[go: up one dir, main page]

CN105187065A - Successive approximation ADC ultra-low power consumption capacitor array and logic control method thereof - Google Patents

Successive approximation ADC ultra-low power consumption capacitor array and logic control method thereof Download PDF

Info

Publication number
CN105187065A
CN105187065A CN201510423360.7A CN201510423360A CN105187065A CN 105187065 A CN105187065 A CN 105187065A CN 201510423360 A CN201510423360 A CN 201510423360A CN 105187065 A CN105187065 A CN 105187065A
Authority
CN
China
Prior art keywords
capacitor array
switch
array
ref
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510423360.7A
Other languages
Chinese (zh)
Other versions
CN105187065B (en
Inventor
佟星元
张洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Posts and Telecommunications
Original Assignee
Xian University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Posts and Telecommunications filed Critical Xian University of Posts and Telecommunications
Priority to CN201510423360.7A priority Critical patent/CN105187065B/en
Publication of CN105187065A publication Critical patent/CN105187065A/en
Application granted granted Critical
Publication of CN105187065B publication Critical patent/CN105187065B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Logic Circuits (AREA)

Abstract

本发明公开了一种逐次逼近ADC超低功耗电容阵列及其逻辑控制方法,属逐次逼近ADC的超低功耗设计技术领域,包括二进制电容阵列和开关阵列、基准(Vref、Vcm=Vref/2及Gnd=0)以及结合电容上极板采样、开关控制时序初始化、寄生电容功耗减小以及电容单调切换的新型逻辑控制方式,本发明公开的电容阵列平均能耗仅为传统电荷再分配结构的1.2%,具有结构简单、功耗低、面积小等优点。将本发明应用于逐次逼近ADC,可显著降低功耗,而且在同等转换精度下,本发明电容阵列规模的减小还有利于提高A/D转换速率。

The invention discloses a successive approximation ADC ultra-low power consumption capacitor array and a logic control method thereof, belonging to the technical field of successive approximation ADC ultra-low power consumption design, including a binary capacitor array and a switch array, a reference (V ref , V cm = V ref /2 and Gnd=0) and the new logic control mode combined with the upper plate sampling of the capacitor, the sequence initialization of the switch control, the reduction of the power consumption of the parasitic capacitor and the monotonous switching of the capacitor, the average energy consumption of the capacitor array disclosed in the present invention is only 1.2% of the charge redistribution structure has the advantages of simple structure, low power consumption, and small area. Applying the present invention to successive approximation ADC can significantly reduce power consumption, and under the same conversion precision, the scale reduction of the capacitance array of the present invention is also conducive to improving the A/D conversion rate.

Description

逐次逼近ADC超低功耗电容阵列及其逻辑控制方法Successive approximation ADC ultra-low power consumption capacitor array and its logic control method

技术领域technical field

本发明属于集成电路技术领域,尤其涉及一种用于逐次逼近ADC的超低功耗电容阵列及其逻辑控制方法。The invention belongs to the technical field of integrated circuits, and in particular relates to an ultra-low power consumption capacitor array for successive approximation ADCs and a logic control method thereof.

背景技术Background technique

以电容阵列为主体结构的电荷再分配型逐次逼近(SAR)ADC凭借其低功耗优势获得了广泛应用,随着CMOS集成电路设计技术的进步及工艺特征尺寸的减小,SoC规模越来越大,尤其在神经信号记录(EEG、ECOG等)植入式生物电子学系统中,嵌入其中的ADC需要具备超低功耗、小型化的特点,传统的电荷再分配型SARADC电容阵列的规模随ADC位数呈指数倍增长,不利于面积、功耗以及速度优化。图1所示的是传统N-bit全差分电荷再分配型SARADC结构,其电容阵列共包括2N+1个单位电容。一方面,受匹配精度以及噪声性能的约束,不仅电路面积较大,工艺成本高,而且电容阵列的动态功耗较大;另一方面,大规模的电容阵列,致使SARADC的输入电容较大,不仅影响ADC采样速率的提高,而且要求模拟前端(AFE)电路具有较强的驱动能力,影响AFE电路以及整个SoC的低功耗优化。The charge redistribution successive approximation (SAR) ADC with capacitor array as the main structure has been widely used due to its low power consumption advantage. With the advancement of CMOS integrated circuit design technology and the reduction of process feature size, the scale of SoC is becoming more and more Especially in implanted bioelectronic systems for neural signal recording (EEG, ECOG, etc.), the ADC embedded in it needs to have the characteristics of ultra-low power consumption and miniaturization. The scale of the traditional charge redistribution SARADC capacitor array varies with the The number of ADC digits increases exponentially, which is not conducive to the optimization of area, power consumption and speed. Figure 1 shows the traditional N-bit fully differential charge redistribution SARADC structure, and its capacitor array includes 2 N+1 unit capacitors. On the one hand, due to the constraints of matching accuracy and noise performance, not only the circuit area is large, the process cost is high, but also the dynamic power consumption of the capacitor array is relatively large; on the other hand, the large-scale capacitor array leads to large input capacitance of SARADC, It not only affects the improvement of the ADC sampling rate, but also requires the analog front-end (AFE) circuit to have a strong driving capability, which affects the low power consumption optimization of the AFE circuit and the entire SoC.

发明内容Contents of the invention

本发明的目的在于克服上述现有技术的缺点,提供一种逐次逼近ADC超低功耗电容阵列及其逻辑控制方法,其具有超低功耗、小型化电容阵列及逻辑控制方式,能显著降低SARADC的功耗,减小芯片面积,节省成本,同时能提高电容阵列匹配性设计的灵活性。The object of the present invention is to overcome the shortcoming of above-mentioned prior art, provide a kind of capacitor array of successive approximation ADC ultra-low power consumption and logic control method thereof, it has ultra-low power consumption, miniaturized capacitor array and logic control mode, can significantly reduce The power consumption of the SARADC reduces the chip area, saves the cost, and at the same time improves the flexibility of the matching design of the capacitor array.

本发明的目的是通过以下技术方案来实现的:The purpose of the present invention is achieved through the following technical solutions:

本发明的逐次逼近ADC超低功耗电容阵列,包括两组分别连接在比较器的两输入端的(N-2)-bit二进制电容阵列,每组(N-2)-bit二进制电容阵列通过开关阵列连接电压基准Vref,Vcm,Gnd;每组(N-2)-bit二进制电容阵列由电容C0、C1、C2、……CN-2连接组成,其中N为自然数;第一组(N-2)-bit二进制电容阵列的电容C0、C1、C2、……CN-2的一端分别连接差分输入信号Vip,各电容的另一端分别通过开关阵列中的开关连接至电压基准Vref,Vcm,Gnd;第二组(N-2)-bit二进制电容阵列的电容C0、C1、C2、……CN-2的一端分别连接差分输入信号Vin,另一端分别通过开关阵列中的开关连接至电压基准Vref,Vcm,Gnd;比较器的输出端连接逐次逼近逻辑控制单元SARLogic,根据比较器的输出,所述逐次逼近逻辑控制单元SARLogic在时钟信号clk和soc的作用下实现对电容阵列开关的逻辑控制,并产生ADC的数字输出B0-BN-1The successive approximation ADC ultra-low power consumption capacitor array of the present invention comprises two groups of (N-2)-bit binary capacitor arrays respectively connected to the two input terminals of the comparator, and each group of (N-2)-bit binary capacitor arrays is passed through a switch The array is connected to voltage references V ref , V cm , Gnd; each (N-2)-bit binary capacitor array is composed of capacitors C 0 , C 1 , C 2 , ... C N-2 connections, where N is a natural number; One end of the capacitors C 0 , C 1 , C 2 , ... C N-2 of a group of (N-2)-bit binary capacitor arrays are respectively connected to the differential input signal V ip , and the other ends of each capacitor are respectively passed through the switches in the switch array. The switches are connected to the voltage references V ref , V cm , Gnd; one end of the capacitors C 0 , C 1 , C 2 , ... C N-2 of the second (N-2)-bit binary capacitor array is respectively connected to the differential input signal V in , the other end is respectively connected to voltage references V ref , V cm , Gnd through switches in the switch array; the output end of the comparator is connected to the successive approximation logic control unit SARLogic, and according to the output of the comparator, the successive approximation logic control unit Under the action of clock signals clk and soc, SARLogic realizes the logic control of the capacitor array switch, and generates the digital output B 0 -B N-1 of ADC.

进一步,以上C0=C1,Ci=2Ci-1,i=1~N-2。Further, the above C 0 =C 1 , C i =2C i-1 , i=1˜N-2.

进一步,与第一组(N-2)-bit二进制电容阵列连接的开关阵列为第一开关阵列,第一开关阵列由开关S0p、S1p、S2p、……S(N-2)p组成。Further, the switch array connected to the first (N-2)-bit binary capacitor array is the first switch array, and the first switch array is composed of switches S 0p , S 1p , S 2p , ... S (N-2)p composition.

进一步,与第二组(N-2)-bit二进制电容阵列连接的开关阵列为第二开关阵列,第二开关阵列由开关S0n、S1n、S2n、……S(N-2)n组成。Further, the switch array connected to the second (N-2)-bit binary capacitor array is the second switch array, and the second switch array is composed of switches S 0n , S 1n , S 2n , ... S (N-2)n composition.

本发明还提出一种上述逐次逼近ADC超低功耗电容阵列的逻辑控制方法:The present invention also proposes a logic control method for the above-mentioned successive approximation ADC ultra-low power consumption capacitor array:

(1)在采样阶段,采取开关阵列时序初始化技术,S(N-2)n=S(N-2)p=“1”,S(N-3)n=S(N-4)n=……S1n=S0n=“0”,S(N-3)p=S(N-4)p=……S1p=S0p=“0”,根据BN-1的结果改变S(N-2)(S(N-2)n或者S(N-2)p)的值,输出较大的电容阵列所对应的最高位开关的控制信号S(N-2)由“1”接至“0”,进而再次比较电容阵列输出的大小,产生第二位数字输出BN-2;“1”和“0”分别代表相应开关将其所对应的电容连接至Vref和Gnd;(1) In the sampling stage, the switch array timing initialization technology is adopted, S (N-2)n = S (N-2)p = "1", S (N-3)n = S (N-4)n = ... S 1n = S 0n = "0", S (N-3)p = S (N - 4)p = ... S 1p = S 0p = "0", change S ( N-2) (S (N-2)n or S (N-2)p ), output the control signal S (N-2) of the highest switch corresponding to the larger capacitor array connected by "1" to "0", and then compare the size of the capacitor array output again to generate the second digital output B N-2 ; "1" and "0" respectively represent that the corresponding switch connects its corresponding capacitor to V ref and Gnd;

(2)通过采用上极板采样以及开关阵列逻辑时序初始化技术,在产生最高位和第二位数字输出的过程中不需要基准提供能耗;在产生第三位数字输出BN-3时,若为上跳变,电容阵列开关控制信号由“100……0”变为“11/21/2……1/2”,能耗为-CN-2Vref 2/2;若为下跳变,电容阵列开关控制信号由“100……0”变为“1/200……0”,能耗也为-CN-2Vref 2/2;“1/2”代表相应开关将其所对应的电容连接至Vcm,Vcm=Vref/2。(2) By adopting upper plate sampling and switch array logic timing initialization technology, no reference is needed to provide energy consumption in the process of generating the highest and second digital outputs; when generating the third digital output B N-3 , If it is an up jump, the switch control signal of the capacitor array changes from "100...0" to "11/21/2...1/2", and the energy consumption is -C N-2 V ref 2 /2; if it is a down jump, the capacitor array switch control signal changes from "100...0" to "1/200...0", and the energy consumption is also -C N-2 V ref 2 /2; "1/2" means that the corresponding switch will The corresponding capacitor is connected to V cm , V cm =V ref /2.

进一步,以上方法中,在产生前三位的数字输出BN-1-BN-3之后,在后续的转换过程中电容阵列采取单调切换逻辑控制方式,每个时钟周期内仅有一个电容发生连接关系的变化。Further, in the above method, after the first three digits of digital output B N-1 -B N-3 are generated, the capacitor array adopts a monotonic switching logic control mode in the subsequent conversion process, and only one capacitor is generated in each clock cycle. Changes in connection relationships.

进一步,以上根据第二位数字输出BN-2的不同,电容阵列的共模输出电平的变化呈现两种趋势:Further, according to the difference of the second digital output B N-2 above, the change of the common mode output level of the capacitor array presents two trends:

1)若BN-2输出逻辑1,电容阵列需要发生上跳变以产生第三位输出BN-3,电容阵列共模输出电平在逐次逼近过程中逐渐逼近Vref/2;1) If B N-2 outputs logic 1, the capacitor array needs to jump up to generate the third output B N-3 , and the common-mode output level of the capacitor array gradually approaches V ref /2 during the successive approximation process;

2)若BN-2输出逻辑0,电容阵列需要发生下跳变以产生第三位输出BN-3,电容阵列共模输出电平在逐次逼近过程中逐渐逼近Vref/4。2) If B N-2 outputs logic 0, the capacitor array needs to undergo a down transition to generate the third bit output B N-3 , and the common-mode output level of the capacitor array gradually approaches V ref /4 during the successive approximation process.

本发明具有以下有益效果:The present invention has the following beneficial effects:

本发明提供的电容阵列结构具有明显的优势,电容阵列规模和开关数目仅为传统电荷再分配结构的25%和38.5%,在不考虑寄生电容能耗的情况下,电容阵列能耗仅为传统结构的1.2%,在考虑寄生电容能耗的情况下,以Cpt=0.1Ctot,Cpb=0.15C为例,本发明提供的电容阵列的能耗仅为传统电荷再分配结构的1.4%。The capacitor array structure provided by the present invention has obvious advantages. The capacitor array scale and the number of switches are only 25% and 38.5% of the traditional charge redistribution structure. 1.2% of the structure, in the case of considering the energy consumption of parasitic capacitance, taking C pt =0.1C tot , C pb =0.15C as an example, the energy consumption of the capacitor array provided by the present invention is only 1.4% of the traditional charge redistribution structure .

附图说明Description of drawings

图1为传统电荷再分配型SARADC结构;Figure 1 shows the structure of a traditional charge redistribution SARADC;

图2为本发明的新型SARADC结构;Fig. 2 is the novel SARADC structure of the present invention;

图3为本发明的4-bitA/D转换实施例;Fig. 3 is 4-bitA/D conversion embodiment of the present invention;

a,最高两位数字输出的产生,a, the generation of the highest two digit output,

b,最低两位数字输出的产生;b, Generation of the lowest two digits output;

图4为本发明实施例中逻辑控制方式对转换波形的改善;Fig. 4 is the improvement of the conversion waveform by the logic control mode in the embodiment of the present invention;

图5为本发明实施例中逻辑控制方式对寄生电容功耗的改善;Fig. 5 is the improvement of parasitic capacitance power consumption by logic control mode in the embodiment of the present invention;

图6为本发明10-bit实施例和传统电荷再分配结构的能耗曲线;Fig. 6 is the energy consumption curve of 10-bit embodiment of the present invention and traditional charge redistribution structure;

具体实施方式Detailed ways

本发明首先提出逐次逼近ADC超低功耗电容阵列:包括两组分别连接在比较器的两输入端的(N-2)-bit二进制电容阵列,每组(N-2)-bit二进制电容阵列通过开关阵列连接电压基准Vref,Vcm,Gnd;每组(N-2)-bit二进制电容阵列由电容C0、C1、C2、……CN-2连接组成,其中N为自然数;第一组(N-2)-bit二进制电容阵列的电容C0、C1、C2、……CN-2的一端分别连接差分输入信号Vip,各电容的另一端分别通过开关阵列中的开关连接至电压基准Vref,Vcm,Gnd;第二组(N-2)-bit二进制电容阵列的电容C0、C1、C2、……CN-2的一端分别连接差分输入信号Vin,另一端分别通过开关阵列中的开关连接至电压基准Vref,Vcm,Gnd;比较器的输出端连接逐次逼近逻辑控制单元SARLogic,根据比较器的输出,所述逐次逼近逻辑控制单元SARLogic在时钟信号clk和soc的作用下实现对电容阵列开关的逻辑控制,并产生ADC的数字输出B0-BN-1The present invention firstly proposes successive approximation ADC ultra-low power consumption capacitor arrays: comprising two groups of (N-2)-bit binary capacitor arrays respectively connected to the two input terminals of the comparator, each group of (N-2)-bit binary capacitor arrays passes The switch array is connected to the voltage references V ref , V cm , Gnd; each (N-2)-bit binary capacitor array is composed of capacitors C 0 , C 1 , C 2 , ... C N-2 , where N is a natural number; One end of the capacitors C 0 , C 1 , C 2 , ... C N-2 of the first group (N-2)-bit binary capacitor array is respectively connected to the differential input signal V ip , and the other end of each capacitor is passed through the switch array respectively. The switch of the switch is connected to the voltage reference V ref , V cm , Gnd; one end of the capacitors C 0 , C 1 , C 2 , ... C N-2 of the second (N-2)-bit binary capacitor array is respectively connected to the differential input The other end of the signal V in is respectively connected to the voltage references V ref , V cm , Gnd through the switches in the switch array; the output end of the comparator is connected to the successive approximation logic control unit SARLogic, and according to the output of the comparator, the successive approximation logic control The unit SARLogic implements the logic control of the switch of the capacitor array under the action of the clock signal clk and soc, and generates the digital output B 0 -B N-1 of the ADC.

其中以上C0=C1,Ci=2Ci-1,i=1~N-2。与第一组(N-2)-bit二进制电容阵列连接的开关阵列为第一开关阵列,第一开关阵列由开关S0p、S1p、S2p、……S(N-2)p组成。与第二组(N-2)-bit二进制电容阵列连接的开关阵列为第二开关阵列,第二开关阵列由开关S0n、S1n、S2n、……S(N-2)n组成。Wherein the above C 0 =C 1 , C i =2C i-1 , i=1˜N-2. The switch array connected to the first (N-2)-bit binary capacitor array is the first switch array, and the first switch array is composed of switches S 0p , S 1p , S 2p , ... S (N-2)p . The switch array connected to the second (N-2)-bit binary capacitor array is the second switch array, and the second switch array is composed of switches S 0n , S 1n , S 2n , ... S (N-2)n .

基于以上逐次逼近ADC超低功耗电容阵列的逻辑控制方法如下:The logic control method based on the above successive approximation to the ADC ultra-low power consumption capacitor array is as follows:

(1)在采样阶段,采取开关阵列时序初始化技术,S(N-2)n=S(N-2)p=“1”,S(N-3)n=S(N-4)n=……S1n=S0n=“0”,S(N-3)p=S(N-4)p=……S1p=S0p=“0”,根据BN-1的结果改变S(N-2)(S(N-2)n或者S(N-2)p)的值,输出较大的电容阵列所对应的最高位开关的控制信号S(N-2)由“1”接至“0”,进而再次比较电容阵列输出的大小,产生第二位数字输出BN-2;“1”和“0”分别代表相应开关将其所对应的电容连接至Vref和Gnd;(1) In the sampling stage, the switch array timing initialization technology is adopted, S (N-2)n = S (N-2)p = "1", S (N-3)n = S (N-4)n = ... S 1n = S 0n = "0", S (N-3)p = S (N - 4)p = ... S 1p = S 0p = "0", change S ( N-2) (S (N-2)n or S (N-2)p ), output the control signal S (N-2) of the highest switch corresponding to the larger capacitor array connected by "1" to "0", and then compare the size of the capacitor array output again to generate the second digital output B N-2 ; "1" and "0" respectively represent that the corresponding switch connects its corresponding capacitor to V ref and Gnd;

(2)通过采用上极板采样以及开关阵列逻辑时序初始化技术,在产生最高位和第二位数字输出的过程中不需要基准提供能耗;在产生第三位数字输出BN-3时,若为上跳变,电容阵列开关控制信号由“100……0”变为“11/21/2……1/2”,能耗为-CN-2Vref 2/2;若为下跳变,电容阵列开关控制信号由“100……0”变为“1/200……0”,能耗也为-CN-2Vref 2/2;“1/2”代表相应开关将其所对应的电容连接至Vcm,Vcm=Vref/2。(2) By adopting upper plate sampling and switch array logic timing initialization technology, no reference is needed to provide energy consumption in the process of generating the highest and second digital outputs; when generating the third digital output B N-3 , If it is an up jump, the switch control signal of the capacitor array changes from "100...0" to "11/21/2...1/2", and the energy consumption is -C N-2 V ref 2 /2; if it is a down jump, the capacitor array switch control signal changes from "100...0" to "1/200...0", and the energy consumption is also -C N-2 V ref 2 /2; "1/2" means that the corresponding switch will The corresponding capacitor is connected to V cm , V cm =V ref /2.

以上方法中:在产生前三位的数字输出BN-1-BN-3之后,在后续的转换过程中电容阵列采取单调切换逻辑控制方式,每个时钟周期内仅有一个电容发生连接关系的变化。根据第二位数字输出BN-2的不同,电容阵列的共模输出电平的变化呈现两种趋势:In the above method: after the first three digits of digital output B N-1 -B N-3 are generated, the capacitor array adopts a monotonic switching logic control mode in the subsequent conversion process, and only one capacitor is connected in each clock cycle The change. According to the difference of the second digital output B N-2 , the change of the common mode output level of the capacitor array presents two trends:

1)若BN-2输出逻辑1,电容阵列需要发生上跳变以产生第三位输出BN-3,电容阵列共模输出电平在逐次逼近过程中逐渐逼近Vref/2;1) If B N-2 outputs logic 1, the capacitor array needs to jump up to generate the third output B N-3 , and the common-mode output level of the capacitor array gradually approaches V ref /2 during the successive approximation process;

2)若BN-2输出逻辑0,电容阵列需要发生下跳变以产生第三位输出BN-3,电容阵列共模输出电平在逐次逼近过程中逐渐逼近Vref/4。2) If B N-2 outputs logic 0, the capacitor array needs to undergo a down transition to generate the third bit output B N-3 , and the common-mode output level of the capacitor array gradually approaches V ref /4 during the successive approximation process.

下面结合附图和实施例对本发明做进一步详细描述:Below in conjunction with accompanying drawing and embodiment the present invention is described in further detail:

实施例Example

本实施例的逐次逼近ADC超低功耗电容阵列如图2所示:包括两组分别连接在比较器的两输入端的(N-2)-bit二进制电容阵列,每组(N-2)-bit二进制电容阵列通过开关阵列连接电压基准Vref,Vcm,Gnd;每组(N-2)-bit二进制电容阵列由电容C0、C1、C2、……CN-2连接组成,其中N为自然数;第一组(N-2)-bit二进制电容阵列的电容C0、C1、C2、……CN-2的一端分别连接差分输入信号Vip,各电容的另一端分别通过开关阵列中的开关连接至电压基准Vref,Vcm,Gnd;第二组(N-2)-bit二进制电容阵列的电容C0、C1、C2、……CN-2的一端分别连接差分输入信号Vin,另一端分别通过开关阵列中的开关连接至电压基准Vref,Vcm,Gnd;比较器的输出端连接逐次逼近逻辑控制单元SARLogic,根据比较器的输出,所述SARLogic在时钟信号clk和soc的作用下实现对电容阵列开关的逻辑控制,并产生ADC的数字输出B0-BN-1。。The successive approximation ADC ultra-low power consumption capacitor array of the present embodiment is as shown in Figure 2: comprises two groups of (N-2)-bit binary capacitor arrays that are respectively connected to the two input terminals of the comparator, each group (N-2)- The bit binary capacitor array is connected to the voltage reference V ref , V cm , Gnd through the switch array; each (N-2)-bit binary capacitor array is composed of capacitors C 0 , C 1 , C 2 , ... C N-2 connections, Among them, N is a natural number; one end of the capacitors C 0 , C 1 , C 2 , ... C N-2 of the first (N-2)-bit binary capacitor array is respectively connected to the differential input signal V ip , and the other end of each capacitor Connect to the voltage references V ref , V cm , Gnd through the switches in the switch array respectively; the capacitors C 0 , C 1 , C 2 , ... C N-2 of the second (N-2)-bit binary capacitor array One end is respectively connected to the differential input signal V in , and the other end is respectively connected to voltage references V ref , V cm , Gnd through the switches in the switch array; the output end of the comparator is connected to the successive approximation logic control unit SARLogic, and according to the output of the comparator, the The SARLogic realizes the logic control of the switch of the capacitor array under the action of the clock signal clk and soc, and generates the digital output B 0 -B N-1 of the ADC. .

其中C0=C1,Ci=2Ci-1,i=1~N-2;基准电压Vcm=Vref/2。与第一组(N-2)-bit二进制电容阵列连接的开关阵列为第一开关阵列,第一开关阵列由开关S0p、S1p、S2p、……S(N-2)p组成。与第二组(N-2)-bit二进制电容阵列连接的开关阵列为第二开关阵列,第二开关阵列由开关S0n、S1n、S2n、……S(N-2)n组成。Where C 0 =C 1 , C i =2C i-1 , i=1˜N-2; reference voltage V cm =V ref /2. The switch array connected to the first (N-2)-bit binary capacitor array is the first switch array, and the first switch array is composed of switches S 0p , S 1p , S 2p , ... S (N-2)p . The switch array connected to the second (N-2)-bit binary capacitor array is the second switch array, and the second switch array is composed of switches S 0n , S 1n , S 2n , ... S (N-2)n .

在上述差分电容阵列结构中,采取电容上极板采样,采样结束后,通过比较器比较Vip和Vin的大小直接产生最高位的输出BN-1,该过程不消耗能耗,而且由于最高位在采样结束后直接产生,减小了电容阵列的规模,进而减小了功耗、芯片面积及成本。In the above-mentioned differential capacitor array structure, the upper plate of the capacitor is used for sampling. After the sampling, the comparator compares V ip and V in to directly generate the highest output B N-1 . This process does not consume energy, and because The highest bit is generated directly after sampling, which reduces the scale of the capacitor array, thereby reducing power consumption, chip area and cost.

在上述差分电容阵列结构中,在采样阶段,采取开关阵列时序初始化技术,S(N-2)n=S(N-2)p=“1”,S(N-3)n=S(N-4)n=……S1n=S0n=“0”,S(N-3)p=S(N-4)p=……S1p=S0p=“0”,根据BN-1的结果改变S(N-2)(S(N-2)n或者S(N-2)p)的值,输出较大的电容阵列所对应的最高位开关的控制信号(S(N-2)n或者S(N-2)p)由“1”接至“0”,如图3a所示,进而再次比较电容阵列输出的大小,产生第二位数字输出BN-2,该过程也不消耗能耗。In the above differential capacitor array structure, in the sampling stage, the switch array timing initialization technology is adopted, S (N-2)n = S (N-2)p = "1", S (N-3)n = S (N -4)n =... S 1n = S 0n = "0", S (N-3)p = S (N-4)p = ... S 1p = S 0p = "0", according to B N-1 The result changes the value of S (N-2) (S (N-2)n or S (N-2)p ), and outputs the control signal of the highest bit switch corresponding to the larger capacitor array (S (N-2 )n or S (N-2)p ) from "1" to "0", as shown in Figure 3a, and then compare the size of the output of the capacitor array again to generate the second digital output B N-2 , the process is also No energy consumption.

在上述电容阵列结构中,通过采用上极板采样以及开关阵列逻辑时序初始化技术,在产生最高位和第二位数字输出的过程中不需要基准提供能耗。此外,在产生第三位数字输出BN-3时,若为上跳变(up-transition),电容阵列开关控制信号由“100……0”变为“11/21/2……1/2”,能耗为-CN-2Vref 2/2;若为下跳变(down-transition),电容阵列开关控制信号由“100……0”变为“1/200……0”,能耗也为-CN-2Vref 2/2。通过采用此新型逻辑控制方式,第三位数字输出BN-3的产生也不需要基准提供能耗。图3给出了本发明4-bit实施例的具体转换过程以及相应的能量损耗。In the capacitor array structure above, by adopting upper plate sampling and switch array logic timing initialization technology, no reference is needed to provide energy consumption during the process of generating the highest bit and the second bit digital output. In addition, when generating the third digital output B N-3 , if it is an up-transition, the switch control signal of the capacitor array changes from "100...0" to "11/21/2...1/ 2", the energy consumption is -C N-2 V ref 2 /2; if it is a down-transition, the switch control signal of the capacitor array changes from "100...0" to "1/200...0" , the energy consumption is also -C N-2 V ref 2 /2. By adopting this new logic control method, the generation of the third digital output B N-3 does not require the reference to provide energy consumption. FIG. 3 shows the specific conversion process and corresponding energy consumption of the 4-bit embodiment of the present invention.

在上述电容阵列结构中,在产生前三位的数字输出(BN-1-BN-3)之后,在后续的转换过程中电容阵列采取单调切换逻辑控制方式,每个时钟周期内仅有一个电容发生连接关系的变化,不仅简化了逻辑控制时序,还降低了功耗。In the capacitor array structure above, after the first three digital outputs (B N-1 -B N-3 ) are generated, the capacitor array adopts a monotonic switching logic control mode in the subsequent conversion process, and only The connection relationship of a capacitor changes, which not only simplifies the logic control sequence, but also reduces power consumption.

在上述电容阵列结构中,根据第二位数字输出BN-2的不同,电容阵列的共模输出电平的变化呈现两种趋势:1)若BN-2为逻辑1,电容阵列需要发生上跳变(如图3中A和D所示)以产生第三位输出BN-3,电容阵列共模输出电平在逐次逼近过程中逐渐逼近Vref/2;2)若BN-2为逻辑0,电容阵列需要发生下跳变(如图3中B和C所示)以产生第三位输出BN-3,电容阵列共模输出电平在逐次逼近过程中逐渐逼近Vref/4。图4比较了本发明4-bit实施例与传统单调切换模式的电容阵列输出波形,相比传统的单调切换模式,本发明提供的电容阵列的共模输出(即:比较器的共模输入)电平变化范围显著减小,能够有效减小由于比较器共模电平变化引起的输入失调误差,利于比较器的低功耗优化设计。In the above capacitor array structure, according to the difference of the second digital output B N-2 , the change of the common mode output level of the capacitor array presents two trends: 1) If B N-2 is logic 1, the capacitor array needs to generate Jump up (shown as A and D in Figure 3) to generate the third bit output B N-3 , and the common-mode output level of the capacitor array gradually approaches V ref /2 during the successive approximation process; 2) If B N- 2 is logic 0, and the capacitor array needs to undergo a downward transition (as shown by B and C in Figure 3) to generate the third bit output B N-3 , and the common-mode output level of the capacitor array gradually approaches V ref during the successive approximation process /4. Fig. 4 compares the capacitor array output waveform of the 4-bit embodiment of the present invention and the traditional monotone switching mode, compared with the traditional monotone switching mode, the common mode output of the capacitor array provided by the present invention (that is: the common mode input of the comparator) The level change range is significantly reduced, which can effectively reduce the input offset error caused by the common mode level change of the comparator, which is beneficial to the low power consumption optimization design of the comparator.

在上述电容阵列结构中,所采取的新型逻辑控制方式能够有效减小由寄生电容导致的额外功耗,图5给出了4-bit发明实施例的示意图。电容的上下极板与衬底(“0”)之间都存在寄生电容,其中,下极板和衬底之间的寄生电容通过开关直接与基准相连,在电容切换过程中,寄生电容的充放电会消耗额外的能量,其中,最高位电容CN-2权重最大,其寄生电容耗能最多,通过优化电容阵列开关的逻辑时序,在不增加逻辑复杂度的前提下,保证了在整个A/D转换过程中,最高位电容CN-2仅发生单调下跳变(“1”→“0”或“1”→“1/2”),避免了对其寄生电容(2Cpb)的重复充电,从而有效减小了寄生电容的功耗。In the capacitor array structure above, the new logic control method adopted can effectively reduce the extra power consumption caused by parasitic capacitors. FIG. 5 shows a schematic diagram of an embodiment of the 4-bit invention. There are parasitic capacitances between the upper and lower plates of the capacitor and the substrate ("0"). The parasitic capacitance between the lower plate and the substrate is directly connected to the reference through the switch. During the capacitor switching process, the charge of the parasitic capacitance Discharging consumes additional energy. Among them, the highest capacitor C N-2 has the largest weight, and its parasitic capacitance consumes the most energy. By optimizing the logic timing of the capacitor array switch, it is guaranteed that the entire A During the /D conversion process, the highest bit capacitor C N-2 only undergoes a monotonous downward jump ("1"→"0" or "1"→"1/2"), avoiding the impact on its parasitic capacitance (2C pb ) Repeated charging, thus effectively reducing the power consumption of parasitic capacitors.

在图1所示的传统电荷再分配型SARADC结构中,采取电容下极板采样以及传统的逐次逼近方式,C0、C1、C2、……CN-1组成二进制电容阵列,C0=C1,Ci=2Ci-1,i=1~N-1;Sip、Sin(i=0~N-1)为电容阵列开关;Vip和Vin为差分输入信号;Vref为电压基准。整个电容阵列不仅规模较大,面积、功耗以及工艺成本较高,而且大规模的电容阵列致使SARADC的输入电容较大,导致整体工作速度受限。In the traditional charge redistribution SARADC structure shown in Fig. 1, the lower plate sampling of the capacitor and the traditional successive approximation method are adopted, C 0 , C 1 , C 2 , ... C N-1 form a binary capacitor array, C 0 =C 1 , C i =2C i-1 , i=1~N-1; S ip , S in (i=0~N-1) are capacitor array switches; V ip and V in are differential input signals; V ref is the voltage reference. The entire capacitor array is not only large in scale, but also has high area, power consumption and process costs, and the large-scale capacitor array leads to a large input capacitance of the SARADC, which limits the overall working speed.

表1本发明和传统电荷再分配结构的比较(10-bitADC)Table 1 Comparison (10-bitADC) between the present invention and traditional charge redistribution structure

上表中以10-bitADC为例,在电容阵列规模、开关数目以及电容阵列能耗方面对本发明和传统电荷再分配结构进行了比较,其中,Cpt表示整个电容阵列的上极板对衬底的寄生电容之和,Cpb表示单位电容的下极板对衬底的寄生电容,Ctot表示整个电容阵列的总电容值。本发明提供的电容阵列结构具有明显的优势,电容阵列规模和开关数目仅为传统电荷再分配结构的25%和38.5%,在不考虑寄生电容能耗的情况下,电容阵列能耗仅为传统结构的1.2%,在考虑寄生电容能耗的情况下,以Cpt=0.1Ctot,Cpb=0.15C为例,本发明提供的电容阵列的能耗仅为传统电荷再分配结构的1.4%。具体可参见图6。Taking 10-bitADC as an example in the above table, the present invention is compared with the traditional charge redistribution structure in terms of capacitor array scale, number of switches, and capacitor array energy consumption, wherein C pt represents the upper plate-to-substrate of the entire capacitor array The sum of the parasitic capacitances, C pb represents the parasitic capacitance of the lower plate of the unit capacitance to the substrate, and C tot represents the total capacitance value of the entire capacitor array. The capacitor array structure provided by the present invention has obvious advantages. The capacitor array scale and the number of switches are only 25% and 38.5% of the traditional charge redistribution structure. 1.2% of the structure, in the case of considering the energy consumption of parasitic capacitance, taking C pt =0.1C tot , C pb =0.15C as an example, the energy consumption of the capacitor array provided by the present invention is only 1.4% of the traditional charge redistribution structure . See Figure 6 for details.

Claims (7)

1. a successive approximation analog to digital C super low-power consumption capacitor array, it is characterized in that, comprise (N-2)-bit binary capacitor array that two groups are connected to two inputs of comparator, often group (N-2)-bit binary capacitor array connects voltage reference V by switch arrays ref, V cm, Gnd; Often group (N-2)-bit binary capacitor array is by electric capacity C 0, C 1, C 2... C n-2connect to form, wherein N is natural number; The electric capacity C of first group of (N-2)-bit binary capacitor array 0, C 1, C 2... C n-2one end connect differential input signal V respectively ip, the other end of each electric capacity is connected to voltage reference V respectively by the switch in switch arrays ref, V cm, Gnd; The electric capacity C of second group of (N-2)-bit binary capacitor array 0, C 1, C 2... C n-2one end connect differential input signal V respectively in, the other end is connected to voltage reference V respectively by the switch in switch arrays ref, V cm, Gnd; The output of comparator connects Approach by inchmeal logic control element SARLogic, according to the output of comparator, described Approach by inchmeal logic control element SARLogic realizes the logic control to capacitor array switch under the effect of clock signal clk and soc, and the numeral producing ADC exports B 0-B n-1.
2. successive approximation analog to digital C super low-power consumption capacitor array according to claim 1, is characterized in that, C 0=C 1, C i=2C i-1, i=1 ~ N-2.
3. successive approximation analog to digital C super low-power consumption capacitor array according to claim 1, is characterized in that, the switch arrays be connected with first group of (N-2)-bit binary capacitor array are the first switch arrays, and the first switch arrays are by switch S 0p, S 1p, S 2p... S (N-2) pcomposition.
4. successive approximation analog to digital C super low-power consumption capacitor array according to claim 1, is characterized in that, the switch arrays be connected with second group of (N-2)-bit binary capacitor array are second switch array, and second switch array is by switch S 0n, S 1n, S 2n... S (N-2) ncomposition.
5. a logic control method for successive approximation analog to digital C super low-power consumption capacitor array described in claim 1-4 any one, is characterized in that:
(1) in sample phase, switch arrays sequential initialization technique is taked, S (N-2) n=S (N-2) p=" 1 ", S (N-3) n=S (N-4) n=... S 1n=S 0n=" 0 ", S (N-3) p=S (N-4) p=... S 1p=S 0p=" 0 ", according to B n-1result change S (N-2)(S (N-2) nor S (N-2) p) value, export the control signal S of the larger highest order switch corresponding to capacitor array (N-2)be connected to " 0 " by " 1 ", and then again compare the size of capacitor array output, produce second-order digit and export B n-2; " 1 " and " 0 " represents respective switch respectively and the electric capacity corresponding to it is connected to V refand Gnd;
(2) by adopting top crown sampling and switch arrays logical sequence initialization technique, in the process producing highest order and second-order digit output, benchmark is not needed to provide energy consumption; B is exported in generation the 3rd bit digital n-3time, if upper saltus step, capacitor array switch controlling signal is become " 11/21/2 ... 1/2 " by " 100 ... 0 ", and energy consumption is-C n-2v ref 2/ 2; If lower saltus step, capacitor array switch controlling signal is become " 1/200 ... 0 " by " 100 ... 0 ", and energy consumption is also-C n-2v ref 2/ 2; " 1/2 " represents respective switch and the electric capacity corresponding to it is connected to V cm, V cm=V ref/ 2.
6. logic control method according to claim 5, is characterized in that, exports B in the numeral producing front three n-1-B n-3afterwards, in follow-up transfer process, capacitor array takes dull switch logic control mode, only has the change of an electric capacity generation annexation in each clock cycle.
7. logic control method according to claim 5, is characterized in that, exports B according to second-order digit n-2difference, the change of the common mode output level of capacitor array presents two kinds of trend:
1) if B n-2output logic 1, capacitor array needs that upper saltus step occurs and exports B to produce the 3rd n-3, capacitor array common mode output level approaches V gradually in Approach by inchmeal process ref/ 2;
2) if B n-2output logic 0, capacitor array needs that lower saltus step occurs and exports B to produce the 3rd n-3, capacitor array common mode output level approaches V gradually in Approach by inchmeal process ref/ 4.
CN201510423360.7A 2015-07-17 2015-07-17 Successive approximation analog to digital C super low-power consumption capacitor array and its logic control method Active CN105187065B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510423360.7A CN105187065B (en) 2015-07-17 2015-07-17 Successive approximation analog to digital C super low-power consumption capacitor array and its logic control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510423360.7A CN105187065B (en) 2015-07-17 2015-07-17 Successive approximation analog to digital C super low-power consumption capacitor array and its logic control method

Publications (2)

Publication Number Publication Date
CN105187065A true CN105187065A (en) 2015-12-23
CN105187065B CN105187065B (en) 2018-11-30

Family

ID=54908954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510423360.7A Active CN105187065B (en) 2015-07-17 2015-07-17 Successive approximation analog to digital C super low-power consumption capacitor array and its logic control method

Country Status (1)

Country Link
CN (1) CN105187065B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978571A (en) * 2016-04-28 2016-09-28 四川和芯微电子股份有限公司 Successive approximation analog to digital converter suitable for single and double end input
CN106549669A (en) * 2016-12-06 2017-03-29 南京邮电大学 A kind of analog-digital converter based on monotonicity capacitance switch
CN106685420A (en) * 2016-12-15 2017-05-17 西安邮电大学 A Low-power High-Linearity Switching Method of Successive Approximation ADC Capacitor Array
CN106972859A (en) * 2017-02-24 2017-07-21 浙江大学 A kind of low-power consumption gradual approaching A/D converter
CN107835021A (en) * 2017-11-24 2018-03-23 西安交通大学 A kind of asynchronous sequential control circuit of Variable delay and control method
CN107888190A (en) * 2017-12-01 2018-04-06 西安电子科技大学 Gradual approaching A/D converter based on asymmetric differential capacitance array
CN107968656A (en) * 2016-10-20 2018-04-27 国民技术股份有限公司 A kind of successive approximation simulates digital quantizer and its using switching method
CN108631777A (en) * 2018-05-10 2018-10-09 北京华大九天软件有限公司 A kind of sequential control circuit suitable for low-power consumption analog-digital converter
CN108649956A (en) * 2018-05-15 2018-10-12 西安电子科技大学 A kind of gradual approaching A/D converter based on asymmetric differential capacitance array
CN112039528A (en) * 2020-07-22 2020-12-04 重庆中易智芯科技有限责任公司 Capacitor array logic control method in successive approximation analog-to-digital converter
CN112968704A (en) * 2021-02-03 2021-06-15 电子科技大学 Successive approximation type analog-to-digital converter based on transient capacitance switching mode and quantization method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066583A1 (en) * 2008-09-16 2010-03-18 Electronics And Telecommunications Research Institute Multi-stage successive approximation register analog-todigital converter and analog-to-digital converting method using the same
CN103595412A (en) * 2013-10-15 2014-02-19 西安邮电大学 Low-power-consumption small-area capacitor array and reset method and logic control method thereof
CN104124972A (en) * 2014-08-08 2014-10-29 西安电子科技大学 10-bit ultra-low-power successive approximation register analog-to-digital converter based on charge redistribution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100066583A1 (en) * 2008-09-16 2010-03-18 Electronics And Telecommunications Research Institute Multi-stage successive approximation register analog-todigital converter and analog-to-digital converting method using the same
CN103595412A (en) * 2013-10-15 2014-02-19 西安邮电大学 Low-power-consumption small-area capacitor array and reset method and logic control method thereof
CN104124972A (en) * 2014-08-08 2014-10-29 西安电子科技大学 10-bit ultra-low-power successive approximation register analog-to-digital converter based on charge redistribution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
秦琳: "基于终端电容复用开关策略的11位逐次逼近型ADC的研究与设计", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105978571B (en) * 2016-04-28 2019-07-05 四川和芯微电子股份有限公司 Gradually-appoximant analog-digital converter suitable for the input of single, double end
CN105978571A (en) * 2016-04-28 2016-09-28 四川和芯微电子股份有限公司 Successive approximation analog to digital converter suitable for single and double end input
CN107968656B (en) * 2016-10-20 2021-08-20 国民技术股份有限公司 Successive approximation type analog-digital converter and application switching method thereof
CN107968656A (en) * 2016-10-20 2018-04-27 国民技术股份有限公司 A kind of successive approximation simulates digital quantizer and its using switching method
CN106549669A (en) * 2016-12-06 2017-03-29 南京邮电大学 A kind of analog-digital converter based on monotonicity capacitance switch
CN106685420A (en) * 2016-12-15 2017-05-17 西安邮电大学 A Low-power High-Linearity Switching Method of Successive Approximation ADC Capacitor Array
CN106972859A (en) * 2017-02-24 2017-07-21 浙江大学 A kind of low-power consumption gradual approaching A/D converter
CN106972859B (en) * 2017-02-24 2019-12-13 浙江大学 A Low Power Consumption Successive Approximation Analog-to-Digital Converter
CN107835021B (en) * 2017-11-24 2020-10-27 西安交通大学 A variable delay asynchronous timing control circuit and control method
CN107835021A (en) * 2017-11-24 2018-03-23 西安交通大学 A kind of asynchronous sequential control circuit of Variable delay and control method
CN107888190B (en) * 2017-12-01 2020-09-25 西安电子科技大学 Successive Approximation Analog-to-Digital Converter Based on Asymmetric Differential Capacitor Array
CN107888190A (en) * 2017-12-01 2018-04-06 西安电子科技大学 Gradual approaching A/D converter based on asymmetric differential capacitance array
CN108631777A (en) * 2018-05-10 2018-10-09 北京华大九天软件有限公司 A kind of sequential control circuit suitable for low-power consumption analog-digital converter
CN108649956A (en) * 2018-05-15 2018-10-12 西安电子科技大学 A kind of gradual approaching A/D converter based on asymmetric differential capacitance array
CN112039528A (en) * 2020-07-22 2020-12-04 重庆中易智芯科技有限责任公司 Capacitor array logic control method in successive approximation analog-to-digital converter
CN112039528B (en) * 2020-07-22 2022-11-29 重庆中易智芯科技有限责任公司 Capacitor array logic control method in successive approximation analog-to-digital converter
CN112968704A (en) * 2021-02-03 2021-06-15 电子科技大学 Successive approximation type analog-to-digital converter based on transient capacitance switching mode and quantization method thereof

Also Published As

Publication number Publication date
CN105187065B (en) 2018-11-30

Similar Documents

Publication Publication Date Title
CN105187065B (en) Successive approximation analog to digital C super low-power consumption capacitor array and its logic control method
CN102386923B (en) Asynchronous successive approximation analog-to-digital converter and conversion method
CN105391451B (en) Switching method when a kind of gradual approaching A/D converter and its analog-to-digital conversion
CN103166644B (en) A kind of low-power consumption gradual approaching A/D converter and conversion method thereof
CN103595412B (en) The capacitor array of the little area of low-power consumption and repositioning method thereof and logic control method
CN105007079B (en) The fully differential increment method of sampling of gradual approaching A/D converter
CN104967451B (en) Gradual approaching A/D converter
CN105897272B (en) Successive approximation analog-digital converter and its control method
CN113193870A (en) SAR ADC with low power consumption and low layout area
CN103178855B (en) Be applied to the syllogic capacitor array structure of high accuracy gradually-appoximant analog-digital converter
CN108306644B (en) Front-end circuit based on 10-bit ultra-low power consumption successive approximation type analog-to-digital converter
CN108832928B (en) Common-mode voltage correction circuit of SAR ADC capacitor array and correction method thereof
CN104168025B (en) A kind of charge type streamline gradual approaching A/D converter
CN106603077B (en) A kind of Approach by inchmeal fully differential analog-digital converter and its workflow
CN104124973A (en) Successive approximation type analogue-digital converter and conversion method thereof
CN214756299U (en) A 12-Bit Differential SAR ADC
CN106059589A (en) N-bit low-power-consumption successive approximation analog-to-digital converter
CN107888190A (en) Gradual approaching A/D converter based on asymmetric differential capacitance array
CN106972860B (en) Successive approximation type analog-to-digital converter and switching method thereof
CN103152048B (en) A kind of Differential Input successive approximation analog digital conversion method
CN106685420B (en) A kind of low-power consumption high linearity switching method of successive approximation analog to digital C capacitor arrays
CN106656192A (en) ADC chip circuit based on gate voltage bootstrap circuit and segmented full capacitor array
CN111277270B (en) A high-speed successive approximation analog-to-digital conversion circuit and DAC weight distribution method
CN108649956A (en) A kind of gradual approaching A/D converter based on asymmetric differential capacitance array
CN112134566B (en) Dynamic logic control circuit applied to SAR ADC

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant