[go: up one dir, main page]

CN105182752B - A kind of Fast design method of dilute acetone rectifying industrial dynamics optimal control layer output constraint - Google Patents

A kind of Fast design method of dilute acetone rectifying industrial dynamics optimal control layer output constraint Download PDF

Info

Publication number
CN105182752B
CN105182752B CN201510622458.5A CN201510622458A CN105182752B CN 105182752 B CN105182752 B CN 105182752B CN 201510622458 A CN201510622458 A CN 201510622458A CN 105182752 B CN105182752 B CN 105182752B
Authority
CN
China
Prior art keywords
mrow
msub
vertex
output
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510622458.5A
Other languages
Chinese (zh)
Other versions
CN105182752A (en
Inventor
谢磊
谢澜涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201510622458.5A priority Critical patent/CN105182752B/en
Publication of CN105182752A publication Critical patent/CN105182752A/en
Application granted granted Critical
Publication of CN105182752B publication Critical patent/CN105182752B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种稀丙酮精馏工业动态优化控制层输出约束的快速设计方法,包括:步骤1,针对双层结构的稀丙酮精馏工业模型预测控制系统,求出模型预测控制器的稳态优化层的增益模型;步骤2,找到增益模型中,过程增益矩阵中的不确定元素;步骤3,依据不确定元素和系统干扰变量,求得输出约束可达集的上边界和输出约束可达集的下边界;步骤4,依据输出约束可达集的上边界和输出约束可达集的下边界,得到动态优化控制层输出约束。本发明提供的稀丙酮精馏工业动态优化控制层输出约束的快速设计方法,能够有效解决计算输出约束可达集上边界和输出约束可达集下边界耗时较长的问题,且求取速度几乎不会受系统维数的影响。

The invention discloses a rapid design method for the output constraint of the dynamic optimization control layer of the distilling industry of diacetone, comprising: step 1, aiming at the distilling industry model predictive control system of the double-layer structure, calculating the stability of the model predictive controller The gain model of the state optimization layer; step 2, find the uncertain elements in the gain model and process gain matrix; step 3, obtain the upper boundary of the output constraint reachable set and the output constraint reachable set according to the uncertain elements and system disturbance variables The lower boundary of the reachable set; step 4, according to the upper boundary of the output constraint reachable set and the lower boundary of the output constraint reachable set, the output constraints of the dynamic optimization control layer are obtained. The rapid design method for the output constraints of the dynamic optimization control layer of the rectification industry of propylene ketone provided by the present invention can effectively solve the problem that it takes a long time to calculate the upper boundary of the output constraint reachable set and the lower boundary of the output constraint reachable set, and the calculation speed It is hardly affected by the dimensionality of the system.

Description

一种稀丙酮精馏工业动态优化控制层输出约束的快速设计 方法A Rapid Design of Output Constraints of Dynamic Optimal Control Layer for Distillation of Diacetone method

技术领域technical field

本发明涉及工业控制领域,具体涉及一种稀丙酮精馏工业动态优化控制层输出约束的快速设计方法。The invention relates to the field of industrial control, in particular to a rapid design method for dynamically optimizing the output constraints of a control layer in the rectification industry of propylene glycol.

背景技术Background technique

丙酮是一种重要的基本有机原料之一,主要用于制造醋酸纤维素胶片薄膜、塑料以及涂料溶剂。在不同的应用场合下,要求丙酮具有不同的纯度,有时要求纯度很高,甚至是无水丙酮,但这是很有困难的,因为丙酮极具挥发性,也极具溶解性,所以,想要得到高纯度的丙酮往往十分困难。Acetone is one of the important basic organic raw materials, mainly used in the manufacture of cellulose acetate films, plastics and paint solvents. In different applications, acetone is required to have different purity, sometimes it is required to be of high purity, even anhydrous acetone, but this is very difficult, because acetone is extremely volatile and soluble, so, I want to It is often very difficult to obtain high-purity acetone.

要想把低纯度的丙酮水溶液提升到高纯度,一般使用连续精馏的方法。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。In order to raise the low-purity acetone aqueous solution to high-purity, continuous distillation is generally used. The rectification operation in the chemical plant is carried out in a vertical circular rectification column, which is equipped with several layers of trays or filled with a certain height of packing.

通常稀丙酮精馏塔系统由塔体、塔釜再沸器、塔顶冷却器、塔顶回流罐等设备构成,稀丙酮从中部进入塔体,中压蒸汽通入塔釜再沸器作为精馏塔的热源,塔顶冷却水进入塔顶冷却器给精馏塔提供冷源,冷凝气化至塔顶的重组分(水),塔内物料经多次的气化和冷凝后,高纯度的丙酮气从塔体顶部出来,进入塔顶冷却器与冷却水换热,未被冷凝的气体进入放空管道系统,被冷凝至一定温度的丙酮液体一部分被回流泵打回至塔顶作为冷回流,另一部分作为丙酮产品排出装置,塔釜液为带有微量丙酮的水,塔釜液作为污水直接用泵排出装置。Usually diacetone rectification column system is composed of tower body, tower reboiler, tower top cooler, tower top reflux tank and other equipment. The heat source of the distillation tower, the cooling water at the top of the tower enters the top cooler to provide a cold source for the rectification tower, and condenses and vaporizes the heavy components (water) at the top of the tower. After repeated gasification and condensation, the materials in the tower have high purity The acetone gas comes out from the top of the tower and enters the top cooler to exchange heat with the cooling water. The uncondensed gas enters the vent pipe system, and part of the acetone liquid condensed to a certain temperature is pumped back to the top of the tower by the reflux pump as cold reflux. , the other part is used as acetone product discharge device, the tower bottom liquid is water with a small amount of acetone, and the tower bottom liquid is used as sewage to directly discharge the device with a pump.

传统稀丙酮精馏工业动态优化控制层输出约束的设计方法在求取输出约束可达集的上边界和输出约束可达集的下边界时,花费的时间特别多,特别是对于高维系统,往往需要几天甚至更长的时间,大大的影响了设计效率。The traditional design method of the output constraints of the dynamic optimization control layer in the distillation industry of propylene glycol spends a lot of time when calculating the upper boundary of the output constraint reachable set and the lower boundary of the output constraint reachable set, especially for high-dimensional systems. It often takes several days or even longer, which greatly affects the design efficiency.

发明内容Contents of the invention

本发明提供了一种稀丙酮精馏工业动态优化控制层输出约束的快速设计方法,能够有效解决计算输出约束可达集上边界和输出约束可达集下边界耗时较长的问题,且求取速度几乎不会受系统维数的影响。The invention provides a rapid design method for the output constraints of the dynamic optimization control layer of the rectification industry of propylene glycol, which can effectively solve the problem that the calculation of the upper boundary of the output constraint reachable set and the lower boundary of the output constraint reachable set take a long time, and obtain The retrieval speed is hardly affected by the dimensionality of the system.

一种稀丙酮精馏工业动态优化控制层输出约束的快速设计方法,包括:A rapid design method for dynamic optimization control layer output constraints in the distillation industry of propylene glycol, including:

步骤1,针对双层结构的稀丙酮精馏工业模型预测控制系统,求出模型预测控制器的稳态优化层的增益模型如下:Step 1, aiming at the industrial model predictive control system for the distillation of propylene glycol with a double-layer structure, the gain model of the steady-state optimization layer of the model predictive controller is obtained as follows:

y=Gu+Gddy=Gu+G d d

式中:y为n×1维的系统输出,y∈SOC;In the formula: y is the n×1-dimensional system output, y∈SOC;

G为n×m维的过程增益矩阵;G is an n×m dimensional process gain matrix;

u为m×1维的系统输入变量,u∈SIC;u is an m×1-dimensional system input variable, u∈SIC;

Gd为n×p维的干扰增益矩阵;G d is an interference gain matrix of n×p dimension;

d为p×1维的系统干扰变量,d∈DWC;d is the system disturbance variable of p×1 dimension, d∈DWC;

步骤2,找到增益模型中,过程增益矩阵中的不确定元素;Step 2, find the uncertain elements in the process gain matrix in the gain model;

步骤3,依据不确定元素和系统干扰变量,求得输出约束可达集的上边界和输出约束可达集的下边界;Step 3. Obtain the upper boundary of the output constrained reachable set and the lower bound of the output constrained reachable set according to the uncertain elements and system disturbance variables;

步骤4,依据输出约束可达集的上边界和输出约束可达集的下边界,得到动态优化控制层输出约束。Step 4, according to the upper boundary of the output constraint reachable set and the lower boundary of the output constraint reachable set, the output constraints of the dynamic optimization control layer are obtained.

