogenation rate of fluorine substituents and aromatic rings is greater than 95%, and the yield of fluorine ions is greater than 95%.

(四)具体实施方式(4) Specific implementation methods

下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:The present invention is further described below in conjunction with specific embodiment, but protection scope of the present invention is not limited thereto:

本发明实施例所述阴极材料的制备方法参照[Colloid.Surf.B:Biointerfaces2014,261,121,444-450;Analytica Chimica Acta 2009,632,63-68]。The preparation method of the cathode material described in the embodiment of the present invention refers to [Colloid.Surf.B: Biointerfaces2014, 261, 121, 444-450; Analytica Chimica Acta 2009, 632, 63-68].

实施例1对氟苯酚污染废水电化学氢化处理Embodiment 1 Electrochemical hydrogenation treatment of p-fluorophenol polluted wastewater

以5mmoL/L对氟苯酚+5mmol/L硫酸钠+5mmol/L氯化钠的水溶液1000mL作为阴极液;1mol/L硫酸水溶液作为阳极液。铑修饰的碳纤维毡(2g Rh/m2)作为阴极,钛镀铂网为阳极,隔膜板框槽为电解反应器,全氟磺酸膜为隔膜。1000mL aqueous solution of 5mmol/L p-fluorophenol+5mmol/L sodium sulfate+5mmol/L sodium chloride was used as catholyte; 1mol/L sulfuric acid aqueous solution was used as anolyte. Rhodium-modified carbon fiber felt (2g Rh/m 2 ) is used as the cathode, the platinum-plated titanium mesh is used as the anode, the diaphragm plate frame tank is used as the electrolytic reactor, and the perfluorosulfonic acid membrane is used as the diaphragm.

电解过程中,温度控制为20~25℃,电流密度控制为3A/dm2,阴极液pH控制2.5~3.5。通入8F/mol 4-氟苯酚电量后停止电解。电解结束后,将阴极液(30mL)转移至分流漏斗中,用30mL二氯甲烷分三次对阴极液进行萃取;萃取结束后合并三份萃取液,然后将其通过一个含有5g无水硫酸钠固体的漏斗以除去残留的水分;最后对萃取液用容量瓶定容至500mL后进行气相色谱分析。另取5mL阴极液用去离子水稀释20倍,然后用离子色谱进行分析。气相色谱和离子色谱分析结果显示:环己酮的收率46%,环己醇的收率为53%、氟离子的收率为100%。During the electrolysis process, the temperature is controlled at 20-25°C, the current density is controlled at 3A/dm 2 , and the pH of the catholyte is controlled at 2.5-3.5. Stop the electrolysis after feeding 8F/mol 4-fluorophenol electricity. After the electrolysis, the catholyte (30mL) was transferred to the split funnel, and the catholyte was extracted three times with 30mL dichloromethane; after the extraction, the three extracts were combined, and then passed through a solid containing 5g of anhydrous sodium sulfate. Use a funnel to remove residual water; finally, use a volumetric flask to adjust the volume to 500 mL for gas chromatography analysis. Another 5 mL of catholyte was diluted 20 times with deionized water, and then analyzed by ion chromatography. The analysis results of gas chromatography and ion chromatography showed that the yield of cyclohexanone was 46%, the yield of cyclohexanol was 53%, and the yield of fluoride ion was 100%.

气相色谱分析条件为:HP-INNOWAX(30m x 320μm x 0.5μm)为分离柱;检测器为FID;氢气流量为30mL/min;柱箱温度为75-230℃;升温速度为15℃/min。The gas chromatography analysis conditions are: HP-INNOWAX (30m x 320μm x 0.5μm) is the separation column; the detector is FID; the hydrogen flow rate is 30mL/min; the oven temperature is 75-230°C; the heating rate is 15°C/min.

离子色谱条件:IonPac AS 19阴离子交换柱(4×250mm)为分离柱;洗脱梯度程序为:0→5min(10mM KOH),5→20Min(10→40mM KOH);流速为:1mL/Min;仪器型号为:DionexICS-2000)。Ion chromatography conditions: IonPac AS 19 anion exchange column (4×250mm) is the separation column; elution gradient program: 0→5min (10mM KOH), 5→20Min (10→40mM KOH); flow rate: 1mL/Min; The instrument model is: DionexICS-2000).

实施例2~实施例29不同氟代芳烃污染废水电化学氢化处理Embodiment 2-Example 29 Electrochemical Hydrogenation Treatment of Wastewater Contaminated by Different Fluorinated Aromatic Hydrocarbons

实施例2~实施例29依照表1的实验参数进行,其余操作同实施例1。Embodiment 2 to Embodiment 29 were carried out according to the experimental parameters in Table 1, and the rest of the operations were the same as in Embodiment 1.

表1实施例2~实施例29实验条件及结果Table 1 Embodiment 2~Example 29 Experimental conditions and results

实施例30~实施例37使用不同铑修饰阴极的对氟苯酚污染废水电化学氢化处理Examples 30 to 37 use different rhodium-modified cathodes for electrochemical hydrogenation treatment of p-fluorophenol polluted wastewater

实施例30~实施例37依照表2的实验参数进行,其余操作同实施例1。Embodiment 30 to Embodiment 37 were carried out according to the experimental parameters in Table 2, and the rest of the operations were the same as in Embodiment 1.

表2实施例30~实施例37实验条件及结果a Table 2 embodiment 30~embodiment 37 experimental conditions and result a

a 1mol/L氢氧化钠水溶液为的阳极液;镀钌钛网为阳极。 a 1mol/L sodium hydroxide aqueous solution is the anolyte; the ruthenium-plated titanium mesh is the anode.

对比例1~对比例8使用不修饰铑的基体阴极的对氟苯酚污染废水电化学氢化处理Comparative example 1~comparative example 8 uses the p-fluorophenol polluted waste water electrochemical hydrogenation treatment of the matrix cathode that does not modify rhodium

对比例1~对比例8依照表3的实验参数进行,其余操作同实施例1。Comparative Example 1 to Comparative Example 8 were carried out according to the experimental parameters in Table 3, and the rest of the operations were the same as in Example 1.

表3对比例1~对比例8实验条件及结果a Table 3 Comparative Example 1~Comparative Example 8 Experimental conditions and results a

a 1mol/L氢氧化钠水溶液为的阳极液;镀钌钛网为阳极。 a 1mol/L sodium hydroxide aqueous solution is the anolyte; the ruthenium-plated titanium mesh is the anode.

Claims (9)

1. a kind of Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents, it is characterised in that described method is:At formula (I) In the waste water of shown fluorinated aromatic hydrocarbon pollution, add supporting electrolyte and obtain electrolysis cathode liquid;In the conductive material modified with rhodium For negative electrode, using chemical inertness conductive material as the diaphragm cell of anode in carry out cell reaction, electrolysis cathode in electrolytic process Liquid pH controls are 1~6, and temperature is 0~50 DEG C, and current density is 0.1~10A/dm2;After cell reaction terminates, acquisition contains formula (II) catholyte of compound shown in, the complete hydrogenation of fluoro substituents and aromatic ring in fluorinated aromatic hydrocarbon shown in formula (I) is realized;The branch Electrolyte is held as one of following or two kinds of arbitrary proportions mixing:Sodium sulphate, sodium chloride;The mass loading amount of rhodium in the negative electrode For 0.1~10g/m2Conductive material;
In formula (I), R is C or N;X is H, CH3、OH、OCH3、OCH2COOH、NH2、F、CF3, CN, COOH, n be 1~5 between just One of integer;
The same formulas of R and X (I) in formula (II).
2. the Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents as claimed in claim 1, it is characterised in that the waste water The concentration of fluorinated aromatic hydrocarbon shown in middle formula (I) is 1~50mmol/L.
3. the Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents as claimed in claim 1, it is characterised in that the waste water Fluorinated aromatic hydrocarbon shown in middle formula (I) is one of following or two kinds and any of the above ratio mixing:Fluorobenzene, fluorotoluene, fluoro Phenol, fluoro methyl phenyl ethers anisole, fluoro phenoxy acetic acid, Fluoroaniline, fluorobenzotrifluoride, fluoro benzonitrile, fluorinated acid and fluoro Pyridine.
4. the Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents as claimed in claim 1, it is characterised in that the negative electrode Using conductive material in the conductive material of rhodium modification as one of one of following or conducting polymer modified llowing group of materials:Nickel, copper, Silver, titanium, graphite, carbon fiber felt or carbon containing conductive plastics.
5. the Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents as claimed in claim 1, it is characterised in that the negative electrode To be one of following:The nickel foam of rhodium modification, the foam copper of rhodium modification, the silver-colored screen cloth of extension of rhodium modification, the titanium net of rhodium modification, rhodium are repaiied The graphite cake containing polypyrrole that the graphite cake of decorations, the carbon fiber felt of rhodium modification, the carbon containing conductive plastic plate or rhodium of rhodium modification are modified.
6. the Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents as claimed in claim 1, it is characterised in that the support Concentration of the electrolyte in electrolysis cathode liquid is 1~100mmol/L.
7. the Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents as claimed in claim 1, it is characterised in that the electrolysis During electrolysis cathode liquid pH control be 2.5~3.5, temperature be 20~30 DEG C, current density is 1~5A/dm2
8. the Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents as claimed in claim 1, it is characterised in that the anode Platinum guaze is plated for titanium.
9. the Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents as claimed in claim 1, it is characterised in that the barrier film Electrolytic cell septation is perfluorinated sulfonic acid cationic membrane.
CN201510702974.9A 2015-10-26 2015-10-26 A kind of Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents Active CN105198047B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510702974.9A CN105198047B (en) 2015-10-26 2015-10-26 A kind of Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510702974.9A CN105198047B (en) 2015-10-26 2015-10-26 A kind of Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents

Publications (2)

Publication Number Publication Date
CN105198047A CN105198047A (en) 2015-12-30
CN105198047B true CN105198047B (en) 2017-12-05

Family

ID=54946082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510702974.9A Active CN105198047B (en) 2015-10-26 2015-10-26 A kind of Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents

Country Status (1)

Country Link
CN (1) CN105198047B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3172557A1 (en) * 2020-02-21 2021-08-26 Siemens Energy, Inc. Fluorocarbon destruction system and method
CN115928110A (en) * 2022-10-31 2023-04-07 浙江工业大学 Hydrogenation dechlorination method of high-concentration chlorinated aromatic compound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4956016B2 (en) * 2006-02-28 2012-06-20 水ing株式会社 Apparatus and method for treating organic wastewater containing hardly biodegradable substances
CN204198463U (en) * 2014-09-11 2015-03-11 北京今大禹环保技术有限公司 A kind of continuum micromeehanics formula solid state electrolyte electric tank cathode system

Also Published As

Publication number Publication date
CN105198047A (en) 2015-12-30

Similar Documents

Publication Publication Date Title
Li et al. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment
CN105018962B (en) A kind of method of the Electrochemical hydriding dechlorination of organo-chlorine pollutant
CN104988531B (en) The method that a kind of selective dechlorination of chloro-pyridine formic acid electro-catalysis prepares pyridine carboxylic acid
CN109371416B (en) A kind of method for recovering bromine from bromine-containing wastewater
CN105217740B (en) A kind of Electrochemical hydriding processing method of the waste water of fluorinated aromatic hydrocarbon containing low concentration
Tsyganok et al. Selective dechlorination of chlorinated phenoxy herbicides in aqueous medium by electrocatalytic reduction over palladium-loaded carbon felt
CA2466362A1 (en) Improved rhodium electrocatalyst and method of preparation
CN105198047B (en) A kind of Electrochemical hydriding processing method of fluorinated aromatic hydrocarbon pollutant effluents
CN105887129B (en) A kind of method that trichloromethyl pyridine derivative electrochemistry selectivity dechlorination prepares pyridine derivatives
Wu et al. New pattern of Pd-Catalyzed electrochemical hydrodechlorination in conversion of chlorinated aromatic pollutants to Value-Added chemicals
CN110777391B (en) Electric reduction preparation method of gefitinib intermediate
CN101603179A (en) Electrolytic synthesis method of 3,5,6-trichloropicolinic acid
Zhao et al. Electrocatalytic dehalogenation in the applications of organic synthesis and environmental degradation
CN109896948A (en) A method of benzene carboxylic acid is prepared using middle low-order coal as raw material
CN105951121B (en) A kind of method that ionic liquid auxiliary electrocatalytic oxidation prepares phenol
CN115928110A (en) Hydrogenation dechlorination method of high-concentration chlorinated aromatic compound
CN109608329A (en) A kind of production method of terephthalic acid with low bromine emission
JPH0394085A (en) Production of 1-aminoanthraquinones
CN103266329A (en) Electrochemical method for synthesizing 2,2'-dichlorohydrazobenzene by use of supported catalyst ionic membrane
CN109608416A (en) The synthetic method and secondary alcohol of the tasteless thioether of safety are converted to the electrolytic method of ketone group
CN111411368B (en) A kind of method of palladium-catalyzed electrochemical dechlorination processing methylene chloride
Cui et al. Highly stable palladium-loaded TiO 2 nanotube array electrode for the electrocatalytic hydrodehalogenation of polychlorinated biphenyls
CN111647906B (en) A kind of silver or silver-nickel alloy catalyzed electrochemical dechlorination process methylene chloride method
JPH08206661A (en) Method and apparatus for electrochemical recovery of nitrate
CN114134522A (en) A kind of electrochemical synthesis method of 4,4'-bipyridine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201127

Address after: 256600, Shandong City, Binzhou Province foreshore City north of the new wing Yong Road South

Patentee after: Shoujian Technology Co.,Ltd.

Address before: 310014 Hangzhou city in the lower reaches of the city of Zhejiang Wang Road, No. 18

Patentee before: ZHEJIANG University OF TECHNOLOGY

TR01 Transfer of patent right