CN105186043B - All solid state LiMn2O4‑Li4Ti5O12Battery and preparation method thereof - Google Patents
All solid state LiMn2O4‑Li4Ti5O12Battery and preparation method thereof Download PDFInfo
- Publication number
- CN105186043B CN105186043B CN201510610676.7A CN201510610676A CN105186043B CN 105186043 B CN105186043 B CN 105186043B CN 201510610676 A CN201510610676 A CN 201510610676A CN 105186043 B CN105186043 B CN 105186043B
- Authority
- CN
- China
- Prior art keywords
- limn
- negative electrode
- solid electrolyte
- positive electrode
- electrode sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002360 preparation method Methods 0.000 title claims description 8
- 239000007787 solid Substances 0.000 title abstract description 8
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 66
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 58
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 claims abstract description 44
- 239000006258 conductive agent Substances 0.000 claims abstract description 43
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000011888 foil Substances 0.000 claims abstract description 8
- 238000007731 hot pressing Methods 0.000 claims abstract description 7
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 239000002985 plastic film Substances 0.000 claims abstract description 5
- 229920006255 plastic film Polymers 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 13
- 238000000137 annealing Methods 0.000 claims description 8
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 238000007789 sealing Methods 0.000 abstract description 2
- 238000003825 pressing Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000002227 LISICON Substances 0.000 description 1
- 229910015645 LiMn Inorganic materials 0.000 description 1
- 229910012305 LiPON Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000002228 NASICON Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开一种全固态LiMn2O4‑Li4Ti5O12电池的制备方法,包括如下步骤:将LiMn2O4、导电剂、固体电解质、铝粉混合均匀,压片形成一正极预制体;将Li4Ti5O12、导电剂、固体电解质、铝粉混合均匀,压片形成一负极预制体;将所述两片正极预制体或负极预制体放置于集流体铝箔两侧并加热使正极或负极预制体与集流体铝箔粘接在一起分别形成正极片及负极片;在正极片或负极片的表面形成一固体电解质层;将正极片和负极片交替叠放,使固体电解质层夹持于所述正极片和负极片之间,热压后形成一电池预制体;以及去除电池预制体中的水分,并铝塑膜密封得到所述全固态LiMn2O4‑Li4Ti5O12电池。本发明还提供一种通过上述方法获得的全固态LiMn2O4‑Li4Ti5O12电池。
The invention discloses a method for preparing an all-solid-state LiMn 2 O 4 -Li 4 Ti 5 O 12 battery, comprising the following steps: uniformly mixing LiMn 2 O 4 , conductive agent, solid electrolyte, and aluminum powder, and pressing into tablets to form a prefabricated positive electrode body; mix Li 4 Ti 5 O 12 , conductive agent, solid electrolyte, and aluminum powder evenly, and press to form a negative electrode preform; place the two positive electrode preforms or negative electrode preforms on both sides of the current collector aluminum foil and heat Bond the positive electrode or negative electrode prefabricated body with the current collector aluminum foil to form the positive electrode sheet and the negative electrode sheet respectively; form a solid electrolyte layer on the surface of the positive electrode sheet or the negative electrode sheet; stack the positive electrode sheet and the negative electrode sheet alternately to make the solid electrolyte layer Clamped between the positive electrode sheet and the negative electrode sheet, forming a battery preform after hot pressing; and removing the moisture in the battery preform, and sealing it with an aluminum-plastic film to obtain the all-solid LiMn 2 O 4 -Li 4 Ti 5 O 12 batteries. The present invention also provides an all-solid LiMn 2 O 4 -Li 4 Ti 5 O 12 battery obtained by the above method.
Description
技术领域technical field
本发明涉及一种全固态LiMn2O4-Li4Ti5O12电池及其制备方法。The invention relates to an all-solid LiMn 2 O 4 -Li 4 Ti 5 O 12 battery and a preparation method thereof.
背景技术Background technique
目前锂电池大多所使用的电解质包含易挥发和易燃烧的有机溶剂。为了制造更高输出电压、更高能密度和更大尺度的电池,就需要使用含大量有机溶剂的电解质。而电池中的有机电解质导致严重的火灾和电解质泄漏时有发生。要克服这些安全问题和制造出可靠的电池,最有效的方法就是以不燃的固体电解质代替易燃的液体电解质。全固态锂电池与传统的液体电解质电池相比,除了有较高的能量外,还避免了酸碱等液体电解质对容器的腐蚀,并且具有无泄露、储存寿命长、易于小型化等优点,而且使用温度范围宽,使得锂电池的应用范围扩展到电动汽车、储能、航天、生物以及人体等多种特殊要求的工作环境,它将越来越影响和改变人们的生活。Most of the electrolytes currently used in lithium batteries contain volatile and flammable organic solvents. In order to manufacture batteries with higher output voltage, higher energy density and larger scale, it is necessary to use electrolytes containing a large amount of organic solvents. However, the organic electrolyte in the battery causes serious fire and electrolyte leakage occurs from time to time. The most effective way to overcome these safety issues and create a reliable battery is to replace the flammable liquid electrolyte with a nonflammable solid electrolyte. Compared with traditional liquid electrolyte batteries, all-solid-state lithium batteries not only have higher energy, but also avoid the corrosion of containers by liquid electrolytes such as acid and alkali, and have the advantages of no leakage, long storage life, and easy miniaturization. The wide operating temperature range extends the application range of lithium batteries to various special working environments such as electric vehicles, energy storage, aerospace, biology, and the human body. It will increasingly affect and change people's lives.
综上所述,用于全固态锂电池的开发利用具有重大的现实意义。In summary, the development and utilization of all-solid-state lithium batteries has great practical significance.
发明内容Contents of the invention
本发明提供一种全固态LiMn2O4-Li4Ti5O12电池的制备方法,包括如下步骤:The invention provides a method for preparing an all-solid-state LiMn 2 O 4 -Li 4 Ti 5 O 12 battery, comprising the following steps:
将LiMn2O4、导电剂、固体电解质、铝粉混合均匀,热压形成一正极预制体;Mix LiMn 2 O 4 , conductive agent, solid electrolyte, and aluminum powder evenly, and hot press to form a positive electrode preform;
将Li4Ti5O12、导电剂、固体电解质、铝粉混合均匀,热压形成一负极预制体;Mix Li 4 Ti 5 O 12 , conductive agent, solid electrolyte, and aluminum powder evenly, and hot press to form a negative electrode preform;
将所述两片正极预制体及负极预制体分别放置于集流体铝箔两侧热压分别形成正极片及负极片;Place the two positive electrode preforms and negative electrode preforms on both sides of the current collector aluminum foil and heat press to form the positive electrode sheet and the negative electrode sheet respectively;
在正极片或负极片的至少一表面形成一固体电解质层;forming a solid electrolyte layer on at least one surface of the positive electrode sheet or the negative electrode sheet;
将正极片和负极片交替叠放,使固体电解质层与所述正极片和负极片形成夹层结构,热压后形成一电池预制体;以及alternately stacking the positive electrode sheet and the negative electrode sheet, so that the solid electrolyte layer forms a sandwich structure with the positive electrode sheet and the negative electrode sheet, and forms a battery prefabricated body after hot pressing; and
去除电池预制体中的水分,并铝塑膜密封得到所述全固态LiMn2O4-Li4Ti5O12电池。The moisture in the battery prefabricated body was removed, and the aluminum-plastic film was sealed to obtain the all-solid-state LiMn 2 O 4 -Li 4 Ti 5 O 12 battery.
进一步的,所述正极预制体中LiMn2O4、导电剂、固体电解质和铝粉的质量比为10:0.1~1.0:0.5~1.5:0.5~1.5。Further, the mass ratio of LiMn 2 O 4 , conductive agent, solid electrolyte and aluminum powder in the positive electrode preform is 10:0.1~1.0:0.5~1.5:0.5~1.5.
进一步的,所述正极预制体中LiMn2O4、导电剂、固体电解质和铝粉的质量比为10:0.3~0.7:0.8~1.2:0.8~1.2。Further, the mass ratio of LiMn 2 O 4 , conductive agent, solid electrolyte and aluminum powder in the positive electrode preform is 10:0.3~0.7:0.8~1.2:0.8~1.2.
进一步的,所述负极预制体中Li4Ti5O12、导电剂、固体电解质和铝粉的质量比为10:0.1~1.0:0.5~1.5:0.5~1.5。Further, the mass ratio of Li 4 Ti 5 O 12 , conductive agent, solid electrolyte and aluminum powder in the negative electrode preform is 10:0.1~1.0:0.5~1.5:0.5~1.5.
进一步的,所述负极预制体中Li4Ti5O12、导电剂、固体电解质和铝粉的质量比为10:0.3~0.7:0.8~1.2:0.8~1.2。Further, the mass ratio of Li 4 Ti 5 O 12 , conductive agent, solid electrolyte and aluminum powder in the negative electrode preform is 10:0.3~0.7:0.8~1.2:0.8~1.2.
进一步的,所述固体电解质层通过磁控溅射方法形成。Further, the solid electrolyte layer is formed by magnetron sputtering.
进一步的,将所述正极预制体及负极预制体加热到660℃~680℃使铝粉熔解分别形成正极片及负极片。Further, the positive electrode preform and the negative electrode preform are heated to 660° C. to 680° C. to melt the aluminum powder to form the positive electrode sheet and the negative electrode sheet respectively.
本发明还提供一种全固态LiMn2O4-Li4Ti5O12电池,包括:The present invention also provides an all-solid LiMn 2 O 4 -Li 4 Ti 5 O 12 battery, comprising:
正极片,包括均匀混合的LiMn2O4、导电剂、固体电解质以及金属铝,其中,金属铝粘结于LiMn2O4、导电剂以及固体电解质之间;The positive electrode sheet includes uniformly mixed LiMn 2 O 4 , conductive agent, solid electrolyte and metal aluminum, wherein the metal aluminum is bonded between LiMn 2 O 4 , conductive agent and solid electrolyte;
负极片,包括均匀混合的Li4Ti5O12、导电剂、固体电解质以及金属铝,其中,金属铝粘结于Li4Ti5O12、导电剂以及固体电解质之间;Negative electrode sheet, including uniformly mixed Li 4 Ti 5 O 12 , conductive agent, solid electrolyte and metal aluminum, wherein the metal aluminum is bonded between Li 4 Ti 5 O 12 , conductive agent and solid electrolyte;
夹层为所述正极片和负极片之间的固体电解质层。The interlayer is a solid electrolyte layer between the positive electrode sheet and the negative electrode sheet.
进一步的,所述正极片中LiMn2O4、导电剂、固体电解质和金属铝的质量比为10:0.1~1.0:0.5~1.5:0.5~1.5。Further, the mass ratio of LiMn 2 O 4 , conductive agent, solid electrolyte and metal aluminum in the positive electrode sheet is 10:0.1~1.0:0.5~1.5:0.5~1.5.
进一步的,所述负极片中Li4Ti5O12、导电剂、固体电解质和铝粉的质量比为10:0.1~1.0:0.5~1.5:0.5~1.5。Further, the mass ratio of Li 4 Ti 5 O 12 , conductive agent, solid electrolyte and aluminum powder in the negative electrode sheet is 10:0.1~1.0:0.5~1.5:0.5~1.5.
本发明提供的一种全固态LiMn2O4-Li4Ti5O12电池不仅具有较高能量外,通过金属铝作为正极片和负极片的粘结剂,还可以使上述电池具有良好的循环性能和安全性能。此外,本发明的制备方法,还具有制程简单,容易工业化引用等特点。The all-solid-state LiMn 2 O 4 -Li 4 Ti 5 O 12 battery provided by the present invention not only has high energy, but also can make the above-mentioned battery have a good cycle time by using metal aluminum as the binder of the positive electrode sheet and the negative electrode sheet. performance and safety features. In addition, the preparation method of the present invention also has the characteristics of simple manufacturing process and easy industrial application.
附图说明Description of drawings
图1为本发明实施例提供的制备全固态LiMn2O4-Li4Ti5O12电池的流程图。Fig. 1 is a flow chart for preparing an all-solid-state LiMn 2 O 4 -Li 4 Ti 5 O 12 battery provided by an embodiment of the present invention.
图2为由本实施例1得到的全固态LiMn2O4-Li4Ti5O12电池的循环测试曲线图。FIG. 2 is a cycle test graph of the all-solid-state LiMn 2 O 4 -Li 4 Ti 5 O 12 battery obtained in Example 1.
具体实施方式detailed description
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, only some structures related to the present invention are shown in the drawings but not all structures.
请参照图1,一种全固态LiMn2O4-Li4Ti5O12电池的制备方法,包括如下步骤:Please refer to Figure 1, a method for preparing an all-solid-state LiMn 2 O 4 -Li 4 Ti 5 O 12 battery, including the following steps:
S1,将LiMn2O4、导电剂、固体电解质、铝粉混合均匀,热压形成一正极预制体;S1, mix LiMn 2 O 4 , conductive agent, solid electrolyte, and aluminum powder evenly, and hot press to form a positive electrode preform;
S2,将Li4Ti5O12、导电剂、固体电解质、铝粉混合均匀,热压形成一负极预制体;S2, mixing Li 4 Ti 5 O 12 , conductive agent, solid electrolyte, and aluminum powder evenly, and hot pressing to form a negative electrode preform;
S3,将所述两片正极预制体及负极预制体放置在集流体铝箔两侧并热压分别形成正极片及负极片;S3, placing the two positive electrode preforms and negative electrode preforms on both sides of the current collector aluminum foil and hot pressing to form the positive electrode sheet and the negative electrode sheet respectively;
S4,在正极片或负极片的至少一表面形成一固体电解质层;S4, forming a solid electrolyte layer on at least one surface of the positive electrode sheet or the negative electrode sheet;
S5,将正极片和负极片交替叠放,使固体电解质层位于所述正极片和负极片之间,热压后形成一电池预制体;以及S5, stacking the positive electrode sheet and the negative electrode sheet alternately, so that the solid electrolyte layer is located between the positive electrode sheet and the negative electrode sheet, forming a battery prefabricated body after hot pressing; and
S6,去除电池预制体中的水分,并铝塑膜密封得到所述全固态LiMn2O4-Li4Ti5O12电池。S6, removing the moisture in the battery preform, and sealing it with an aluminum-plastic film to obtain the all-solid LiMn 2 O 4 -Li 4 Ti 5 O 12 battery.
在步骤S1中,所述正极预制体中LiMn2O4、导电剂、固体电解质和铝粉的质量比为10:0.1~1.0:0.5~1.5:0.5~1.5;优选的,所述正极预制体中LiMn2O4、导电剂、固体电解质和铝粉的质量比为10:0.3~0.7:0.8~1.2:0.8~1.2;更优选的,所述正极预制体中LiMn2O4、导电剂、固体电解质和铝粉的质量比为10:0.4~0.6:0.9~1.1:0.9~1.1。在所述正极预制体中加入铝粉的目的是为了做LiMn2O4、导电剂的固体电解质的粘结剂。所述固体电解质可以为锂离子导体,如β-Al2O3、LiPON、Li2S-P2S5玻璃、Li10GeP2S12、NASICON、LISICON、钙钛矿结构的Li3xLa1-3xTiO3(LLT,0<x<0.16)等固体电解质体系。所述导电剂可以是活性炭、导电炭黑、碳纳米管、石墨烯或其它类型的导电添加剂。In step S1, the mass ratio of LiMn 2 O 4 , conductive agent, solid electrolyte and aluminum powder in the positive electrode preform is 10:0.1~1.0:0.5~1.5:0.5~1.5; preferably, the positive electrode preform The mass ratio of LiMn 2 O 4 , conductive agent, solid electrolyte and aluminum powder is 10:0.3~0.7:0.8~1.2:0.8~1.2; more preferably, LiMn 2 O 4 , conductive agent, The mass ratio of the solid electrolyte to the aluminum powder is 10:0.4~0.6:0.9~1.1:0.9~1.1. The purpose of adding aluminum powder to the positive electrode preform is to serve as a binder for the solid electrolyte of LiMn 2 O 4 and conductive agent. The solid electrolyte can be a lithium ion conductor, such as β-Al 2 O 3 , LiPON, Li 2 SP 2 S 5 glass, Li 10 GeP 2 S 12 , NASICON, LISICON, Li 3x La 1-3x of perovskite structure TiO 3 (LLT, 0<x<0.16) and other solid electrolyte systems. The conductive agent may be activated carbon, conductive carbon black, carbon nanotubes, graphene or other types of conductive additives.
在步骤S2中,所述负极预制体中Li4Ti5O12、导电剂、固体电解质和铝粉的质量比为10:0.1~1.0:0.5~1.5:0.5~1.5;优选的,所述负极预制体中Li4Ti5O12、导电剂、固体电解质和铝粉的质量比为10:0.3~0.7:0.8~1.2:0.8~1.2;更优选的,所述负极预制体中Li4Ti5O12、导电剂、固体电解质和铝粉的质量比为10:0.4~0.6:0.9~1.1:0.9~1.1。在所述负极极预制体中加入铝粉的目的是为了做Li4Ti5O12、导电剂的固体电解质的粘结剂并提高整个极片的导电性。In step S2, the mass ratio of Li 4 Ti 5 O 12 , conductive agent, solid electrolyte and aluminum powder in the negative electrode preform is 10:0.1~1.0:0.5~1.5:0.5~1.5; preferably, the negative electrode The mass ratio of Li 4 Ti 5 O 12 , conductive agent, solid electrolyte and aluminum powder in the preform is 10:0.3~0.7:0.8~1.2:0.8~1.2; more preferably, the Li 4 Ti 5 in the negative electrode preform The mass ratio of O 12 , conductive agent, solid electrolyte and aluminum powder is 10:0.4~0.6:0.9~1.1:0.9~1.1. The purpose of adding aluminum powder to the negative electrode preform is to serve as a binder for the solid electrolyte of Li 4 Ti 5 O 12 and the conductive agent, and to improve the conductivity of the entire pole piece.
在步骤S3中,优选的,在真空氛围或惰性气体氛围中加热,从而防止氧化。另外,所述加热温度大于等于铝粉的熔点,即,大于等于660℃即可。为了不破坏固体电解质,Li4Ti5O12以及LiMn2O4的结构,所述加热温度为660℃~680℃。优选的,所述加热温度为660℃~670℃。更优选的,所述加热温度为660℃~665℃。由于加热温度大于铝粉熔点,故,正极预制体的铝粉会熔化,从而粘结于LiMn2O4、导电剂的固体电解质之间。可以理解,所述负极预制体中的铝粉也会熔化,从而粘结于Li4Ti5O12、导电剂的固体电解质之间。进一步的,所述加热时间优选为10分钟到60分钟。更进一步的,包括一退火的步骤,所述退火温度为400℃~600℃,退火时间为1小时到2小时。实验证明,通过退火处理可以获得更稳定的正极片和负极片。更优选的,所述退火温度为500℃~600℃。In step S3, preferably, heating is performed in a vacuum atmosphere or an inert gas atmosphere, so as to prevent oxidation. In addition, the heating temperature may be greater than or equal to the melting point of the aluminum powder, that is, greater than or equal to 660°C. In order not to damage the structure of the solid electrolyte, Li 4 Ti 5 O 12 and LiMn 2 O 4 , the heating temperature is 660° C. to 680° C. Preferably, the heating temperature is 660°C to 670°C. More preferably, the heating temperature is 660°C to 665°C. Since the heating temperature is higher than the melting point of the aluminum powder, the aluminum powder of the positive electrode preform will melt and bond between the LiMn 2 O 4 and the solid electrolyte of the conductive agent. It can be understood that the aluminum powder in the negative electrode preform will also be melted, so as to bond between Li 4 Ti 5 O 12 and the solid electrolyte of the conductive agent. Further, the heating time is preferably 10 minutes to 60 minutes. Furthermore, an annealing step is included, the annealing temperature is 400° C. to 600° C., and the annealing time is 1 hour to 2 hours. Experiments have proved that more stable positive and negative electrodes can be obtained through annealing treatment. More preferably, the annealing temperature is 500°C to 600°C.
在步骤S4中,可以在所述正极片或负极片的至少一表面形成一固体电解质层。所述固体电解质层可以通过磁控溅射方法或其它方法形成。所述固体电解质层的厚度可以根据实际需要选择,一般为1微米到10微米。优选的,所述固体电解质层的厚度为2微米到5微米。更优选的,所述固体电解质层的厚度为2微米到4微米,从而可以显著提高电池的充放电性能。In step S4, a solid electrolyte layer may be formed on at least one surface of the positive electrode sheet or the negative electrode sheet. The solid electrolyte layer may be formed by a magnetron sputtering method or other methods. The thickness of the solid electrolyte layer can be selected according to actual needs, and is generally 1 micron to 10 microns. Preferably, the solid electrolyte layer has a thickness of 2 microns to 5 microns. More preferably, the solid electrolyte layer has a thickness of 2 microns to 4 microns, so that the charging and discharging performance of the battery can be significantly improved.
在步骤S5中,所述热压温度为600℃~660℃。In step S5, the hot pressing temperature is 600°C-660°C.
在步骤S6中,可以通过真空干燥法,加热干燥法或其他方法去除电池预制体中的水分,并通过铝塑膜密封得到所述全固态LiMn2O4-Li4Ti5O12电池。In step S6, the moisture in the battery preform can be removed by vacuum drying, heat drying or other methods, and sealed with an aluminum-plastic film to obtain the all-solid LiMn 2 O 4 -Li 4 Ti 5 O 12 battery.
本发明还提供一种全固态LiMn2O4-Li4Ti5O12电池,包括:The present invention also provides an all-solid LiMn 2 O 4 -Li 4 Ti 5 O 12 battery, comprising:
正极片,包括均匀混合的LiMn2O4、导电剂、固体电解质以及金属铝,其中,金属铝粘结于LiMn2O4、导电剂以及固体电解质之间;The positive electrode sheet includes uniformly mixed LiMn 2 O 4 , conductive agent, solid electrolyte and metal aluminum, wherein the metal aluminum is bonded between LiMn 2 O 4 , conductive agent and solid electrolyte;
负极片,包括均匀混合的Li4Ti5O12、导电剂、固体电解质以及金属铝,其中,金属铝粘结于Li4Ti5O12、导电剂以及固体电解质之间;Negative electrode sheet, including uniformly mixed Li 4 Ti 5 O 12 , conductive agent, solid electrolyte and metal aluminum, wherein the metal aluminum is bonded between Li 4 Ti 5 O 12 , conductive agent and solid electrolyte;
夹层所述正极片和负极片之间的固体电解质层;sandwiching a solid electrolyte layer between said positive and negative electrode sheets;
第一集流体,设置于所述正极片远离所述固体电解质层的一侧;以及a first current collector, disposed on a side of the positive electrode sheet away from the solid electrolyte layer; and
第二集流体,设置于所述负极片远离所述固体电解质层的一侧。The second current collector is arranged on the side of the negative electrode sheet away from the solid electrolyte layer.
所述正极片中LiMn2O4、导电剂、固体电解质和金属铝的质量比为10:0.1~1.0:0.5~1.5:0.5~1.5。优选的,所述正极片中LiMn2O4、导电剂、固体电解质和铝粉的质量比为10:0.3~0.7:0.8~1.2:0.8~1.2;更优选的,所述正极片中LiMn2O4、导电剂、固体电解质和铝粉的质量比为10:0.4~0.6:0.9~1.1:0.9~1.1。The mass ratio of LiMn 2 O 4 , conductive agent, solid electrolyte and metal aluminum in the positive electrode sheet is 10:0.1-1.0:0.5-1.5:0.5-1.5. Preferably, the mass ratio of LiMn 2 O 4 , conductive agent, solid electrolyte and aluminum powder in the positive electrode sheet is 10:0.3~0.7:0.8~1.2:0.8~1.2; more preferably, the LiMn 2 in the positive electrode sheet The mass ratio of O 4 , conductive agent, solid electrolyte and aluminum powder is 10:0.4~0.6:0.9~1.1:0.9~1.1.
进一步的,所述负极片中Li4Ti5O12、导电剂、固体电解质和金属铝的质量比为10:0.1~1.0:0.5~1.5:0.5~1.5。优选的,所述负极片中Li4Ti5O12、导电剂、固体电解质和铝粉的质量比为10:0.3~0.7:0.8~1.2:0.8~1.2;更优选的,所述负极片中Li4Ti5O12、导电剂、固体电解质和铝粉的质量比为10:0.4~0.6:0.9~1.1:0.9~1.1。所述第一集流体和第二集流体优选为铝箔,从而可以与所述正极片和负极片形成良好的接触。Further, the mass ratio of Li 4 Ti 5 O 12 , conductive agent, solid electrolyte and metal aluminum in the negative electrode sheet is 10:0.1~1.0:0.5~1.5:0.5~1.5. Preferably, the mass ratio of Li 4 Ti 5 O 12 , conductive agent, solid electrolyte and aluminum powder in the negative electrode sheet is 10:0.3~0.7:0.8~1.2:0.8~1.2; more preferably, the negative electrode sheet The mass ratio of Li 4 Ti 5 O 12 , conductive agent, solid electrolyte and aluminum powder is 10:0.4~0.6:0.9~1.1:0.9~1.1. The first current collector and the second current collector are preferably aluminum foils, so as to form good contact with the positive electrode sheet and the negative electrode sheet.
实施例1:Example 1:
称取1gLiMn2O4、0.05g导电炭黑、0.1g铝粉、0.1g钙钛矿结构的Li3xLa1-3xTiO3混合均匀,压片后在惰性气氛下660℃热压处理,形成正极片;称取1gLi4Ti5O12、0.05g导电炭黑、0.1g铝粉、0.1g钙钛矿结构的Li3xLa1-3xTiO3混合均匀,压片后在惰性气氛下660℃热处理,形成负极片;在正极片的一表面溅射厚度为2微米左右的钙钛矿结构的Li3xLa1-3xTiO3膜,然后将负极放在正极片上并在正负极的背面放上尺寸合适的铝箔,在适度压力下使得正负极与固体电解质粘接在一起,铝箔与正负极粘接在一起形成电极对;去除水分后用铝塑复合膜密封获得电池。请参照图2,经过210次充放电循环后电池容量无衰减。Weigh 1g LiMn 2 O 4 , 0.05g conductive carbon black, 0.1g aluminum powder, 0.1g Li 3x La 1-3x TiO 3 with perovskite structure and mix evenly. Positive electrode sheet: Weigh 1g Li 4 Ti 5 O 12 , 0.05g conductive carbon black, 0.1g aluminum powder, 0.1g Li 3x La 1-3x TiO 3 with perovskite structure and mix evenly, and press the tablet at 660°C under an inert atmosphere Heat treatment to form a negative electrode sheet; sputter a Li 3x La 1-3x TiO 3 film with a perovskite structure with a thickness of about 2 microns on one surface of the positive electrode sheet, then place the negative electrode on the positive electrode sheet and place it on the back of the positive and negative electrodes. Aluminum foil of appropriate size is placed on it, and the positive and negative electrodes are bonded with the solid electrolyte under moderate pressure, and the aluminum foil and the positive and negative electrodes are bonded together to form an electrode pair; after removing moisture, seal it with an aluminum-plastic composite film to obtain a battery. Please refer to Figure 2, after 210 charge-discharge cycles, the battery capacity has no attenuation.
实施例2:Example 2:
与实施例1基本相同,不同之处在于,正极预制体和负极预制体中均含有0.15g铝粉。经过实验证明,经过200次充放电循环后电池容量无衰减。It is basically the same as in Example 1, except that both the positive electrode preform and the negative electrode preform contain 0.15 g of aluminum powder. Experiments have proved that the battery capacity has no attenuation after 200 charge-discharge cycles.
实施例3:Example 3:
与实施例1基本相同,不同之处在于,正极预制体和负极预制体中均含有0.05g铝粉。经过实验证明,经过180次充放电循环后电池容量无衰减。It is basically the same as Example 1, except that both the positive electrode preform and the negative electrode preform contain 0.05 g of aluminum powder. Experiments have proved that the battery capacity has no attenuation after 180 charge and discharge cycles.
实施例4:Example 4:
与实施例1基本相同,不同之处在于,正极预制体和负极预制体的热处理温度为670℃。经过实验证明,经过200次充放电循环后电池容量无衰减。It is basically the same as Example 1, except that the heat treatment temperature of the positive electrode preform and the negative electrode preform is 670°C. Experiments have proved that the battery capacity has no attenuation after 200 charge-discharge cycles.
实施例5:Example 5:
与实施例1基本相同,不同之处在于,正极预制体和负极预制体的热处理温度为680℃。经过实验证明,经过180次充放电循环后电池容量无衰减。It is basically the same as Example 1, except that the heat treatment temperature of the positive electrode preform and the negative electrode preform is 680°C. Experiments have proved that the battery capacity has no attenuation after 180 charge and discharge cycles.
实施例6:Embodiment 6:
与实施例1基本相同,不同之处在于,正极预制体和负极预制体中均含有0.15g钙钛矿结构的Li3xLa1-3xTiO3。经过实验证明,经过200次充放电循环后电池容量无衰减。It is basically the same as Example 1, except that both the positive electrode preform and the negative electrode preform contain 0.15 g of Li 3x La 1-3x TiO 3 with a perovskite structure. Experiments have proved that the battery capacity has no attenuation after 200 charge-discharge cycles.
实施例7:Embodiment 7:
与实施例1基本相同,不同之处在于,正极预制体和负极预制体中均含有0.05g导电炭黑。经过实验证明,经过200次充放电循环后电池容量无衰减。It is basically the same as in Example 1, except that both the positive electrode preform and the negative electrode preform contain 0.05 g of conductive carbon black. Experiments have proved that the battery capacity has no attenuation after 200 charge-discharge cycles.
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。Note that the above are only preferred embodiments of the present invention and applied technical principles. Those skilled in the art will understand that the present invention is not limited to the specific embodiments described herein, and that various obvious changes, readjustments and substitutions can be made by those skilled in the art without departing from the protection scope of the present invention. Therefore, although the present invention has been described in detail through the above embodiments, the present invention is not limited to the above embodiments, and can also include more other equivalent embodiments without departing from the concept of the present invention, and the present invention The scope is determined by the scope of the appended claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510610676.7A CN105186043B (en) | 2015-09-23 | 2015-09-23 | All solid state LiMn2O4‑Li4Ti5O12Battery and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510610676.7A CN105186043B (en) | 2015-09-23 | 2015-09-23 | All solid state LiMn2O4‑Li4Ti5O12Battery and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105186043A CN105186043A (en) | 2015-12-23 |
CN105186043B true CN105186043B (en) | 2017-07-11 |
Family
ID=54907988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510610676.7A Expired - Fee Related CN105186043B (en) | 2015-09-23 | 2015-09-23 | All solid state LiMn2O4‑Li4Ti5O12Battery and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105186043B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105655563B (en) * | 2016-03-30 | 2018-02-27 | 吉首大学 | A kind of composite cathode material for lithium ion cell and preparation method thereof |
CN105932225A (en) * | 2016-06-29 | 2016-09-07 | 中国科学院青岛生物能源与过程研究所 | Preparation method of improved room temperature electron ion fast transfer electrode slice for solid-state secondary lithium battery |
CN106450482A (en) * | 2016-12-09 | 2017-02-22 | 中国电子新能源(武汉)研究院有限责任公司 | Method for manufacturing all-solid soft-packaged lithium ion battery |
CN107394261B (en) * | 2017-07-03 | 2019-12-20 | 清华大学深圳研究生院 | Inorganic/organic composite film solid electrolyte for lithium metal battery and preparation method thereof |
CN109449482A (en) * | 2018-09-17 | 2019-03-08 | 浙江极马能源科技股份有限公司 | A method of manufacture flexible solid battery |
CN109473722A (en) * | 2018-09-17 | 2019-03-15 | 浙江极马能源科技股份有限公司 | A method of manufacture circular cylindrical solid battery |
JP7033042B2 (en) * | 2018-09-27 | 2022-03-09 | 太陽誘電株式会社 | All solid state battery |
CN109546152A (en) * | 2018-11-13 | 2019-03-29 | 南昌大学 | A kind of solid lithium battery electrode material and preparation method thereof |
CN111969252A (en) * | 2020-08-31 | 2020-11-20 | 蜂巢能源科技有限公司 | Solid-state battery and method for manufacturing same |
CN113921822A (en) * | 2021-10-08 | 2022-01-11 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | A flexible self-healing deep-sea solid-state battery |
CN114014383A (en) * | 2021-11-05 | 2022-02-08 | 广东佳纳能源科技有限公司 | High-tap-density positive electrode material and preparation method of positive electrode piece |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102779983B (en) * | 2012-08-15 | 2014-06-04 | 泉州劲鑫电子有限公司 | Production method for positive pole of high-power nickel-metal hydride battery |
CN104541401B (en) * | 2012-08-28 | 2018-12-07 | 应用材料公司 | The manufacture of solid state battery group |
CN102800865A (en) * | 2012-08-28 | 2012-11-28 | 吴永胜 | Lithium battery with total solid ions for conducting power |
CN103474620B (en) * | 2013-09-16 | 2016-04-20 | 向勇 | Solid lithium ion electrode, battery and preparation method thereof |
-
2015
- 2015-09-23 CN CN201510610676.7A patent/CN105186043B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN105186043A (en) | 2015-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105186043B (en) | All solid state LiMn2O4‑Li4Ti5O12Battery and preparation method thereof | |
CN103746089B (en) | A kind of solid lithium battery with gradient-structure and preparation method thereof | |
US20170263981A1 (en) | Bipolar laminated all-solid-state lithium-ion rechargeable battery and method for manufacturing same | |
CN104919627B (en) | All-solid-state battery and its manufacture method | |
US20110162198A1 (en) | Method of producing solid electrolyte-electrode assembly | |
JP3198828B2 (en) | Manufacturing method of all solid lithium secondary battery | |
CN101971407A (en) | Solid-state battery manufacturing method and solid state battery | |
CN106328992A (en) | Lithium ion battery and preparation method thereof | |
CN110416630B (en) | All-solid-state battery | |
CN210040366U (en) | Laminated lithium ion battery | |
CN103346292B (en) | A kind of composite lithium ion battery anode and its preparation method and application | |
US20210036360A1 (en) | Sulfide-impregnated solid-state battery | |
JP2014035989A (en) | Method for manufacturing sulfide solid electrolyte layer and method for manufacturing battery | |
CN114824259A (en) | Lithium ion battery composite positive plate, preparation method thereof and lithium ion battery | |
JP6446768B2 (en) | Stacked lithium ion solid state battery | |
CN106784990A (en) | A kind of long circulating nonaqueous electrolyte battery and preparation method thereof | |
JP2014086226A (en) | All-solid-state battery system | |
CN115763824A (en) | Solid-state lithium ion battery pole piece, preparation method thereof and solid-state lithium ion battery | |
CN102044694A (en) | High-voltage battery | |
CN119069820A (en) | A Z-type continuous winding solid-state battery and preparation method thereof | |
WO2021000493A1 (en) | Lithium battery | |
CN105633479A (en) | Preparation method of all-solid-state lithium-sulfur battery | |
CN116315426A (en) | A kind of negative plate for sodium ion battery and sodium ion battery | |
CN116053681A (en) | Energy storage device packaged by liquid metal and preparation method | |
CN115312693A (en) | Electrode for secondary battery, solid-state battery provided with same, and method for manufacturing electrode for secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170711 Termination date: 20210923 |
|
CF01 | Termination of patent right due to non-payment of annual fee |