在双层结构稀丙酮精馏工业模型预测控制系统中,动态优化控制层的输出约束需要由上层的稳态优化层给出,传统的预测控制器输出约束设计方法只能给出确定系统的输出约束,没有考虑当系统出现不确定性时的输出约束的设计方法,而稀丙酮精馏工业控制系统通常带有不确定性且是非方(系统输入变量数目小于输出变量数目)的,利用本发明提供的动态优化控制层输出约束的设计方法,能够给在双层结构稀丙酮精馏模型预测控制系统中的稳态优化层中给出下一层的输出约束,保证动态优化控制层模型预测控制器求解的可行性,同时,求解速度耗时短,几乎不受系统维数的影响。In the industrial model predictive control system for the distillation of propylene glycol with a double-layer structure, the output constraints of the dynamic optimization control layer need to be given by the upper steady-state optimization layer, and the traditional output constraint design method of the predictive controller can only give the output of the definite system Constraints, without considering the design method of the output constraints when the system has uncertainty, and the industrial control system of propylene glycol distillation usually has uncertainty and is non-square (the number of system input variables is less than the number of output variables), using the present invention The design method of the output constraints of the dynamic optimization control layer provided can provide the output constraints of the next layer in the steady-state optimization layer in the model predictive control system of the double-layer structure propylene glycol distillation, and ensure the model predictive control of the dynamic optimization control layer At the same time, the solution speed is short and time-consuming, and it is almost not affected by the dimension of the system.

作为优选,输出约束可达集LOKD定义如下:As a preference, the output constraint reachable set LOKD is defined as follows:

LOKD(G,d)={y|y=Gu+Gdd;u∈SIC,ghk∈Δ,Gd为固定值}LOKD(G,d)={y|y=Gu+G d d; u∈SIC, g hk ∈Δ, G d is a fixed value}

式中,ghk为过程增益矩阵G中的不确定元素,将其表示为的形式, where g hk is the uncertain element in the process gain matrix G, expressed as form,

输出约束可达集的上边界LOKDSJ定义如下:The upper bound LOKDSJ of the output constrained reachable set is defined as follows:

输出约束可达集的下边界LOKDXJ定义如下:The lower bound LOKDXJ of the output constrained reachable set is defined as follows:

步骤3中,计算输出约束可达集的上边界的步骤如下:In step 3, the steps to calculate the upper boundary of the output constraint reachable set are as follows:

步骤3-a-1,求出 分别记为Ls,max和Ls,min,求出Ls,max和Ls,min的交集Is,以及交集Is的中点CI;Step 3-a-1, find and Record them as L s,max and L s,min respectively, and find the intersection I s of L s,max and L s,min , and the midpoint CI of the intersection I s ;

步骤3-a-2,求出 分别记为Ls,maxe和Ls,mine,e为正实数,求出Ls,max和Ls,mine的交集Ise1,以及交集Ise1的中点CIe1;Ls,min和Ls,maxe的交集Ise2,以及交集Ise2的中点CIe2Step 3-a-2, find and Respectively recorded as L s, maxe and L s, mine , e is a positive real number, find the intersection I se1 of L s, max and L s, mine , and the midpoint CI e1 of the intersection I se1 ; L s, min and L s, the intersection I se2 of maxe , and the midpoint CI e2 of the intersection I se2 ;

步骤3-a-3,分别计算Ls,max各顶点与CI的距离,以及Ls,max各顶点与CIe1的距离,若Ls,max某一顶点与CIe1的距离大于该顶点与CI的距离,则该顶点为输出约束可达集的上边界LOKDSJ中的一个顶点,以表示Ls,max中所有属于LOKDSJ顶点的集合;Step 3-a-3, respectively calculate the distance between each vertex of L s,max and CI, and the distance between each vertex of L s,max and CI e1 , if the distance between a vertex of L s,max and CI e1 is greater than the distance between the vertex and CI distance, then the vertex is a vertex in the upper boundary LOKDSJ of the output constraint reachable set, with Indicates the set of all vertices belonging to LOKDSJ in L s,max ;

步骤3-a-4,分别计算Ls,min各顶点与CI的距离,以及Ls,min各顶点与CIe2的距离,若Ls,min某一顶点与CIe2的距离大于该顶点与CI的距离,则该顶点为输出约束可达集的上边界LOKDSJ中的一个顶点,以表示Ls,min中所有属于LOKDSJ顶点的集合;Step 3-a-4, respectively calculate the distance between each vertex of L s, min and CI, and the distance between each vertex of L s, min and CI e2 , if the distance between a vertex of L s, min and CI e2 is greater than the distance between the vertex and CI distance, then the vertex is a vertex in the upper boundary LOKDSJ of the output constraint reachable set, with Indicates the set of all vertices belonging to LOKDSJ in L s,min ;

步骤3-a-5,输出约束可达集的上边界LOKDSJ的顶点集合为{Is的顶点,},LOKDSJ的顶点所构成的多面体即为输出约束可达集的上边界。Step 3-a-5, output the vertex set of the upper boundary LOKDSJ of the constrained reachable set as { I s vertices, }, the polyhedron formed by the vertices of LOKDSJ is the upper boundary of the output constrained reachable set.

作为优选,步骤3中,计算输出约束可达集的下边界的步骤如下:Preferably, in step 3, the steps of calculating the lower bound of the output constrained reachable set are as follows:

步骤3-b-1,求出 分别记为L’s,max和L’s,min,求出L’s,max和L’s,min的交集I’s,以及交集I’s的中点CI’;Step 3-b-1, find and Respectively recorded as L' s, max and L' s, min , find the intersection I' s of L' s, max and L' s, min , and the midpoint CI' of the intersection I's;

步骤3-b-2,求出 分别记为L’s,maxe和L’s,mine,e为正实数,求出L’s,max和L’s,mine的交集I’se1,以及交集I’se1的中点CI’e1;L’s,min和L’s,maxe的交集I’se2,以及交集I’se2的中点CI’e2Step 3-b-2, find and Respectively recorded as L' s, maxe and L' s, mine , e is a positive real number, find the intersection I' se1 of L' s, max and L' s, mine , and the midpoint CI' e1 of the intersection I'se1; The intersection I' se2 of L' s, min and L' s, maxe , and the midpoint CI' e2 of the intersection I'se2;

步骤3-b-3,分别计算L’s,max各顶点与CI’的距离,以及L’s,max各顶点与CI’e1的距离,若L’s,max某一顶点与CI’e1的距离大于该顶点与CI’的距离,则该顶点为输出约束可达集的下边界LOKDXJ中的一个顶点,以表示L’s,max中所有属于LOKDXJ顶点的集合;Step 3-b-3, respectively calculate the distance between each vertex of L' s,max and CI', and the distance between each vertex of L' s,max and CI' e1 , if L' s,max a vertex and CI' e1 is greater than the distance between the vertex and CI', then the vertex is a vertex in the lower boundary LOKDXJ of the output constraint reachable set, with Represents the set of all vertices belonging to LOKDXJ in L' s, max ;

步骤3-b-4,分别计算L’s,min各顶点与CI’的距离,以及L’s,min各顶点与CI’e2的距离,若L’s,min某一顶点与CI’e2的距离大于该顶点与CI’的距离,则该顶点为输出约束可达集的下边界LOKDXJ中的一个顶点,以表示L’s,min中所有属于LOKDXJ顶点的集合;Step 3-b-4, respectively calculate the distance between each vertex of L' s, min and CI', and the distance between each vertex of L' s, min and CI' e2 , if L' s, min, a certain vertex and CI' e2 is greater than the distance between the vertex and CI', then the vertex is a vertex in the lower boundary LOKDXJ of the output constraint reachable set, with Represents the set of all vertices belonging to LOKDXJ in L's,min;

步骤3-b-5,输出约束可达集的下边界LOKDXJ的顶点集合为{I-’s的顶点,},LOKDXJ的顶点所构成的多面体即为输出约束可达集的下边界。Step 3-b-5, output the vertex set of the lower boundary LOKDXJ of the constrained reachable set as { I- 's apex, }, the polyhedron formed by the vertices of LOKDXJ is the lower boundary of the output constrained reachable set.

作为优选,动态优化控制层输出约束LOJX定义如下:As a preference, the dynamic optimization control layer output constraint LOJX is defined as follows:

LOJX(α)={y|b1≤y-y0≤b2}LOJX(α)={y|b 1 ≤yy 0 ≤b 2 }

y0=[y01y02…y0n]T,y=[y1y2…yn]T y 0 =[y 01 y 02 ...y 0n ] T , y=[y 1 y 2 ...y n ] T

式中:w1W2…wn为权重;y0是过程的标称稳态值,y为系统输出;In the formula: w 1 W 2 ...w n is the weight; y 0 is the nominal steady-state value of the process, and y is the system output;

步骤4中,计算动态优化控制层输出约束的步骤如下:In step 4, the steps for calculating the output constraints of the dynamic optimization control layer are as follows:

步骤4-1,利用迭代算法求得α+1和α-1,使LOJX(α+1)与LOKDSJ相切,切点为v+1;LOJX(α-1)与LOKDXJ相切,切点为v-1Step 4-1, using iterative algorithm to obtain α +1 and α -1 , so that LOJX(α +1 ) is tangent to LOKDSJ, and the tangent point is v +1 ; LOJX(α -1 ) is tangent to LOKDXJ, and the tangent point is for v -1 ;

步骤4-2,记v+1=[y1+y2+…yn+],v-1=[y1-y2-…yn-],则动态优化控制层输出约束LOJX为:Step 4-2, record v +1 =[y 1+ y 2+ ... y n+ ], v -1 =[y 1- y 2- ... y n- ], then the dynamic optimization control layer output constraint LOJX is:

LOJX={y|min(v+1,v-1)≤y-y0≤max(v+1,v-1)}。LOJX={y|min(v +1 ,v -1 ) ≤yy0≤max (v +1 ,v -1 )}.

本发明提供的稀丙酮精馏工业动态优化控制层输出约束的快速设计方法,能够有效解决计算输出约束可达集上边界和输出约束可达集下边界耗时较长的问题,且求取速度几乎不会受系统维数的影响。The rapid design method for the output constraints of the dynamic optimization control layer of the rectification industry of propylene ketone provided by the present invention can effectively solve the problem that it takes a long time to calculate the upper boundary of the output constraint reachable set and the lower boundary of the output constraint reachable set, and the calculation speed It is hardly affected by the dimensionality of the system.

附图说明Description of drawings

图1为二维系统中求解Is和Ise1的示意图;Fig. 1 is a schematic diagram of solving I s and I se1 in a two-dimensional system;

图2为二维系统中求解输出约束可达集上边界所含顶点的示意图;Fig. 2 is a schematic diagram of the vertices contained in the upper boundary of the reachable set of the solution output constraints in the two-dimensional system;

图3为二维系统中求解CI和CIe2的示意图;Fig. 3 is the schematic diagram of solving CI and CI e2 in two-dimensional system;

图4为二维系统中求解输出约束可达集上边界的示意图;Fig. 4 is a schematic diagram of the upper boundary of the reachable set of solution output constraints in a two-dimensional system;

图5为三维系统中求解输出约束可达集上边界的示意图;Fig. 5 is a schematic diagram of the upper boundary of the reachable set of solution output constraints in a three-dimensional system;

图6为仿真实施例中丙烯精馏系统的示意图。Fig. 6 is a schematic diagram of the propylene rectification system in the simulation example.

具体实施方式Detailed ways

下面结合附图,对本发明稀丙酮精馏工业动态优化控制层输出约束的快速设计方法做详细描述。The following is a detailed description of the rapid design method for the dynamic optimization control layer output constraints of the propylene ketone distillation industry in the present invention in conjunction with the accompanying drawings.

一种稀丙酮精馏工业动态优化控制层输出约束的快速设计方法,包括:A rapid design method for dynamic optimization control layer output constraints in the distillation industry of propylene glycol, including:

步骤1,针对双层结构的稀丙酮精馏工业模型预测控制系统,求出模型预测控制器的稳态优化层的增益模型如下:Step 1, aiming at the industrial model predictive control system for the distillation of propylene glycol with a double-layer structure, the gain model of the steady-state optimization layer of the model predictive controller is obtained as follows:

y=Gu+Gddy=Gu+G d d

式中:y为n×1维的系统输出,y∈SOC;In the formula: y is the n×1-dimensional system output, y∈SOC;

G为n×m维的过程增益矩阵;G is an n×m dimensional process gain matrix;

u为m×1维的系统输入变量,u∈SIC;u is an m×1-dimensional system input variable, u∈SIC;

Gd为n×p维的干扰增益矩阵;G d is an interference gain matrix of n×p dimension;

d为p×1维的系统干扰变量,d∈DWC;d is the system disturbance variable of p×1 dimension, d∈DWC;

步骤2,找到增益模型中,过程增益矩阵中的不确定元素,不确定元素记为ghk,本发明提供的方法适用于过程增益矩阵中仅存在一个不确定元素的情况。Step 2, find the uncertain element in the process gain matrix in the gain model, the uncertain element is denoted as g hk , the method provided by the present invention is applicable to the case where there is only one uncertain element in the process gain matrix.

步骤3,依据不确定元素和系统干扰变量,求得输出约束可达集的上边界和输出约束可达集的下边界。Step 3. According to the uncertain elements and system disturbance variables, the upper boundary of the output constrained reachable set and the lower bound of the output constrained reachable set are obtained.

输出约束可达集LOKD定义如下:The output constraint reachable set LOKD is defined as follows:

LOKD(G,d)={y|y=Gu+Gdd;u∈SIC,ghk∈Δ,Gd为固定值}LOKD(G,d)={y|y=Gu+G d d; u∈SIC, g hk ∈Δ, G d is a fixed value}

式中,ghk为过程增益矩阵G中的不确定元素,将其表示为的形式, where g hk is the uncertain element in the process gain matrix G, expressed as form,

输出约束可达集的上边界LOKDSJ定义如下:The upper bound LOKDSJ of the output constrained reachable set is defined as follows:

输出约束可达集的下边界LOKDXJ定义如下:The lower bound LOKDXJ of the output constrained reachable set is defined as follows:

步骤3中,计算输出约束可达集的上边界的步骤如下:In step 3, the steps to calculate the upper boundary of the output constraint reachable set are as follows:

步骤3-a-1,求出 分别记为Ls,max和Ls,min,求出Ls,max和Ls,min的交集Is,以及交集Is的中点CI。Step 3-a-1, find and Record them as L s,max and L s,min respectively, and find the intersection I s of L s,max and L s,min , and the midpoint CI of the intersection I s .

步骤3-a-2,求出 分别记为Ls,maxe和Ls,mine,e为正实数(在能够接受的精度范围内,e为一个趋近于0的正实数,通常e取10-4)。,求出Ls,max和Ls,mine的交集Ise1,以及交集Ise1的中点CIe1;Ls,min和Ls,maxe的交集Ise2,以及交集Ise2的中点CIe2Step 3-a-2, find and They are recorded as L s, maxe and L s, mine respectively, and e is a positive real number (within the acceptable precision range, e is a positive real number close to 0, usually e takes 10 -4 ). , Find the intersection I se1 of L s,max and L s,mine , and the midpoint CI e1 of the intersection I se1; the intersection I se2 of L s,min and L s,maxe , and the midpoint CI e2 of the intersection I se2 ;

步骤3-a-3,分别计算Ls,max各顶点与CI的距离,以及Ls,max各顶点与CIe1的距离,若Ls,max某一顶点与CIe1的距离大于该顶点与CI的距离,则该顶点为输出约束可达集的上边界LOKDSJ中的一个顶点,以表示Ls,max中所有属于LOKDSJ顶点的集合;Step 3-a-3, respectively calculate the distance between each vertex of L s,max and CI, and the distance between each vertex of L s,max and CI e1 , if the distance between a vertex of L s,max and CI e1 is greater than the distance between the vertex and CI distance, then the vertex is a vertex in the upper boundary LOKDSJ of the output constraint reachable set, with Indicates the set of all vertices belonging to LOKDSJ in L s,max ;

步骤3-a-4,分别计算Ls,min各顶点与CI的距离,以及Ls,min各顶点与CIe2的距离,若Ls,min某一顶点与CIe2的距离大于该顶点与CI的距离,则该顶点为输出约束可达集的上边界LOKDSJ中的一个顶点,以表示Ls,min中所有属于LOKDSJ顶点的集合;Step 3-a-4, respectively calculate the distance between each vertex of L s, min and CI, and the distance between each vertex of L s, min and CI e2 , if the distance between a vertex of L s, min and CI e2 is greater than the distance between the vertex and CI distance, then the vertex is a vertex in the upper boundary LOKDSJ of the output constraint reachable set, with Indicates the set of all vertices belonging to LOKDSJ in L s,min ;

步骤3-a-5,输出约束可达集的上边界LOKDSJ的顶点集合为{Is的顶点,},LOKDSJ的顶点所构成的多面体即为输出约束可达集的上边界。Step 3-a-5, output the vertex set of the upper boundary LOKDSJ of the constrained reachable set as { I s vertices, }, the polyhedron formed by the vertices of LOKDSJ is the upper boundary of the output constrained reachable set.

以二维系统为例,输出约束可达集的上边界的计算如图1~图4所示,Ls,max和Ls,min分别为一段直线,Ls,max的两端点分别为A和B,Ls,min的两端点分别为C和D,Ls,max和Ls,min的交点为Is,Ls,max与Ls,mine的交点为Ise1,对于二维系统而言,Is和Ise1均为一个点,所以其中点为自身,如图2所示,Ls,max上A到CIe1的距离大于A到CI的距离,所以A是LOKDSJ的顶点,而B到CIe1的距离小于B到CI的距离,所以B不是LOKDSJ的顶点。Taking a two-dimensional system as an example, the calculation of the upper boundary of the reachable set with output constraints is shown in Figures 1 to 4. L s, max and L s, min are each a straight line, and the two ends of L s, max are A and B, the two ends of L s,min are C and D respectively, the intersection of L s,max and L s,min is I s , the intersection of L s,max and L s,mine is I se1 , for a two-dimensional system In terms of , I s and I se1 are both a point, so the middle point is itself, as shown in Figure 2, the distance from A to CI e1 on L s,max is greater than the distance from A to CI, so A is the vertex of LOKDSJ, And the distance from B to CI e1 is smaller than the distance from B to CI, so B is not the vertex of LOKDSJ.

如图3所示,Ls,min上D到CI’e1的距离大于D到CI’的距离,所以D是LOKDSJ的顶点,而D不是LOKDSJ的顶点。如图4所示,LOKDSJ的顶点的集合为{A,Is,D}。As shown in Figure 3, the distance from D to CI' e1 on L s,min is greater than the distance from D to CI', so D is the vertex of LOKDSJ, but D is not the vertex of LOKDSJ. As shown in Figure 4, the set of vertices of LOKDSJ is {A, I s , D}.

以三维系统为例,如图5所示,Ls,max为一矩形平面,四个顶点分别为A、B、C、D,Is和Ise1分别为一直线,Is的中点为CI,Ise1的中点为CIe1,分别计算A、B、C、D与CI的距离,以及点A、B、C、D与CIe1的距离,得到LOKDSJ的顶点包括点A和B。Taking the three-dimensional system as an example, as shown in Fig. 5, L s,max is a rectangular plane, the four vertices are A, B, C, D respectively, I s and I se1 are straight lines, and the midpoint of I s is The midpoint of CI and I se1 is CI e1 , and the distances between A, B, C, D and CI, and the distances between points A, B, C, D and CI e1 are calculated respectively, and the vertices of LOKDSJ include points A and B.

同理,步骤3中,计算输出约束可达集的下边界的步骤如下:Similarly, in step 3, the steps to calculate the lower boundary of the output constraint reachable set are as follows:

步骤3-b-1,求出 分别记为L’s,max和L’s,min,求出L’s,max和L’s,min的交集I’s,以及交集I’s的中点CI’;Step 3-b-1, find and Respectively recorded as L' s, max and L' s, min , find the intersection I' s of L' s, max and L' s, min , and the midpoint CI' of the intersection I's;

步骤3-b-2,求出 分别记为L’s,maxe和L’s,mine,e为正实数,求出L’s,max和L’s,mine的交集I’se1,以及交集I’se1的中点CI’e1;L’s,min和L’s,maxe的交集I’se2,以及交集I’se2的中点CI’e2Step 3-b-2, find and Respectively recorded as L' s, maxe and L' s, mine , e is a positive real number, find the intersection I' se1 of L' s, max and L' s, mine , and the midpoint CI' e1 of the intersection I'se1; The intersection I' se2 of L' s, min and L' s, maxe , and the midpoint CI' e2 of the intersection I'se2;

步骤3-b-3,分别计算L’s,max各顶点与CI’的距离,以及L’s,max各顶点与CI’e1的距离,若L’s,max某一顶点与CI’e1的距离大于该顶点与CI’的距离,则该顶点为输出约束可达集的下边界LOKDXJ中的一个顶点,以表示L’s,max中所有属于LOKDXJ顶点的集合;Step 3-b-3, respectively calculate the distance between each vertex of L' s,max and CI', and the distance between each vertex of L' s,max and CI' e1 , if L' s,max a vertex and CI' e1 is greater than the distance between the vertex and CI', then the vertex is a vertex in the lower boundary LOKDXJ of the output constraint reachable set, with Represents the set of all vertices belonging to LOKDXJ in L's,max;

步骤3-b-4,分别计算L’s,min各顶点与CI’的距离,以及L’s,min各顶点与CI’e2的距离,若L’s,min某一顶点与CI’e2的距离大于该顶点与CI’的距离,则该顶点为输出约束可达集的下边界LOKDXJ中的一个顶点,以表示L’s,min中所有属于LOKDXJ顶点的集合;Step 3-b-4, respectively calculate the distance between each vertex of L' s, min and CI', and the distance between each vertex of L' s, min and CI' e2 , if L' s, min, a certain vertex and CI' e2 is greater than the distance between the vertex and CI', then the vertex is a vertex in the lower boundary LOKDXJ of the output constraint reachable set, with Represents the set of all vertices belonging to LOKDXJ in L's,min;

步骤3-b-5,输出约束可达集的下边界LOKDXJ的顶点集合为{I-’s的顶点,},LOKDXJ的顶点所构成的多面体即为输出约束可达集的下边界。Step 3-b-5, output the vertex set of the lower boundary LOKDXJ of the constrained reachable set as { I- 's apex, }, the polyhedron formed by the vertices of LOKDXJ is the lower boundary of the output constrained reachable set.

步骤4,依据输出约束可达集的上边界和输出约束可达集的下边界,得到动态优化控制层输出约束。Step 4, according to the upper boundary of the output constraint reachable set and the lower boundary of the output constraint reachable set, the output constraints of the dynamic optimization control layer are obtained.

动态优化控制层输出约束LOJX定义如下:The dynamic optimization control layer output constraint LOJX is defined as follows:

LOJX(α)={y|b1≤y-y0≤b2}LOJX(α)={y|b 1 ≤yy 0 ≤b 2 }

y0=[y01y02…y0n]T,y=[y1y2…yn]T y 0 =[y 01 y 02 ...y 0n ] T , y=[y 1 y 2 ...y n ] T

式中:w1w2…wn为用户自己决定的权重,默认情况下都为1,并记r=wn:wn-1:…:w2:w1,用于设置权重,y0是过程的标称稳态值,y为系统输出。In the formula: w 1 w 2 ...w n is the weight decided by the user himself, which is 1 by default, and r=w n :w n-1 :...:w 2 :w 1 is used to set the weight, y 0 is the nominal steady state value of the process and y is the system output.

步骤4中,计算动态优化控制层输出约束的步骤如下:In step 4, the steps for calculating the output constraints of the dynamic optimization control layer are as follows:

步骤4-1,利用迭代算法(参见文献Fernando V.Lima,Christos Georgakis,Design of output constraints for model-based non-square controllers usinginterval operability.Journal of Process Control 18(2008)610–620)求得α+1和α-1,使LOJX(α+1)与LOKDSJ相切,切点为v+1;LOJX(α-1)与LOKDXJ相切,切点为v-1Step 4-1, using an iterative algorithm (see document Fernando V.Lima, Christos Georgakis, Design of output constraints for model-based non-square controllers using interval operability. Journal of Process Control 18(2008) 610–620) to obtain α + 1 and α -1 , so that LOJX(α +1 ) is tangent to LOKDSJ at v +1 ; LOJX(α -1 ) is tangent to LOKDXJ at v -1 ;

步骤4-2,记v+1=[y1+y2+…yn+],v-1=[y1-y2-…yn-],则动态优化控制层输出约束LOJX为:Step 4-2, record v +1 =[y 1+ y 2+ ... y n+ ], v -1 =[y 1- y 2- ... y n- ], then the dynamic optimization control layer output constraint LOJX is:

LOJX={y|min(v+1,v-1)≤y-y0≤max(v+1,v-1)}。LOJX={y|min(v +1 ,v -1 ) ≤yy0≤max (v +1 ,v -1 )}.

LOJX为一个恰好与LOKDSJ和LOKDXJ都相切的多面体,本发明中的相切是指LOJX与LOKDSJ和LOKDXJ都分别有且仅有一个交点。LOJX is a polyhedron that is exactly tangent to both LOKDSJ and LOKDXJ. Tangent in the present invention means that LOJX has only one intersection with LOKDSJ and LOKDXJ respectively.

仿真实施例Simulation example

如图6所示为一个丙酮精馏塔系统,它有4个输入,6个输出,输入输出代表的物理意义如表1所示。As shown in Figure 6, it is an acetone rectification column system, which has 4 inputs and 6 outputs, and the physical meanings represented by the inputs and outputs are shown in Table 1.

表1Table 1

输出output 物理意义physical meaning 输入enter 物理意义physical meaning XD.PVXD.PV 精馏塔塔顶产品质量The quality of the overhead product of the distillation column R.SPR.SP 精馏塔顶部回流Distillation column top reflux XB.PVXB.PV 精馏塔塔釜产品质量Product quality of distillation tower bottom S.SPS.SP 精馏塔再沸器蒸汽Distillation column reboiler steam T1.PVT1.PV 精馏塔塔顶温度Distillation column top temperature D.SPD.SP 精馏塔顶部抽出Extraction from the top of the distillation column T2.PVT2.PV 精馏塔塔釜温度Rectification tower bottom temperature B.SPB.SP 精馏塔塔釜抽出Extraction from distillation tower bottom LD.PVLD.PV 精馏塔回流罐液位Distillation column reflux tank liquid level LB.PVLB.PV 精馏塔塔釜液位Distillation column bottom liquid level

系统稳态优化层的增益模型为:The gain model of the system steady-state optimization layer is:

且满足 y0=[0.390,-2.220,-0.120,0.750,0.197,-0.078]。and satisfied y 0 =[0.390, -2.220, -0.120, 0.750, 0.197, -0.078].

选择权重r=1:3:4:6:8:8,用本发明所示方法和传统方法求得的设计约束如表2所示。Select the weight r=1:3:4:6:8:8, and the design constraints obtained by using the method shown in the present invention and the traditional method are shown in Table 2.

表2Table 2

输出output XD.PVXD.PV XB.PVXB.PV T1.PVT1.PV T2.PVT2.PV LD.PVLD.PV LB.PVLB.PV 约束下边界Constrained Lower Boundary 1.5631.563 0.0430.043 1.5781.578 1.7021.702 0.8050.805 0.2510.251 约束上边界constrained upper bound -2.070-2.070 -4.266-4.266 -1.318-1.318 -0.273-0.273 -0.410-0.410 -0.117-0.117

在计算机配置 CoreTMi7-4600UCPU@2.10GHz2.70GHZ条件下,本发明所示方法求出LOKDSJ和LOKDXJ只用了0.831s,而传统方法则用了1224.315s,由此可以看到本发明所示方法大大地节省了时间,且本发明的方法求取输出约束可达集的上边界和输出约束可达集的下边界时,求取速度几乎不会受系统维数的影响,而传统方法花费的时间则会随系统维数的增加飞速增长。Configure on the computer Under Core TM i7-4600UCPU@2.10GHz2.70GHZ condition, the method shown in the present invention finds LOKDSJ and LOKDXJ only used 0.831s, and traditional method then used 1224.315s, can see that the method shown in the present invention greatly improves Time is saved, and when the method of the present invention obtains the upper boundary of the output constraint reachable set and the lower boundary of the output constraint reachable set, the calculation speed is hardly affected by the system dimension, while the time spent by the traditional method is It will grow rapidly with the increase of system dimension.

Claims (2)

1.一种稀丙酮精馏工业动态优化控制层输出约束的快速设计方法,其特征在于,包括:1. a kind of quick design method of industry dynamic optimization control layer output constraint of distilling acetyl ketone, it is characterized in that, comprises: 步骤1,针对双层结构的稀丙酮精馏工业模型预测控制系统,求出模型预测控制器的稳态优化层的增益模型如下:Step 1, aiming at the industrial model predictive control system for the distillation of propylene glycol with a double-layer structure, the gain model of the steady-state optimization layer of the model predictive controller is obtained as follows: y=Gu+Gddy=Gu+G d d 式中:y为n×1维的系统输出,y∈SOC;In the formula: y is the n×1-dimensional system output, y∈SOC; G为n×m维的过程增益矩阵;G is an n×m dimensional process gain matrix; u为m×1维的系统输入变量,u∈SIC;u is an m×1-dimensional system input variable, u∈SIC; Gd为n×p维的干扰增益矩阵;Gd is an interference gain matrix of n×p dimension; d为p×1维的系统干扰变量,d∈DWC;d is the system disturbance variable of p×1 dimension, d∈DWC; <mrow> <mi>S</mi> <mi>I</mi> <mi>C</mi> <mo>=</mo> <mo>{</mo> <mi>u</mi> <mo>|</mo> <msubsup> <mi>u</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msubsup> <mi>u</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>;</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>i</mi> <mo>&amp;le;</mo> <mi>m</mi> <mo>}</mo> <mo>;</mo> </mrow> <mrow><mi>S</mi><mi>I</mi><mi>C</mi><mo>=</mo><mo>{</mo><mi>u</mi><mo>|</mo><msubsup><mi>u</mi><mi>i</mi><mi>min</mi></msubsup><mo>&amp;le;</mo><msub><mi>u</mi><mi>i</mi></msub><mo>&amp;le;</mo><msubsup><mi>u</mi><mi>i</mi><mi>max</mi></msubsup><mo>;</mo><mn>1</mn><mo>&amp;le;</mo><mi>i</mi><mo>&amp;le;</mo><mi>m</mi><mo>}</mo><mo>;</mo></mrow> <mrow> <mi>S</mi> <mi>O</mi> <mi>C</mi> <mo>=</mo> <mo>{</mo> <mi>y</mi> <mo>|</mo> <msubsup> <mi>y</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msubsup> <mi>y</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>;</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>i</mi> <mo>&amp;le;</mo> <mi>n</mi> <mo>}</mo> <mo>;</mo> </mrow> <mrow><mi>S</mi><mi>O</mi><mi>C</mi><mo>=</mo><mo>{</mo><mi>y</mi>><mo>|</mo><msubsup><mi>y</mi><mi>i</mi><mi>min</mi></msubsup><mo>&amp;le;</mo><msub><mi>y</mi><mi>i</mi></msub><mo>&amp;le;</mo><msubsup><mi>y</mi><mi>i</mi><mi>max</mi></msubsup><mo>;</mo><mn>1</mn><mo>&amp;le;</mo><mi>i</mi><mo>&amp;le;</mo><mi>n</mi><mo>}</mo><mo>;</mo></mrow> <mrow> <mi>D</mi> <mi>W</mi> <mi>C</mi> <mo>=</mo> <mo>{</mo> <mi>d</mi> <mo>|</mo> <msubsup> <mi>d</mi> <mi>i</mi> <mi>min</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mi>d</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msubsup> <mi>d</mi> <mi>i</mi> <mi>max</mi> </msubsup> <mo>;</mo> <mn>1</mn> <mo>&amp;le;</mo> <mi>i</mi> <mo>&amp;le;</mo> <mi>p</mi> <mo>}</mo> <mo>;</mo> </mrow> <mrow><mi>D</mi><mi>W</mi><mi>C</mi><mo>=</mo><mo>{</mo><mi>d</mi><mo>|</mo><msubsup><mi>d</mi><mi>i</mi><mi>min</mi></msubsup><mo>&amp;le;</mo><msub><mi>d</mi><mi>i</mi></msub><mo>&amp;le;</mo><msubsup><mi>d</mi><mi>i</mi><mi>max</mi></msubsup><mo>;</mo><mn>1</mn><mo>&amp;le;</mo><mi>i</mi><mo>&amp;le;</mo><mi>p</mi><mo>}</mo><mo>;</mo></mrow> 步骤2,找到增益模型中,过程增益矩阵中的不确定元素;Step 2, find the uncertain elements in the process gain matrix in the gain model; 步骤3,依据不确定元素和系统干扰变量,求得输出约束可达集的上边界和输出约束可达集的下边界;Step 3. Obtain the upper boundary of the output constrained reachable set and the lower bound of the output constrained reachable set according to the uncertain elements and system disturbance variables; 输出约束可达集LOKD定义如下:The output constraint reachable set LOKD is defined as follows: LOKD(G,d)={y|y=Gu+Gdd;u∈SIC,ghk∈Δ,Gd为固定值}LOKD(G,d)={y|y=Gu+Gdd; u∈SIC, g hk ∈Δ, G d is a fixed value} <mrow> <mi>L</mi> <mi>O</mi> <mi>K</mi> <mi>D</mi> <mo>=</mo> <munder> <mrow> <mi></mi> <mo>&amp;cup;</mo> </mrow> <mrow> <msub> <mi>g</mi> <mrow> <mi>h</mi> <mi>k</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>&amp;Delta;</mi> </mrow> </munder> <munder> <mrow> <mi></mi> <mo>&amp;cup;</mo> </mrow> <mrow> <mi>d</mi> <mo>&amp;Element;</mo> <mi>D</mi> <mi>W</mi> <mi>C</mi> </mrow> </munder> <mi>L</mi> <mi>O</mi> <mi>K</mi> <mi>D</mi> <mrow> <mo>(</mo> <mi>G</mi> <mo>,</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> <mrow><mi>L</mi><mi>O</mi><mi>K</mi><mi>D</mi><mo>=</mo><munder><mrow><mi></mi><mo>&amp;cup;</mo></mrow><mrow><msub><mi>g</mi><mrow><mi>h</mi><mi>k</mi></mrow></msub><mo>&amp;Element;</mo><mi>&amp;Delta;</mi></mrow></munder><munder><mrow><mi></mi><mo>&amp;cup;</mo></mrow><mrow><mi>d</mi><mo>&amp;Element;</mo><mi>D</mi><mi>W</mi><mi>C</mi></mrow></munder><mi>L</mi><mi>O</mi><mi>K</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>d</mi><mo>)</mo></mrow></mrow> 式中,ghk为过程增益矩阵G中的不确定元素,将其表示为的形式, where g hk is the uncertain element in the process gain matrix G, expressed as form, 输出约束可达集的上边界LOKDSJ定义如下:The upper bound LOKDSJ of the output constrained reachable set is defined as follows: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>L</mi> <mi>O</mi> <mi>K</mi> <mi>D</mi> <mi>S</mi> <mi>J</mi> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>L</mi> <mi>O</mi> <mi>K</mi> <mi>D</mi> <mrow> <mo>(</mo> <mrow> <mo>&amp;ForAll;</mo> <msub> <mi>g</mi> <mrow> <mi>h</mi> <mi>k</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>&amp;Delta;</mi> <mo>,</mo> <mi>d</mi> <mo>=</mo> <msup> <mi>d</mi> <mi>max</mi> </msup> </mrow> <mo>)</mo> </mrow> </mrow> </msub> <mo>(</mo> <mi>L</mi> <mi>O</mi> <mi>K</mi> <mi>D</mi> <mo>(</mo> <mo>&amp;ForAll;</mo> <msub> <mi>g</mi> <mrow> <mi>h</mi> <mi>k</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>&amp;Delta;</mi> <mo>,</mo> <mi>d</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mi>d</mi> <mi>max</mi> </msup> <mo>)</mo> <mo>&amp;cap;</mo> <mi>L</mi> <mi>O</mi> <mi>K</mi> <mi>D</mi> <mo>(</mo> <mrow> <mo>&amp;ForAll;</mo> <msub> <mi>g</mi> <mrow> <mi>h</mi> <mi>k</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>&amp;Delta;</mi> <mo>,</mo> <mi>d</mi> <mo>&amp;NotEqual;</mo> <msup> <mi>d</mi> <mi>max</mi> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><mi>L</mi><mi>O</mi><mi>K</mi><mi>D</mi><mi>S</mi><mi>J</mi><mo>=</mo><msub><mi>C</mi><mrow><mi>L</mi><mi>O</mi><mi>K</mi><mi>D</mi><mrow><mo>(</mo><mrow><mo>&amp;ForAll;</mo><msub><mi>g</mi><mrow><mi>h</mi><mi>k</mi></mrow></msub><mo>&amp;Element;</mo><mi>&amp;Delta;</mi><mo>,</mo><mi>d</mi><mo>=</mo><msup><mi>d</mi><mi>max</mi></msup></mrow><mo>)</mo></mrow></mrow></msub><mo>(</mo><mi>L</mi><mi>O</mi><mi>K</mi><mi>D</mi><mo>(</mo><mo>&amp;ForAll;</mo><msub><mi>g</mi><mrow><mi>h</mi><mi>k</mi></mrow></msub><mo>&amp;Element;</mo><mi>&amp;Delta;</mi><mo>,</mo><mi>d</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><msup><mi>d</mi><mi>max</mi></msup><mo>)</mo><mo>&amp;cap;</mo><mi>L</mi><mi>O</mi><mi>K</mi><mi>D</mi><mo>(</mo><mrow><mo>&amp;ForAll;</mo><msub><mi>g</mi><mrow><mi>h</mi><mi>k</mi></mrow></msub><mo>&amp;Element;</mo><mi>&amp;Delta;</mi><mo>,</mo><mi>d</mi><mo>&amp;NotEqual;</mo><msup><mi>d</mi><mi>max</mi></msup></mrow><mo>)</mo><mo>)</mo></mrow></mtd></mtr></mtable></mfenced> 输出约束可达集的下边界LOKDXJ定义如下:The lower bound LOKDXJ of the output constrained reachable set is defined as follows: <mrow> <mi>L</mi> <mi>O</mi> <mi>K</mi> <mi>D</mi> <mi>X</mi> <mi>J</mi> <mo>=</mo> <msub> <mi>C</mi> <mrow> <mi>L</mi> <mi>O</mi> <mi>K</mi> <mi>D</mi> <mrow> <mo>(</mo> <mo>&amp;ForAll;</mo> <msub> <mi>g</mi> <mrow> <mi>h</mi> <mi>k</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>&amp;Delta;</mi> <mo>,</mo> <mi>d</mi> <mo>=</mo> <msup> <mi>d</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </msub> <mo>(</mo> <mi>L</mi> <mi>O</mi> <mi>K</mi> <mi>D</mi> <mo>(</mo> <mo>&amp;ForAll;</mo> <msub> <mi>g</mi> <mrow> <mi>h</mi> <mi>k</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>&amp;Delta;</mi> <mo>,</mo> <mi>d</mi> </mrow> <mrow><mi>L</mi><mi>O</mi><mi>K</mi><mi>D</mi><mi>X</mi><mi>J</mi>><mo>=</mo><msub><mi>C</mi><mrow><mi>L</mi><mi>O</mi><mi>K</mi><mi>D</mi><mrow><mo>(</mo><mo>&amp;ForAll;</mo><msub><mi>g</mi><mrow><mi>h</mi><mi>k</mi></mrow></msub><mo>&amp;Element;</mo><mi>&amp;Delta;</mi><mo>,</mo><mi>d</mi><mo>=</mo><msup><mi>d</mi><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow></msub><mo>(</mo><mi>L</mi><mi>O</mi><mi>K</mi><mi>D</mi><mo>(</mo><mo>&amp;ForAll;</mo><msub><mi>g</mi><mrow><mi>h</mi><mi>k</mi></mrow></msub><mo>&amp;Element;</mo><mi>&amp;Delta;</mi><mo>,</mo><mi>d</mi></mrow> <mrow> <mo>=</mo> <msup> <mi>d</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msup> <mo>)</mo> <mo>&amp;cap;</mo> <mi>L</mi> <mi>O</mi> <mi>K</mi> <mi>D</mi> <mo>(</mo> <mrow> <mo>&amp;ForAll;</mo> <msub> <mi>g</mi> <mrow> <mi>h</mi> <mi>k</mi> </mrow> </msub> <mo>&amp;Element;</mo> <mi>&amp;Delta;</mi> <mo>,</mo> <mi>d</mi> <mo>&amp;NotEqual;</mo> <msup> <mi>d</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mrow><mo>=</mo><msup><mi>d</mi><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msup><mo>)</mo><mo>&amp;cap;</mo><mi>L</mi><mi>O</mi><mi>K</mi><mi>D</mi><mo>(</mo><mrow><mo>&amp;ForAll;</mo><msub><mi>g</mi><mrow><mi>h</mi><mi>k</mi></mrow></msub><mo>&amp;Element;</mo><mi>&amp;Delta;</mi><mo>,</mo><mi>d</mi><mo>&amp;NotEqual;</mo><msup><mi>d</mi><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msup></mrow><mo>)</mo><mo>)</mo></mrow> 步骤3中,计算输出约束可达集的上边界的步骤如下:In step 3, the steps to calculate the upper boundary of the output constraint reachable set are as follows: 步骤3-a-1,求出 分别记为Ls,max和Ls,min,求出Ls,max和Ls,min的交集Is,以及交集Is的中点CI;Step 3-a-1, find and Record them as L s,max and L s,min respectively, and find the intersection I s of L s,max and L s,min , and the midpoint CI of the intersection I s ; 步骤3-a-2,求出 分别记为Ls,maxe和Ls,mine,e为正实数,求出Ls,max和Ls,mine的交集Ise1,以及交集Ise1的中点CIe1;Ls,min和Ls,maxe的交集Ise2,以及交集Ise2的中点CIe2Step 3-a-2, find and Respectively recorded as L s, maxe and L s, mine , e is a positive real number, find the intersection I se1 of L s, max and L s, mine , and the midpoint CI e1 of the intersection I se1 ; L s, min and L s, the intersection I se2 of maxe , and the midpoint CI e2 of the intersection I se2 ; 步骤3-a-3,分别计算Ls,max各顶点与CI的距离,以及Ls,max各顶点与CIe1的距离,若Ls,max某一顶点与CIe1的距离大于该顶点与CI的距离,则该顶点为输出约束可达集的上边界LOKDSJ中的一个顶点,以表示Ls,max中所有属于LOKDSJ顶点的集合;Step 3-a-3, respectively calculate the distance between each vertex of L s,max and CI, and the distance between each vertex of L s,max and CI e1 , if the distance between a vertex of L s,max and CI e1 is greater than the distance between the vertex and CI distance, then the vertex is a vertex in the upper boundary LOKDSJ of the output constraint reachable set, with Indicates the set of all vertices belonging to LOKDSJ in L s,max ; 步骤3-a-4,分别计算Ls,min各顶点与CI的距离,以及Ls,min各顶点与CIe2的距离,若Ls,min某一顶点与CIe2的距离大于该顶点与CI的距离,则该顶点为输出约束可达集的上边界LOKDSJ中的一个顶点,以表示Ls,min中所有属于LOKDSJ顶点的集合;Step 3-a-4, respectively calculate the distance between each vertex of L s, min and CI, and the distance between each vertex of L s, min and CI e2 , if the distance between a vertex of L s, min and CI e2 is greater than the distance between the vertex and CI distance, then the vertex is a vertex in the upper boundary LOKDSJ of the output constraint reachable set, with Indicates the set of all vertices belonging to LOKDSJ in L s,min ; 步骤3-a-5,输出约束可达集的上边界LOKDSJ的顶点集合为 LOKDSJ的顶点所构成的多面体即为输出约束可达集的上边界;Step 3-a-5, output the vertex set of the upper boundary LOKDSJ of the constrained reachable set as The polyhedron formed by the vertices of LOKDSJ is the upper boundary of the reachable set of output constraints; 计算输出约束可达集的下边界的步骤如下:The steps to calculate the lower bound of the output constrained reachable set are as follows: 步骤3-b-1,求出 分别记为L’s,max和L’s,min,求出L’s,max和L’s,min的交集I’s,以及交集I’s的中点CI’;Step 3-b-1, find and Respectively recorded as L' s, max and L' s, min , find the intersection I' s of L' s, max and L' s, min , and the midpoint CI' of the intersection I's; 步骤3-b-2,求出 分别记为L’s,maxe和L’s,mine,e为正实数,求出L’s,max和L’s,mine的交集I’se1,以及交集I’se1的中点CI’e1;L’s,min和L’s,maxe的交集I’se2,以及交集I’se2的中点CI’e2Step 3-b-2, find and Respectively recorded as L' s, maxe and L' s, mine , e is a positive real number, find the intersection I' se1 of L' s, max and L' s, mine , and the midpoint CI' e1 of the intersection I'se1; The intersection I' se2 of L' s, min and L' s, maxe , and the midpoint CI' e2 of the intersection I'se2; 步骤3-b-3,分别计算L’s,max各顶点与CI’的距离,以及L’s,max各顶点与CI’e1的距离,若L’s,max某一顶点与CI’e1的距离大于该顶点与CI’的距离,则该顶点为输出约束可达集的下边界LOKDXJ中的一个顶点,以表示L’s,max中所有属于LOKDXJ顶点的集合;Step 3-b-3, respectively calculate the distance between each vertex of L' s,max and CI', and the distance between each vertex of L' s,max and CI' e1 , if L' s,max a vertex and CI' e1 is greater than the distance between the vertex and CI', then the vertex is a vertex in the lower boundary LOKDXJ of the output constraint reachable set, with Represents the set of all vertices belonging to LOKDXJ in L' s, max ; 步骤3-b-4,分别计算L’s,min各顶点与CI’的距离,以及L’s,min各顶点与CI’e2的距离,若L’s,min某一顶点与CI’e2的距离大于该顶点与CI’的距离,则该顶点为输出约束可达集的下边界LOKDXJ中的一个顶点,以表示L’s,min中所有属于LOKDXJ顶点的集合;Step 3-b-4, respectively calculate the distance between each vertex of L' s, min and CI', and the distance between each vertex of L' s, min and CI' e2 , if L' s, min, a certain vertex and CI' e2 is greater than the distance between the vertex and CI', then the vertex is a vertex in the lower boundary LOKDXJ of the output constraint reachable set, with Represents the set of all vertices belonging to LOKDXJ in L's,min; 步骤3-b-5,输出约束可达集的下边界LOKDXJ的顶点集合为 LOKDXJ的顶点所构成的多面体即为输出约束可达集的下边界;Step 3-b-5, output the vertex set of the lower boundary LOKDXJ of the constrained reachable set as The polyhedron formed by the vertices of LOKDXJ is the lower boundary of the reachable set of output constraints; 步骤4,依据输出约束可达集的上边界和输出约束可达集的下边界,得到动态优化控制层输出约束。Step 4, according to the upper boundary of the output constraint reachable set and the lower boundary of the output constraint reachable set, the output constraints of the dynamic optimization control layer are obtained. 2.如权利要求1所述的稀丙酮精馏工业动态优化控制层输出约束的快速设计方法,其特征在于,动态优化控制层输出约束LOJX定义如下:2. the fast design method of industry dynamic optimization control layer output constraint of distilling ketone as claimed in claim 1, it is characterized in that, dynamic optimization control layer output constraint LOJX is defined as follows: LOJX(α)={y|b1≤y-y0≤b2}LOJX(α)={y|b 1 ≤yy 0 ≤b 2 } <mrow> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>-</mo> <mi>&amp;alpha;</mi> </mrow> <msub> <mi>w</mi> <mn>1</mn> </msub> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>-</mo> <mi>&amp;alpha;</mi> </mrow> <msub> <mi>w</mi> <mn>2</mn> </msub> </mfrac> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mfrac> <mrow> <mo>-</mo> <mi>&amp;alpha;</mi> </mrow> <msub> <mi>w</mi> <mi>n</mi> </msub> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mi>&amp;alpha;</mi> <msub> <mi>w</mi> <mn>1</mn> </msub> </mfrac> </mtd> <mtd> <mfrac> <mi>&amp;alpha;</mi> <msub> <mi>w</mi> <mn>2</mn> </msub> </mfrac> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mfrac> <mi>&amp;alpha;</mi> <msub> <mi>w</mi> <mi>n</mi> </msub> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> <mrow><msub><mi>b</mi><mn>1</mn></msub><mo>=</mo><msup><mfenced open = "[" close = "]"><mtable><mtr><mtd><mfrac><mrow><mo>-</mo><mi>&amp;alpha;</mi></mrow><msub><mi>w</mi><mn>1</mn></msub></mfrac></mtd><mtd><mfrac><mrow><mo>-</mo><mi>&amp;alpha;</mi></mrow><msub><mi>w</mi><mn>2</mn></msub></mfrac></mtd><mtd><mn>...</mn></mtd><mtd><mfrac><mrow><mo>-</mo><mi>&amp;alpha;</mi></mrow><msub><mi>w</mi><mi>n</mi></msub></mfrac></mtd></mtr></mtable></mfenced><mi>T</mi></msup><mo>,</mo><msub><mi>b</mi><mn>2</mn></msub><mo>=</mo><msup><mfenced open = "[" close = "]"><mtable><mtr><mtd><mfrac><mi>&amp;alpha;</mi><msub><mi>w</mi><mn>1</mn></msub></mfrac></mtd><mtd><mfrac><mi>&amp;alpha;</mi><msub><mi>w</mi><mn>2</mn></msub></mfrac></mtd><mtd><mn>...</mn></mtd><mtd><mfrac><mi>&amp;alpha;</mi><msub><mi>w</mi><mi>n</mi></msub></mfrac></mtd></mtr></mtable></mfenced><mi>T</mi></msup></mrow> y0=[y01y02…y0n]T,y=[y1y2…yn]T y 0 =[y 01 y 02 ...y 0n ] T , y=[y 1 y 2 ...y n ] T 式中:w1w2…wn为权重;y0是过程的标称稳态值,y为系统输出;In the formula: w 1 w 2 ...w n is the weight; y 0 is the nominal steady-state value of the process, and y is the system output; 步骤4中,计算动态优化控制层输出约束的步骤如下:In step 4, the steps for calculating the output constraints of the dynamic optimization control layer are as follows: 步骤4-1,利用迭代算法求得α+1和α-1,使LOJX(α+1)与LOKDSJ相切,切点为v+1;LOJX(α-1)与LOKDXJ相切,切点为v-1Step 4-1, using iterative algorithm to obtain α +1 and α -1 , so that LOJX(α +1 ) is tangent to LOKDSJ, and the tangent point is v +1 ; LOJX(α -1 ) is tangent to LOKDXJ, and the tangent point is for v -1 ; 步骤4-2,记v+1=[y1+y2+…yn+],v-1=[y1-y2-…yn-],则动态优化控制层输出约束LOJX为:Step 4-2, record v +1 =[y 1+ y 2+ ... y n+ ], v -1 =[y 1- y 2- ... y n- ], then the dynamic optimization control layer output constraint LOJX is: LOJX={y|min(v+1,v-1)≤y-y0≤max(v+1,v-1)}。LOJX={y|min(v +1 ,v -1 ) ≤yy0≤max (v +1 ,v -1 )}.
CN201510622458.5A 2015-09-17 2015-09-17 A kind of Fast design method of dilute acetone rectifying industrial dynamics optimal control layer output constraint Active CN105182752B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510622458.5A CN105182752B (en) 2015-09-17 2015-09-17 A kind of Fast design method of dilute acetone rectifying industrial dynamics optimal control layer output constraint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510622458.5A CN105182752B (en) 2015-09-17 2015-09-17 A kind of Fast design method of dilute acetone rectifying industrial dynamics optimal control layer output constraint

Publications (2)

Publication Number Publication Date
CN105182752A CN105182752A (en) 2015-12-23
CN105182752B true CN105182752B (en) 2018-04-27

Family

ID=54904901

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510622458.5A Active CN105182752B (en) 2015-09-17 2015-09-17 A kind of Fast design method of dilute acetone rectifying industrial dynamics optimal control layer output constraint

Country Status (1)

Country Link
CN (1) CN105182752B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110262257B (en) * 2019-07-25 2021-11-16 杭州希亚智新科技有限公司 Multivariable control method and device
CN111045333B (en) * 2019-12-31 2022-01-21 山东交通学院 Determination method for control reachable set of overdrive system under each pair of linear constraint control components
CN111045420B (en) * 2019-12-31 2022-01-18 山东交通学院 Determination method for control reachable set of overdrive system under pair of linear constraint control components

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181202A (en) * 2007-01-23 2008-08-07 General Electric Co <Ge> Multivariable controller design method for multiple input/output system with multiple input/output constraint
US8418031B1 (en) * 2009-02-09 2013-04-09 Marvell International Ltd. Systems and methods for encoding data to meet an output constraint
CN103425048A (en) * 2013-05-22 2013-12-04 上海交通大学 Multi-model generalized predictive control system based on dynamic optimization and control method thereof
CN103984242A (en) * 2014-05-19 2014-08-13 上海交通大学 Layering predictive control system and method based on model predictive control

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008181202A (en) * 2007-01-23 2008-08-07 General Electric Co <Ge> Multivariable controller design method for multiple input/output system with multiple input/output constraint
US8418031B1 (en) * 2009-02-09 2013-04-09 Marvell International Ltd. Systems and methods for encoding data to meet an output constraint
CN103425048A (en) * 2013-05-22 2013-12-04 上海交通大学 Multi-model generalized predictive control system based on dynamic optimization and control method thereof
CN103984242A (en) * 2014-05-19 2014-08-13 上海交通大学 Layering predictive control system and method based on model predictive control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
工业双层模型预测控制稳态层鲁棒分析与设计;谢澜涛 等;《第25届中国过程控制会议论文集》;20140809;第1-8页 *

Also Published As

Publication number Publication date
CN105182752A (en) 2015-12-23

Similar Documents

Publication Publication Date Title
CN105182752B (en) A kind of Fast design method of dilute acetone rectifying industrial dynamics optimal control layer output constraint
Oravec et al. Robust model predictive control and PID control of shell-and-tube heat exchangers
Baldea et al. Dynamics and nonlinear control of integrated process systems
CN105122248B (en) For the method modeled to component especially turbo blade
CN111522229B (en) Parameter self-tuning MIMO different factor offset format model-free control method
Vane et al. Effect of membrane and process characteristics on cost and energy usage for separating alcohol–water mixtures using a hybrid vapor stripping–vapor permeation process
CN105223812A (en) A kind of method for designing of rare acetone rectifying industrial dynamics optimal control layer output constraint
Bao et al. Design, optimization and control of extractive distillation for the separation of trimethyl borate–methanol
Wang Simulation and analysis of multiple steady states in dividing wall column
Brüggermann et al. Conceptual design of distillation processes for mixtures with distillation boundaries. II. Optimization of recycle policies
Redepenning et al. Pinch‐based shortcut method for the conceptual design of adiabatic absorption columns
Masoumi et al. Optimization of energy consumption in sequential distillation column
Faraj et al. Eco-efficient vehicle cooling modules with integrated diffusers—thermal, energy, and environmental analyses
CN104764504A (en) Flow augmenting method of saturated and superheated steam
Zhang et al. Adaptive nonsingular fast terminal sliding mode-based direct yaw moment control for DDEV under emergency conditions
CN104731057B (en) A kind of extraction rectification technique control method based on effective Relative increasing rate method
Salmanipour et al. Separation of a two binary-azeotrope acetonitrile-cyclohexane-toluene ternary mixture via continuous triple column extractive distillation with heat integration: design, simulation, and multi-objective genetic-algorithm (MOGA) optimization
CN107942660B (en) For the internal thermally coupled air separation column control device of product design optimization of profile algorithm
CN108009362B (en) System modeling method based on stability constraint RBF-ARX model
CN102629133B (en) Configuration method for achieving iterative computation function in distributed control system
Hu et al. Efficient single-column extractive distillation process achieved through vapor–liquid separation of feed
Pan et al. Optimization and control for separation of ethyl benzene from C8 aromatic hydrocarbons with extractive distillation
Dalaouti et al. A unified modeling framework for the optimal design and dynamic simulation of staged reactive separation processes
CN104298111B (en) Fuzzy control method for kiln thermal parameter control system
CN105351592B (en) Precision and the expansible marshalling regulating valve of scope and its control signal analytic method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant