[go: up one dir, main page]

CN105182317A - Resource management method based on search pattern of centralized MIMO radar - Google Patents

Resource management method based on search pattern of centralized MIMO radar Download PDF

Info

Publication number
CN105182317A
CN105182317A CN201510512693.7A CN201510512693A CN105182317A CN 105182317 A CN105182317 A CN 105182317A CN 201510512693 A CN201510512693 A CN 201510512693A CN 105182317 A CN105182317 A CN 105182317A
Authority
CN
China
Prior art keywords
msub
mrow
search
radar
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510512693.7A
Other languages
Chinese (zh)
Other versions
CN105182317B (en
Inventor
程婷
武俊青
杨少委
张洁
张宇轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201510512693.7A priority Critical patent/CN105182317B/en
Publication of CN105182317A publication Critical patent/CN105182317A/en
Application granted granted Critical
Publication of CN105182317B publication Critical patent/CN105182317B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明属于通信雷达技术领域,特别涉及基于新体制MIMO雷达搜索模式下的资源管理方法。本发明通过对影响MIMO雷达搜索性能的各个参数进行分析,提出了一种基于集中式MIMO雷达搜索模式下的资源管理方法,即选取子阵划分个数、搜索帧周期、信号占空比和波束驻留时间作为可控参数,在满足雷达搜索性能要求的前提下,最小化雷达资源消耗量。其中雷达搜索性能不仅考虑了目标径向的累积检测概率,并首次考虑了目标切向的累积检测概率。最后采用遗传算法求解上述优化问题,得到具体场景中搜索参数配置结果。

The invention belongs to the technical field of communication radar, in particular to a resource management method based on a new system MIMO radar search mode. The present invention proposes a resource management method based on a centralized MIMO radar search mode by analyzing various parameters that affect MIMO radar search performance, that is, selecting the number of sub-array divisions, search frame period, signal duty cycle and beam Dwell time is a controllable parameter to minimize the consumption of radar resources on the premise of meeting the radar search performance requirements. Among them, the radar search performance not only considers the cumulative detection probability of the target radial direction, but also considers the cumulative detection probability of the target tangential direction for the first time. Finally, the genetic algorithm is used to solve the above optimization problem, and the search parameter configuration results in specific scenarios are obtained.

Description

一种基于集中式MIMO雷达搜索模式下的资源管理方法A Resource Management Method Based on Centralized MIMO Radar Search Mode

技术领域 technical field

本发明属于通信雷达技术领域,特别涉及基于新体制MIMO雷达搜索模式下的资源管理方法。 The invention belongs to the technical field of communication radar, in particular to a resource management method based on a new system MIMO radar search mode.

背景技术 Background technique

在全方位、多层次、立体化的现代战争中,为了应对日趋复杂、瞬息万变的电磁环境,新体制MIMO雷达成为目前的研究重点(何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析[J].电子学报,2005,33(12A):2441-2445.)。MIMO雷达是由多个发射天线独立发射不同的波形,在接收端采用多个天线接收实现探测的雷达系统。相比于相控阵雷达,MIMO雷达的子阵划分更加灵活,角度分辨力和参数估计精度更高,同时还可以有效的抑制多径杂波,对隐身目标的检测能力提高(吕晖.集中式MIMO雷达信号处理方法研究[D].西安:西安电子科技大学,2011)。 In the all-round, multi-level, and three-dimensional modern warfare, in order to cope with the increasingly complex and ever-changing electromagnetic environment, the new system MIMO radar has become the current research focus (He Zishu, Han Chunlin, Liu Bo. Analysis of the concept and technical characteristics of MIMO radar [J ]. Electronic Journal, 2005, 33(12A): 2441-2445.). MIMO radar is a radar system in which multiple transmitting antennas transmit different waveforms independently, and multiple antennas are used to receive and detect at the receiving end. Compared with phased array radar, the sub-array division of MIMO radar is more flexible, the angle resolution and parameter estimation accuracy are higher, and at the same time, it can effectively suppress multipath clutter and improve the detection ability of stealth targets (Lv Hui. Research on signal processing method of MIMO radar [D]. Xi'an: Xidian University, 2011).

依照天线阵的间距不同,MIMO雷达分为集中式(JianLiandP.Stoica.MIMOradarwithcolocatedantennas,IEEESignalProcessingMagazine,vol.24,no.5,pp.106-114,Sep2007.)和分布式(A.M.Haimovich,R.S.Blum,andL.Cimini.MIMOradarwithwidelyseparatedantennas,IEEESignalProcessingMagazine,invitedpublication,vol.25,no.1,pp.116-129,Jan2008.)。集中式MIMO雷达的工作参数相比于相控阵雷达增加了子阵划分个数,使得波形选择更加自由,资源管理的自由度更大。因此需要对其实施有效的资源管理,从而使各类资源被充分高效利用,更好的发挥MIMO雷达的性能优势。 According to the different spacing of the antenna array, MIMO radar is divided into centralized (JianLiandP.Stoica.MIMOradarwithcolocatedantennas, IEEESignalProcessingMagazine, vol.24, no.5, pp.106-114, Sep2007.) and distributed (A.M.Haimovich, R.S.Blum, andL . Cimini. MIMO radar with widely separated tantennas, IEEE Signal Processing Magazine, invited publication, vol. 25, no. 1, pp. 116-129, Jan 2008.). Compared with the phased array radar, the working parameters of the centralized MIMO radar increase the number of sub-array divisions, which makes the waveform selection more free and the freedom of resource management is greater. Therefore, it is necessary to implement effective resource management, so that various resources can be fully and efficiently utilized, and the performance advantages of MIMO radar can be better utilized.

在雷达搜索模式下的资源管理方面,Billiam(BillamER.ParameterOptimisationinPhasedArrayRadar[A].IEEConferenceRadar-92,1992,34-37.)提出了针对相控阵雷达的参数设计准则,即在满足给定的跟踪起始性能下使得雷达消耗资源最少,并在此基础上得出在没有高优先级负载情况下的最优搜索帧周期。卢建斌在Billiam的基础上以跟踪起始距离为目标函数研究了相控阵雷达搜索资源受限下搜索参数的优化问题,给出了搜索帧周期和驻留时间计算的最佳准则和方法(卢建斌,胡卫东,郁文贤.相控阵雷达资源受限时最优搜索性能研究[J].系统工程与电子技术,2004,26(10):1388-1390.)。张立韬等则从概念和系统角度出发,全面地介绍了搜索性能优化在实际应用中所涉及到的各方面问题,并提出了搜索参数的选择原则和确定方法(张立韬,李盾,王国玉.相控阵雷达搜索参数研究[J].现代雷达,2008,30(10):20:25.)。上述研究均针对相控阵雷达展开,未针对新体制MIMO雷达进行研究。 In terms of resource management in radar search mode, Billiam (BillamER. Parameter Optimization in Phased Array Radar [A]. IEE Conference Radar-92, 1992, 34-37.) proposed a parameter design criterion for phased array radar, that is, when a given tracking is satisfied, Under the initial performance, the radar consumes the least resources, and on this basis, the optimal search frame period without high priority load is obtained. On the basis of Billiam, Lu Jianbin studied the optimization of phased array radar search parameters under limited search resources with the tracking starting distance as the objective function, and gave the best criteria and methods for calculating the search frame period and dwell time (Lu Jianbin , Hu Weidong, Yu Wenxian. Research on optimal search performance when phased array radar resources are limited [J]. Systems Engineering and Electronic Technology, 2004, 26(10):1388-1390.). Zhang Litao et al. comprehensively introduced various issues involved in the practical application of search performance optimization from a conceptual and systematic point of view, and proposed the selection principles and determination methods of search parameters (Zhang Litao, Li Dun, Wang Guoyu. Research on Search Parameters of Controlled Array Radar [J]. Modern Radar, 2008,30(10):20:25.). The above studies are all carried out for phased array radar, but not for new system MIMO radar.

在MIMO雷达搜索资源管理方面,HanaGodrich等人率先讨论了MIMO雷达目标检测中功率分配的问题(AittomakiT,GodrichH,PoorHV,etal.ResourceallocationfortargetdetectionindistributedMIMOradars[C]//Signals,SystemsandComputers(ASILOMAR),2011ConferenceRecordoftheFortyFifthAsilomarConferenceon.IEEE,2011:873-877.)。通过优化发射功率、天线位置等因素,使得目标的检测概率最大,但该研究仅针对分布式MIMO雷达。文献(杨少委,程婷,何子述.MIMO雷达搜索模式下的射频隐身算法[J].电子与信息学报,2014,36(5):1017-1022.)建立了MIMO雷达搜索模式下的射频隐身性能模型,但其目标为优化雷达射频隐身性能,且未考虑切向累积检测概率。 In terms of MIMO radar search resource management, HanaGodrich et al. took the lead in discussing the issue of power allocation in MIMO radar target detection (AittomakiT, GodrichH, PoorHV, et al. :873-877.). By optimizing the transmission power, antenna position and other factors, the detection probability of the target is maximized, but this research is only for distributed MIMO radar. Literature (Yang Shaowei, Cheng Ting, He Zishu. RF Stealth Algorithm in MIMO Radar Search Mode [J]. Journal of Electronics and Information Technology, 2014,36(5):1017-1022.) established the RF stealth performance in MIMO radar search mode model, but its goal is to optimize the radar RF stealth performance, and the tangential cumulative detection probability is not considered.

然而现阶段还没有对集中式MIMO雷达的资源管理方面的研究。 However, there is no research on resource management of centralized MIMO radars at this stage.

发明内容 Contents of the invention

针对上述存在问题或不足,本发明通过对影响MIMO雷达搜索性能的各个参数进行分析,提出了一种基于集中式MIMO雷达搜索模式下的资源管理方法,即选取子阵划分个数、搜索帧周期、信号占空比、波束驻留时间作为可控参数,在满足雷达搜索性能要求的前提下,最小化雷达资源消耗量。其中雷达搜索性能不仅考虑了目标径向的累积检测概率,并首次考虑了目标切向的累积检测概率。最后采用遗传算法求解上述优化问题,得到具体场景中搜索参数配置结果。 In view of the above-mentioned problems or deficiencies, the present invention proposes a resource management method based on the centralized MIMO radar search mode by analyzing various parameters that affect the MIMO radar search performance, that is, selecting the number of sub-array divisions, the search frame period , signal duty cycle, and beam dwell time are used as controllable parameters to minimize radar resource consumption on the premise of meeting radar search performance requirements. Among them, the radar search performance not only considers the cumulative detection probability of the target radial direction, but also considers the cumulative detection probability of the target tangential direction for the first time. Finally, the genetic algorithm is used to solve the above optimization problem, and the search parameter configuration results in specific scenarios are obtained.

一种基于集中式MIMO雷达搜索模式下的资源管理方法,包括以下步骤: A resource management method based on a centralized MIMO radar search mode, comprising the following steps:

步骤1、建立MIMO信号处理模型:针对收发阵列共址的MIMO雷达,将阵列分为K个子阵,各个子阵中包含L个阵元,则阵列共包含阵元个数M=KL。推导出雷达接收信号的信噪比为 Step 1. Establish a MIMO signal processing model: For a MIMO radar where the transceiver arrays are co-located, the array is divided into K sub-arrays, and each sub-array contains L array elements, so the array contains a total number of array elements M=KL. The signal-to-noise ratio of the radar received signal is deduced as

其中雷达单个天线的峰值功率为Pt,发射天线增益为Gt,天线接收增益为Gr,目标的雷达截面积(RCS)为σ,λ为信号波长,N0为噪声功率谱密度,R为目标到雷达的径向距离,η为信号的占空比、tB为波束驻留时间。 Among them, the peak power of a single radar antenna is P t , the transmitting antenna gain is G t , the antenna receiving gain is G r , the radar cross-sectional area (RCS) of the target is σ, λ is the signal wavelength, N 0 is the noise power spectral density, R is the radial distance from the target to the radar, η is the duty cycle of the signal, and t B is the dwell time of the beam.

步骤2、计算切向累积检测概率:令MIMO雷达的搜索范围为[θ12],依据跟踪起始距离的概念,定义跟踪起始角度θmaxStep 2. Calculate the tangential cumulative detection probability: Let the search range of MIMO radar be [θ 1 , θ 2 ], and define the tracking start angle θ max according to the concept of tracking start distance,

θmax=(θ21)Q,Q∈(0,1)(2) θ max = (θ 21 )Q,Q∈(0,1)(2)

即对于给定目标,当雷达的切向累积检测概率达到累计检测概率门限时目标飞过的角度。角度上的飞过θmax对应的时间段为[t0,tmax]。其中, That is, for a given target, when the tangential cumulative detection probability of the radar reaches the cumulative detection probability threshold, the angle at which the target flies. The time period corresponding to the angular flight θ max is [t 0 ,t max ]. in,

切向积累检测概率的计算步骤如下: The calculation steps of tangential accumulation detection probability are as follows:

A、计算[t0,tmax]时间段内,雷达发射搜索波束个数:目标沿切向飞入搜索区域到达到累积检测概率所用时间为[t0,tmax],此期间雷达总共发射搜索波束个数I=I1+I2。其中, A. Calculate the number of search beams launched by the radar within the time period [t 0 , t max ]: the time it takes for the target to fly into the search area tangentially to reach the cumulative detection probability is [t 0 , t max ]. During this period, the radar transmits a total of The number of search beams I=I 1 +I 2 . in,

t0时刻波束计数器值ncount,ncount∈[0,I-1]开始计数,直到ncount=I-1循环以下计算。 At time t 0 , the beam counter value n count , n count ∈ [0, I-1] starts counting, until n count = I-1, the following calculation is repeated.

B、计算每个搜索波束在目标上的驻留时间以及单次检测概率。目标飞入搜索区域t0时刻,角度位置为θ1,此时搜索波束编号为n0B. Calculate the dwell time of each search beam on the target and the single detection probability. When the target flies into the search area t 0 , the angular position is θ 1 , and the number of the search beam is n 0 .

在发射第ncount个雷达搜索波束时,波束指向范围为 When launching the nth count radar search beam, the beam pointing range is

s1(t0),θs2(t0)]=[θ1+(nsearch(t0)-1)Bw1+nsearch(t0)Bw](6) s1 (t 0 ),θ s2 (t 0 )]=[θ 1 +(n search (t 0 )-1)B w1 +n search (t 0 )B w ](6)

对应的搜索波束执行时间为 The corresponding search beam execution time is

其中,搜索帧周期计数器 Among them, the search frame period counter for

搜索波位编号nsearch为(nsearch≥1) The search wave number n search is (n search ≥ 1)

运动目标所在角度与时间的函数关系式为: The functional relationship between the angle of the moving target and the time is:

然后,求解该搜索波束在目标上的驻留时间。 Then, solve for the dwell time of the search beam on the target.

求解可以分别求得判断第ncount个波束的照射时间是否存在交集,若存在交集则代表目标被该波束照射到,交集的长度tB′则代表被照射的时间长度。若tB′≠0,Pd(tB′)=0。其中, make The solution can be obtained separately and Judging the irradiation time of the n count beam and Whether there is an intersection, if there is an intersection, it means that the target is irradiated by the beam, and the length t B ′ of the intersection represents the time length of being irradiated. If t B ′≠0, P d (t B ′)=0. in,

C、将I个搜索波束的目标检测概率进行非相干积累,得到目标切向累计检测概率,如式11所示。 C. The target detection probabilities of the I search beams are non-coherently accumulated to obtain the target tangential cumulative detection probability, as shown in Equation 11.

D、令t0在[0,Tf]内均匀分布,于是,以作为跟踪起始时刻(tmax>Tf),雷达对目标的平均切向累计检测概率为: D. Let t 0 be uniformly distributed in [0,T f ], then, with As the tracking start time (t max >T f ), the radar’s average tangential cumulative detection probability of the target is:

步骤3、构建MIMO雷达搜索模式下的优化模型: Step 3. Construct the optimization model in MIMO radar search mode:

一帧内搜索波束所用时间与搜索帧周期的比值描述了系统在时域上的资源分布,信号占空比则描述了每次搜索能量消耗,子阵划分个数则描述了雷达硬件资源的消耗,三者按照各自权重相加作为目标函数来描述MIMO雷达资源消耗。同时,MIMO雷达要保持搜索性能,则以目标径向累积检测概率,目标切向累积检测概率大于累计检测概率门限值,时间资源消耗合理性为约束条件。优化模型为 The ratio of the time used to search beams in one frame to the search frame period describes the resource distribution of the system in the time domain, the signal duty cycle describes the energy consumption of each search, and the number of sub-array divisions describes the consumption of radar hardware resources , the sum of the three according to their respective weights is used as the objective function to describe the MIMO radar resource consumption. At the same time, in order to maintain the search performance of MIMO radar, the radial cumulative detection probability of the target, the tangential cumulative detection probability of the target is greater than the cumulative detection probability threshold, and the rationality of time resource consumption are the constraints. The optimization model is

步骤4、采用遗传算法求解上述优化问题。 Step 4. Solve the above optimization problem by using a genetic algorithm.

通过求解该优化模型的优化过程,得到一组参数[Koptopt,tBopt,Tfopt],在满足搜索性能要求的前提下,消耗资源最少。 By solving the optimization process of the optimization model, a set of parameters [K opt , η opt , t Bopt , T fopt ] is obtained, which consumes the least resources on the premise of meeting the search performance requirements.

本发明的工作原理是:假设MIMO雷达收发阵列共址,将阵列分为K个子阵,各个子阵中包含L个阵元,则阵列共包含阵元个数M=KL。各个子阵发射相互正交的波形,将第k个子阵的发射信号记为sk(t),子阵内各个阵元发射波形相同。那么,第k个子阵发射信号在空域形成的合成信号可表示为: The working principle of the present invention is as follows: assuming that the MIMO radar transceiver arrays are co-located, the arrays are divided into K sub-arrays, and each sub-array contains L array elements, then the array contains a total number of array elements M=KL. Each sub-array transmits mutually orthogonal waveforms, and the transmitted signal of the kth sub-array is recorded as s k (t), and the transmitted waveforms of each array element in the sub-array are the same. Then, the composite signal formed by the transmitted signal of the kth sub-array in the space domain can be expressed as:

各子阵之间的相位差为φL=Lφ,则K个子阵发射信号在空域形成的合成信号可表示为: The phase difference between each sub-array is φ L = Lφ, then the composite signal formed by K sub-arrays transmitting signals in the space can be expressed as:

合成信号经目标散射后由接收阵列接收到回波信号,若忽略传输过程和目标散射引起的损耗,则第m个阵元接收到的信号可表示为: After the synthesized signal is scattered by the target, the echo signal is received by the receiving array. If the loss caused by the transmission process and target scattering is ignored, the signal received by the mth array element can be expressed as:

ym(t)=x(t)e-j(m-1)φ+vm(t)(16) y m (t)=x(t)e -j(m-1)φ +v m (t)(16)

其中,vm(t)代表第m个接收通道的噪声。 Among them, v m (t) represents the noise of the mth receiving channel.

将各接收通道的接收信号与所有发射波形进行匹配滤波,第m个接收通道的信号与sk(t)匹配滤波的结果为: The received signal of each receiving channel is matched with all the transmitted waveforms, and the result of matched filtering between the signal of the mth receiving channel and s k (t) is:

其中,vmk是vm(t)与sk(t)的匹配滤波结果,Es为发射波形的能量。 Among them, v mk is the matched filtering result of v m (t) and s k (t), and E s is the energy of the transmitted waveform.

将第m个阵元匹配滤波的结果相加,即进行等效发射波束形成,有: Add the results of the matched filtering of the mth array element, that is, perform equivalent transmit beamforming, as follows:

最后进行接收波束形成,有: Finally, receive beamforming is performed, as follows:

根据上述信号处理过程,可以获得输出信噪比: According to the above signal processing process, the output signal-to-noise ratio can be obtained:

若雷达发射总功率为Pt,发射天线增益为Gt,目标的雷达截面积(RCS)为σ,Gr为天线接收增,λ为信号波长,Br为雷达接收机等效噪声带宽,N0为噪声功率谱密度。于是雷达接收信号的信噪比满足: If the total power of radar transmission is P t , the gain of transmitting antenna is G t , the radar cross-sectional area (RCS) of the target is σ, G r is the antenna receiving gain, λ is the signal wavelength, B r is the equivalent noise bandwidth of the radar receiver, N 0 is the noise power spectral density. Then the signal-to-noise ratio of the radar received signal satisfies:

对于MIMO雷达而言,Pt=Mpt,其中pt为单个阵元发射波形峰值功率。匹配滤波和等效发射波束形成带来的处理增益τBr,其中τ为信号脉宽。另外,多脉冲积累是系统提高信噪比的常用方法,假设系统采用相参积累技术,则经过Np个脉冲积累,信噪比将提升为原来的Np倍。因此, For MIMO radar, P t =Mp t , where p t is the peak power of the transmit waveform of a single array element. Processing gain τB r due to matched filtering and equivalent transmit beamforming, where τ is the signal pulse width. In addition, multi-pulse accumulation is a common method for the system to improve the signal-to-noise ratio. Assuming that the system adopts coherent accumulation technology, after N p pulse accumulation, the signal-to-noise ratio will be increased by N p times. therefore,

假设MIMO雷达的可控参数包括子阵划分个数K、信号的的占空比η、波束驻留时间tB和搜索帧周期Tf。首先建立可控参数与雷达搜索性能之间的关系,构建搜索性能优化模型。 It is assumed that the controllable parameters of the MIMO radar include the number of sub-array divisions K, the signal duty cycle η, the beam dwell time t B and the search frame period T f . Firstly, the relationship between controllable parameters and radar search performance is established, and a search performance optimization model is constructed.

监视区域搜索任务的参数记为(K,η,tB,Tf)。搜索帧周期描述了系统在时域上的资源分布,信号占空比则描述了每次搜索能量消耗,子阵划分个数则描述了雷达硬件资源的消耗。具有良好搜索性能的系统,在保证雷达任务执行效果的条件下,在其时间、能量、硬件资源的消耗应最小。因此,采用下式描述目标函数,即雷达资源消耗: The parameters of the surveillance region search task are denoted as (K, η, t B , T f ). The search frame period describes the resource distribution of the system in the time domain, the signal duty cycle describes the energy consumption of each search, and the number of sub-array divisions describes the consumption of radar hardware resources. A system with good search performance should minimize the consumption of time, energy and hardware resources under the condition of ensuring the effectiveness of radar task execution. Therefore, the following formula is used to describe the objective function, that is, the radar resource consumption:

其中,NB表示波束驻留个数,它与子阵划分个数有关。c1,c2,c3为三个设定的加权系数,取值反映对系统时间、能量、硬件资源消耗量的关注程度。 Among them, NB represents the number of beams that reside, which is related to the number of sub-array divisions. c 1 , c 2 , and c 3 are three set weighting coefficients, and the values reflect the degree of attention to system time, energy, and hardware resource consumption.

雷达搜索模式下资源管理是在保证雷达系统正常搜索的条件下,降低其资源消耗。文献(A.M.Haimovich,R.S.Blum,andL.Cimini.MIMOradarwithwidelyseparatedantennas,IEEESignalProcessingMagazine,invitedpublication,vol.25,no.1,pp.116-129,Jan2008.)中定义跟踪起始距离(对于给定目标当雷达的累计检测概率达到给定值时的距离)来描述雷达搜索性能。这里假设雷达作用距离为Rs,目标径向逼近速度为v,搜索帧周期为Tf,以Rt为跟踪起始距离,雷达对目标的平均径向检测概率(杨少委,程婷,何子述.MIMO雷达搜索模式下的射频隐身算法[J].电子与信息学报,2014,36(5):1017-1022.)为: The resource management in the radar search mode is to reduce its resource consumption under the condition of ensuring the normal search of the radar system. The document (AM Haimovich, RS Blum, and L. Cimini. MIMO radar with widely separated antennas, IEEE Signal Processing Magazine, invited publication, vol.25, no.1, pp.116-129, Jan2008.) defines the tracking start distance (for a given target when the cumulative detection probability of the radar distance when a given value is reached) to describe radar search performance. Here it is assumed that the radar action distance is R s , the target radial approach speed is v, the search frame period is T f , and R t is the tracking start distance, the average radial detection probability of the target by the radar (Yang Shaowei, Cheng Ting, He Zishu. RF Stealth Algorithm in MIMO Radar Search Mode [J]. Journal of Electronics and Information Technology, 2014,36(5):1017-1022.) is:

其中,表示向下取整数,Δr=vTf,表示目标在两次被照到的过程中径向飞行距离。Pdc雷达能正确识别目标的概率,Pdi(r-iΔr)表示雷达对距离r-iΔr处目标的单次观测的检测概率,在给定的虚警概率的情况下,单次观测的检测概率和信噪比的关系式(服从Swerling-I型起伏特性的目标)如下: in, Indicates rounding down to an integer, Δr=vT f , indicating the radial flight distance of the target in the process of being illuminated twice. P dc radar can correctly identify the probability of the target, P di (r-iΔr) represents the detection probability of a single observation of the target at a distance of r-iΔr by the radar, in the case of a given false alarm probability, the detection of a single observation The relational expression of probability and SNR (subject to the target of Swerling-I fluctuation characteristic) is as follows:

可见,在给定跟踪起始距离要求后,径向累积检测概率与所有可配置参数有关。 It can be seen that the radial cumulative detection probability is related to all configurable parameters after a given tracking start distance requirement.

但在实际情况中,还需考虑目标切向飞行的情况。因此,本发明借鉴跟踪起始距离的概念,定义跟踪起始角度为对于给定目标当雷达的切向累积检测概率达到给定值时目标飞过的角度。用两个参数来共同描述搜索性能。 However, in actual situations, it is also necessary to consider the situation of the target flying tangentially. Therefore, the present invention refers to the concept of the tracking start distance, and defines the tracking start angle as the angle that the target flies when the tangential cumulative detection probability of the radar reaches a given value for a given target. Two parameters are used to jointly describe the search performance.

在平均切向累积检测概率的推导过程中,假设MIMO雷达的搜索范围为[θ12],目标从θ1飞到角度θs=θ1max的过程中期望被检测到。因此在此过程中的积累检测概率必须达到门限。定义跟踪起始角度为θmax,θmax=(θ21)Q,Q∈(0,1)。若目标飞入区域为t0时刻,飞至θs处为tmax,现需要计算在[t0,tmax]时间内的积累检测概率,判断检测概率是否大于门限值。其中,Rx为目标切向飞行时径向距离,vx为目标切向飞行速度。 In the derivation process of the average tangential cumulative detection probability, it is assumed that the search range of the MIMO radar is [θ 12 ], and the target is expected to be detected when it flies from θ 1 to the angle θ s = θ 1 + θ max . Therefore, the accumulated detection probability in this process must reach the threshold. Define the tracking starting angle as θ max , θ max =(θ 21 )Q,Q∈(0,1). If the target flies into the region at time t 0 and flies to θ s at t max , now it is necessary to calculate the cumulative detection probability within [t 0 , t max ] to determine whether the detection probability is greater than the threshold. in, R x is the radial distance of the target when flying tangentially, and v x is the speed of the target tangentially flying.

目标切向累计检测概率计算的原理示意图如图1所示。图1中虚线表示每帧内搜索波位角度与时间关系,[(k-1)tB,ktB]内直线段表征了tB驻留时间内波束覆盖的角度范围,其为周期等于Tf的周期函数。对雷达而言,第j帧(j≥1)搜索中的第i个搜索波束(i≥1)的驻留时间和角度范围分别为:[Tf(j-1)+(i-1)tB,Tf(j-1)+itB],[Bw(i-1)+θ1,Bw(i)+θ1]。例如,在[0,tB]内搜索波束照射角度范围为[θ11+Bw]。图1中点划线表示目标运动时间与角度关系,目标所在角度与时间的函数关系式为: The schematic diagram of the calculation principle of target tangential cumulative detection probability is shown in Figure 1. The dotted line in Figure 1 represents the relationship between the search wave position angle and time in each frame, and the straight line segment in [(k-1)t B ,kt B ] represents the angle range covered by the beam within the t B dwell time, which is the period equal to T Periodic function of f . For radar, the dwell time and angular range of the i-th search beam (i≥1) in the j-th frame (j≥1) search are respectively: [T f (j-1)+(i-1) t B ,T f (j-1)+it B ], [B w (i-1)+θ 1 ,B w (i)+θ 1 ]. For example, the irradiation angle range of the search beam within [0,t B ] is [θ 11 +B w ]. The dotted line in Figure 1 represents the relationship between the time and angle of the target movement, and the functional relationship between the angle of the target and the time is:

为了计算[t0,tmax]内积累检测概率,则需要判断波束是否照射到目标。若照射到目标,则计算目标在该波束内停留了多长时间,得到相参积累的单次目标检测概率,然后统计在这一时间段内照射到目标的搜索波束个数进行非相参积累得到目标切向累积检测概率。 In order to calculate the cumulative detection probability within [t 0 ,t max ], it is necessary to judge whether the beam hits the target. If the target is irradiated, calculate how long the target stays in the beam to obtain the single target detection probability of coherent accumulation, and then count the number of search beams irradiated to the target within this period of time for non-coherent accumulation Get the target tangential cumulative detection probability.

最后,将上述分析中认为是已知量的t0在[0,Tf]内均匀分布,t0不同,搜索到目标的波束编号不同,驻留时间不同。于是得到以作为跟踪起始时刻(tmax>Tf)的雷达对目标的平均切向检测概率为 Finally, t 0 , which is considered to be a known quantity in the above analysis, is evenly distributed in [0,T f ]. If t 0 is different, the number of beams searching for the target is different, and the dwell time is different. So get As the tracking start time (t max >T f ), the average tangential detection probability of the radar to the target is

对于上述搜索过程,有如下时间约束: For the above search process, there are the following time constraints:

其含义为搜索过程中各子区域的时间利用率之和不超过1。 It means that the sum of the time utilization ratios of each sub-area during the search process does not exceed 1.

综上所述,本发明提出的MIMO雷达搜索模式下的优化问题具体可 In summary, the optimization problem under the MIMO radar search mode that the present invention proposes can specifically be

表示为: Expressed as:

附图说明: Description of drawings:

图1是目标切向累计检测概率计算的原理示意图; Figure 1 is a schematic diagram of the principle of calculation of target tangential cumulative detection probability;

图2是不同跟踪起始距离下搜索帧周期的配置结果; Figure 2 is the configuration result of the search frame period under different tracking start distances;

图3是不同跟踪起始距离下信号占空比的配置结果; Figure 3 shows the configuration results of the signal duty ratio under different tracking start distances;

图4是不同跟踪起始距离下子阵划分个数的配置结果; Figure 4 is the configuration result of the number of sub-array divisions under different tracking start distances;

图5是不同跟踪起始距离下波束驻留时间的配置结果; Figure 5 shows the configuration results of the beam dwell time under different tracking start distances;

图6是不同跟踪起始距离MIMO雷达相对于相控阵雷达的资源消耗改善度; Figure 6 shows the improvement in resource consumption of MIMO radars with different tracking start distances relative to phased array radars;

图7是不同Rx下搜索帧周期的配置结果; Figure 7 is the configuration result of the search frame period under different Rx;

图8是不同Rx下信号占空比的配置结果; Figure 8 is the configuration result of the signal duty cycle under different Rx;

图9是不同Rx下子阵划分个数的配置结果; Figure 9 is the configuration result of the number of sub-array divisions under different Rx;

图10是不同Rx下波束驻留时间的配置结果。 Figure 10 shows the configuration results of the beam dwell time under different Rx.

具体实施方式: Detailed ways:

基于本发明详细技术方案,对MIMO雷达通过本技术方案的优化,可以在保证雷达探测性能的同时,降低雷达的资源消耗。 Based on the detailed technical solution of the present invention, through the optimization of the technical solution for MIMO radar, the resource consumption of the radar can be reduced while ensuring the detection performance of the radar.

选用雷达为M=2048阵元的均匀线阵,波长λ=5.45cm,玻尔兹曼常数k=1.38×10-23J/K,标准温度T=230K,噪声系数F=2,天线有效面积占空比ηe=0.5,信号总峰值功率为Pt=105W,雷达的作用距离Rs=200km。仿真中以Swerling-I型目标为例,目标的平均RCS取1m2,虚警概率Pfa=10-6,积累检测概率门限PD=0.95。区域的角度范围为θ∈[-40°,40°]。径向速度vr=1.5Ma,切向速度vt=1.5Ma。遗传算法中,设定种群数为500,最大遗传代数为300,交叉概率为0.7,变异概率为0.05,代沟为0.9。 The radar is selected as a uniform linear array with M=2048 elements, wavelength λ=5.45cm, Boltzmann constant k=1.38×10 -23 J/K, standard temperature T=230K, noise factor F=2, effective area of the antenna The duty cycle η e =0.5, the total peak power of the signal is P t =10 5 W, and the operating distance of the radar R s =200km. In the simulation, the Swerling-I type target is taken as an example. The average RCS of the target is 1m 2 , the false alarm probability P fa =10 -6 , and the cumulative detection probability threshold P D =0.95. The angular range of the region is θ∈[-40°,40°]. Radial velocity v r =1.5Ma, tangential velocity v t =1.5Ma. In the genetic algorithm, the population size is set to 500, the maximum genetic algebra is 300, the crossover probability is 0.7, the mutation probability is 0.05, and the generation gap is 0.9.

目标函数权重:c1=0.8,c2=0.1,c3=0.1。子阵划分个数K的可选参数集为{1,2,4,8,16,32,64,128,256,512,1024,2048},占空比为η∈[0,0.25],波束驻留时间tB∈[0,26]ms,搜索帧周期Tf∈[0,20]s。 Objective function weights: c1=0.8, c2=0.1, c3=0.1. The optional parameter set of subarray division number K is {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}, the duty cycle is η∈[0,0.25], and the beam dwell time t B ∈[0,26]ms, search frame period T f ∈[0,20]s.

仿真1,假设此时Rx=30km,Q=0.2,在不同跟踪起始距离下,参数配置结果如图2-图5所示。 Simulation 1, assuming Rx=30km, Q=0.2 at this time, under different tracking start distances, the parameter configuration results are shown in Figure 2-Figure 5.

当跟踪起始距离较小时,MIMO雷达具有更多的累积次数,相应的降低了对单次检测信噪比的要求。随着跟踪起始距离的增加,允许的划分子阵个数变小,信号占空比增大,驻留时间增大和搜索帧周期减小才能满足提高的检测性能要求。但信号占空比,子阵划分个数,波束驻留时间,搜索帧周期相互制约,最终使资源最优化选取合理。子阵划分个数的减少有利于提高单次检测概率,但同时目标函数中同时希望资源消耗最小,因此子阵划分个数出现波动。而当子阵划分个数减少时,则允许更小的驻留时间即可满足检测性能要求,二者变化趋势几乎一致,较小的驻留时间需要足够大的信号占空比使得单次检测概率得以保持,搜索帧周期在整个过程中变化较小,它同时受到径向,切向累计检测概率的影响。 When the starting distance of tracking is small, MIMO radar has more accumulation times, which correspondingly reduces the requirement for the signal-to-noise ratio of a single detection. With the increase of the tracking start distance, the allowed number of divided sub-arrays decreases, the signal duty cycle increases, the dwell time increases and the search frame period decreases to meet the improved detection performance requirements. However, the signal duty cycle, the number of sub-array divisions, the beam dwell time, and the search frame period are mutually restricted, and finally the resource optimization selection is reasonable. Reducing the number of sub-array divisions is beneficial to improve the probability of single detection, but at the same time, the objective function wants to minimize resource consumption, so the number of sub-array divisions fluctuates. When the number of sub-array divisions is reduced, a shorter dwell time is allowed to meet the detection performance requirements, and the change trend of the two is almost the same. The probability is maintained, the search frame period changes little in the whole process, and it is affected by the radial and tangential cumulative detection probabilities at the same time.

另外,在仿真一的参数配置下,对比MIMO雷达和相控阵雷达在系统资源消耗量。定义能量消耗改善比为相控阵资源消耗与MIMO雷达资源消耗的差除以相控阵雷达资源消耗。仿真结果如图6所示,可以看出搜索模式下MIMO雷达的资源消耗量小于相控阵雷达。且随着跟踪起始距离的增加,资源消耗改善比降低。这是因为随着跟踪起始距离的增加,驻留时间增大,子阵划分个数减小,MIMO雷达因子阵划分个数带来的优势减弱。 In addition, under the parameter configuration of simulation 1, the system resource consumption of MIMO radar and phased array radar is compared. The energy consumption improvement ratio is defined as the difference between phased array resource consumption and MIMO radar resource consumption divided by phased array radar resource consumption. The simulation results are shown in Figure 6. It can be seen that the resource consumption of MIMO radar in search mode is less than that of phased array radar. And as the tracking start distance increases, the resource consumption improvement ratio decreases. This is because as the tracking start distance increases, the dwell time increases, the number of sub-array divisions decreases, and the advantages brought by the number of MIMO radar factor array divisions weaken.

在具体实际雷达设计参数要求中,一般给定跟踪起始距离,跟踪起始角度要求,而此时唯一变化的参数是目标沿切向方向飞入监视空域时与雷达的径向距离Rx。仿真三在Rt=130km,Q=0.3时,求解不同的Rx下参数优化结果。参数配置结果如图7到图10所示。 In the specific actual radar design parameter requirements, the tracking starting distance and tracking starting angle requirements are generally given, and the only parameter that changes at this time is the radial distance Rx between the target and the radar when it flies into the surveillance airspace along the tangential direction. In simulation three, when R t =130km and Q=0.3, the parameter optimization results under different R x are solved. The parameter configuration results are shown in Figure 7 to Figure 10.

从图8-10中可以看出,子阵划分个数在90km内在子阵个数大于等于2,之后均大于4。因此,将Rx分段来确定雷达搜索参数:当Rx小于等于90km时,子阵划分个数取2,信号占空比19.5%,波束驻留时间1ms;当Rx大于等于90km时,子阵划分个数取8,信号占空比为20.3%,波束驻留时间2ms。搜索帧周期则以50km为分断点。 It can be seen from Figure 8-10 that the number of sub-array divisions is greater than or equal to 2 within 90km, and greater than 4 thereafter. Therefore, the radar search parameters are determined by segmenting Rx: when Rx is less than or equal to 90km, the number of subarray divisions is 2, the signal duty cycle is 19.5%, and the beam dwell time is 1ms; when Rx is greater than or equal to 90km, the number of subarray divisions is 2 The number is 8, the signal duty cycle is 20.3%, and the beam dwell time is 2ms. The search frame period takes 50km as the breaking point.

综上可见,在跟踪起始距离的基础上增加跟踪起始角度的要求对参数分配结果有影响,增加切向累积检测概率来一起描述雷达搜索性能存在其实际意义;且通过与相控阵雷达对比,在同一搜索要求下,MIMO雷达的资源消耗更小,因此,本方法可以有效的减少资源浪费,使得雷达系统能高效的处理搜索,以及跟踪等其他任务。 To sum up, it can be seen that the requirement of increasing the tracking start angle on the basis of the tracking start distance has an impact on the parameter assignment results, and it is of practical significance to increase the tangential cumulative detection probability to describe the radar search performance together; and through the phased array radar In contrast, under the same search requirement, the resource consumption of MIMO radar is smaller. Therefore, this method can effectively reduce resource waste, so that the radar system can efficiently process other tasks such as search and tracking.

Claims (1)

1. A resource management method based on a centralized MIMO radar search mode comprises the following steps:
step 1, establishing an MIMO signal processing model:
aiming at the MIMO radar with the co-located transmitting and receiving array, the array is divided into K sub-arrays, each sub-array comprises L array elements, the array comprises the number M of the array elements in total, which is KL, and the signal-to-noise ratio of the radar receiving signal is deduced to be
<math> <mrow> <mi>S</mi> <mi>N</mi> <mi>R</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>G</mi> <mi>t</mi> </msub> <msub> <mi>G</mi> <mi>r</mi> </msub> <msub> <mi>Mp</mi> <mi>t</mi> </msub> <msub> <mi>&eta;t</mi> <mi>B</mi> </msub> <msup> <mi>&sigma;&lambda;</mi> <mn>2</mn> </msup> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <mn>4</mn> <mi>&pi;</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mi>N</mi> <mn>0</mn> </msub> <msup> <mi>R</mi> <mn>4</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
In which the peak power of a single antenna of the radar is ptGain of transmitting antenna of GtThe antenna receiving gain is GrThe radar cross-sectional area (RCS) of the target is σ, λ is the signal wavelength, N0For noise power spectral density, R is the radial distance from the target to the radar, η is the duty cycle of the signal, tBIs the beam dwell time;
step 2, calculating the tangential cumulative detection probability:
let search range of MIMO radar be [ theta ]12]Defining a tracking start angle theta based on the concept of the tracking start distancemax
θmax=(θ21)Q,Q∈(0,1)(2)
For a given target, when the tangential cumulative detection probability of the radar reaches the cumulative detection probability threshold, the target flies through the angle; angular fly-through thetamaxCorresponding to a time period of [ t ]0,tmax]Wherein
<math> <mrow> <msub> <mi>t</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&theta;</mi> <mi>max</mi> </msub> <msub> <mi>R</mi> <mi>x</mi> </msub> </mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> </mfrac> <mo>;</mo> </mrow> </math>
the calculation steps of the tangential accumulation detection probability are as follows:
A. calculate [ t ]0,tmax]In the time period, the number of the radar transmitting search beams is as follows: the time taken for the target to reach the accumulated detection probability along the tangential flying search area is t0,tmax]During the period, the total number I of the search beams transmitted by the radar is equal to I1+I2Wherein
<math> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>&lsqb;</mo> <mrow> <mfrac> <mrow> <mi>mod</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>f</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>*</mo> <msub> <mi>T</mi> <mi>f</mi> </msub> </mrow> <msub> <mi>t</mi> <mi>B</mi> </msub> </mfrac> <mo>,</mo> <msub> <mi>N</mi> <mi>B</mi> </msub> </mrow> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
t0time beam counter value ncount,ncount∈[0,I-1]Starting to count up to ncountI-1 cycle the following calculations;
B. calculating the residence time of each search beam on the target and the single detection probability, wherein the target flies into the search area t0At the moment, the angular position is theta1When the search beam number is n0
At the n-th of transmissioncountWhen a radar searches for a beam, the beam is directed in a range of
s1(t0),θs2(t0)]=[θ1+(nsearch(t0)-1)Bw1+nsearch(t0)Bw](6)
Corresponding search beam execution time is
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mo>&lsqb;</mo> <msub> <mi>t</mi> <mrow> <mi>s</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>s</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&lsqb;</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <msub> <mi>T</mi> <mi>f</mi> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>f</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mi>B</mi> </msub> <mo>,</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>n</mi> <msub> <mi>T</mi> <mi>f</mi> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <msub> <mi>T</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>t</mi> <mi>B</mi> </msub> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein the search frame period counterIs composed of
Search wave position number nsearchIs (n)search≥1)
<math> <mrow> <msub> <mi>n</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>h</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>mod</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>n</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <msub> <mi>N</mi> <mi>B</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>&NotEqual;</mo> <msub> <mi>kN</mi> <mi>B</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mi>B</mi> </msub> <mo>,</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>kN</mi> <mi>B</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>..</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
The functional relation between the angle of the moving target and the time is as follows:
<math> <mrow> <msub> <mi>&theta;</mi> <mi>t</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>v</mi> <mi>x</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>r</mi> <mi>x</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
then, solving the dwell time of the search beam on the target;
order to <math> <mrow> <msub> <mi>&theta;</mi> <msub> <mi>s</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>t</mi> <mo>~</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mi>r</mi> </mfrac> <mo>+</mo> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>&theta;</mi> <msub> <mi>s</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>v</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>t</mi> <mo>~</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <mi>r</mi> </mfrac> <mo>+</mo> <msub> <mi>&theta;</mi> <mn>1</mn> </msub> <mo>,</mo> </mrow> </math> The solution can be obtained respectivelyAndjudging the nthcountIrradiation time of individual beamAndwhether an intersection exists or not, if so, the intersection represents that the target is irradiated by the beam, and the length t of the intersection isB' then represents the length of time that is illuminated, if tB′≠0,Pd(tB') 0. Wherein,
C. carrying out incoherent accumulation on the target detection probability of the I search beams to obtain the target tangential accumulated detection probability,
<math> <mrow> <munderover> <mo>&Pi;</mo> <mrow> <msub> <mi>n</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mi>I</mi> </munderover> <mo>&lsqb;</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>P</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <msup> <msub> <mi>t</mi> <mi>B</mi> </msub> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
D. let t0At [0, Tf]Are internally uniformly distributed, thus, inAs a tracking start time (t)max>Tf) The average tangential cumulative detection probability of the radar to the target is as follows:
<math> <mrow> <msub> <mi>P</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>f</mi> </msub> </mfrac> <msubsup> <mo>&Integral;</mo> <mn>0</mn> <msub> <mi>T</mi> <mi>f</mi> </msub> </msubsup> <mrow> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>-</mo> <munderover> <mo>&Pi;</mo> <mrow> <msub> <mi>n</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mrow> <mi>I</mi> </munderover> <mo>&lsqb;</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>P</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <msup> <msub> <mi>t</mi> <mi>B</mi> </msub> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>u</mi> <mi>n</mi> <mi>t</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> <mo>}</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> <mo>;</mo> </mrow> </math>
step 3, constructing an optimization model under the MIMO radar search mode:
the ratio of the time for searching beams in one frame to the period of the search frame describes the resource distribution of the system in the time domain, the signal duty ratio describes the energy consumption of each search, the number of sub-array partitions describes the consumption of radar hardware resources, the three describe the resource consumption of the MIMO radar by adding the respective weights as a target function, meanwhile, the MIMO radar keeps the search performance by taking the target radial cumulative detection probability, the target tangential cumulative detection probability is greater than the cumulative detection probability threshold value, the time resource consumption rationality is the constraint condition, and the optimization model is
<math> <mrow> <munder> <mi>min</mi> <mrow> <mo>(</mo> <mrow> <mi>K</mi> <mo>,</mo> <mi>&eta;</mi> <mo>,</mo> <msub> <mi>t</mi> <mi>B</mi> </msub> <mo>,</mo> <msub> <mi>T</mi> <mi>f</mi> </msub> </mrow> <mo>)</mo> </mrow> </munder> <msub> <mi>c</mi> <mn>1</mn> </msub> <mfrac> <mrow> <msub> <mi>t</mi> <mi>B</mi> </msub> <msub> <mi>N</mi> <mi>B</mi> </msub> </mrow> <msub> <mi>T</mi> <mi>f</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>c</mi> <mn>2</mn> </msub> <mi>&eta;</mi> <mo>+</mo> <msub> <mi>c</mi> <mn>3</mn> </msub> <mfrac> <mi>K</mi> <mi>M</mi> </mfrac> </mrow> </math>
<math> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <msub> <mi>P</mi> <mi>D</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mi>max</mi> </msub> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <msub> <mi>P</mi> <mi>D</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>N</mi> <mi>B</mi> </msub> <msub> <mi>t</mi> <mi>B</mi> </msub> </mrow> <msub> <mi>T</mi> <mi>f</mi> </msub> </mfrac> <mo>&le;</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
And 4, solving the optimization problem by adopting a genetic algorithm:
obtaining a set of parameters [ K ] by solving the optimization process of the optimization modeloptopt,tBopt,Tfopt]And on the premise of meeting the requirement of search performance, the consumption of resources is minimum.
CN201510512693.7A 2015-08-20 2015-08-20 A kind of method for managing resource based under centralized MIMO radar search pattern Expired - Fee Related CN105182317B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510512693.7A CN105182317B (en) 2015-08-20 2015-08-20 A kind of method for managing resource based under centralized MIMO radar search pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510512693.7A CN105182317B (en) 2015-08-20 2015-08-20 A kind of method for managing resource based under centralized MIMO radar search pattern

Publications (2)

Publication Number Publication Date
CN105182317A true CN105182317A (en) 2015-12-23
CN105182317B CN105182317B (en) 2018-04-06

Family

ID=54904517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510512693.7A Expired - Fee Related CN105182317B (en) 2015-08-20 2015-08-20 A kind of method for managing resource based under centralized MIMO radar search pattern

Country Status (1)

Country Link
CN (1) CN105182317B (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021697A (en) * 2016-05-17 2016-10-12 电子科技大学 Quick phased array radar time-energy resource combined management method
CN106405536A (en) * 2016-08-30 2017-02-15 电子科技大学 MIMO radar multi-target tracking resource management method
CN106501778A (en) * 2016-05-16 2017-03-15 南京航空航天大学 A kind of sane waveform design methods of DMRS optimized based on radio frequency Stealth Fighter
CN107064882A (en) * 2017-01-22 2017-08-18 南京航空航天大学 Based on the radar network composite resource control method that radio frequency is stealthy under passive collaboration
CN107329136A (en) * 2017-06-13 2017-11-07 电子科技大学 MIMO radar multiple target adaptive tracking method based on the variable analysis moment
CN107450070A (en) * 2017-04-14 2017-12-08 电子科技大学 Phased-array radar wave beam and residence time combined distributing method based on target following
CN108594203A (en) * 2018-04-25 2018-09-28 西安电子科技大学 A kind of distributed radar multistation detection sequence planning and designing method
CN108734343A (en) * 2018-05-02 2018-11-02 电子科技大学 A Phased Array Beam Dwell Scheduling Method Based on Scheduling Gain and Genetic Algorithm
CN108738140A (en) * 2017-04-21 2018-11-02 中国移动通信有限公司研究院 A kind of terminal staying method, base station, terminal and computer readable storage medium
CN109117594A (en) * 2018-09-20 2019-01-01 中国人民解放军92942部队 A kind of submarine mast searching probability acquisition methods based on radar wave
CN109164420A (en) * 2018-09-14 2019-01-08 西安电子科技大学 A kind of phased-array radar search adds the implementation method of tracking operating mode
CN109375174A (en) * 2018-12-17 2019-02-22 西安八阵图电子科技有限公司 Bidimensional electric scanning three-dimensional radar method based on inverted T shaped linear array
CN109581355A (en) * 2018-12-10 2019-04-05 电子科技大学 The centralized MIMO radar adaptive resource management method of target following
CN109581354A (en) * 2018-12-05 2019-04-05 电子科技大学 The co-located MIMO radar multiple target tracking method for managing resource of simultaneous multiple beams
CN109581342A (en) * 2018-12-07 2019-04-05 中国船舶重工集团公司第七二四研究所 A kind of rotating phased array radar complete period time resource distribution method
CN110412559A (en) * 2019-07-26 2019-11-05 西安电子科技大学 Non-coherent fusion target detection method for distributed UAV MIMO radar
CN111190176A (en) * 2020-01-14 2020-05-22 电子科技大学 Adaptive resource management method for co-located MIMO radar networking system
CN111337918A (en) * 2020-02-17 2020-06-26 南京航空航天大学 Airborne radar radio frequency stealth waveform selection method based on neural network
CN111596270A (en) * 2020-05-27 2020-08-28 中国人民解放军63921部队 Evaluation method for target discovery probability of phased array radar search screen
CN112068114A (en) * 2020-09-09 2020-12-11 中国航空工业集团公司雷华电子技术研究所 Method for long-distance measurement of mechanical scanning radar
CN113391274A (en) * 2021-06-15 2021-09-14 电子科技大学 Low-altitude target optimal search method for airborne phased array radar
CN113466854A (en) * 2021-06-29 2021-10-01 哈尔滨工业大学 High-frequency ground wave radar inversion vector flow velocity method based on ocean power model
CN113671487A (en) * 2021-07-19 2021-11-19 南京航空航天大学 A Target Search Resource Optimization Method Based on Hybrid Phased Array-MIMO Radar
CN114779232A (en) * 2022-04-27 2022-07-22 电子科技大学 Real-time simultaneous multi-beam CMIMO radar networking resource management algorithm

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608595A (en) * 2012-03-14 2012-07-25 西安电子科技大学 Target location method based on distributed coherent process for meterwave MIMO (multiple-input multiple-output) radars
CN104007419A (en) * 2014-06-03 2014-08-27 西安电子科技大学 Radar time resource joint distribution method related to residence time and re-access interval

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608595A (en) * 2012-03-14 2012-07-25 西安电子科技大学 Target location method based on distributed coherent process for meterwave MIMO (multiple-input multiple-output) radars
CN104007419A (en) * 2014-06-03 2014-08-27 西安电子科技大学 Radar time resource joint distribution method related to residence time and re-access interval

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
汤小为 等: "集中式多输入多输出雷达信号盲分离算法研究", 《宇航学报》 *
汤永浩 等: "集中式MIMO雷达部分相关波形设计与处理", 《电子与信息学报》 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501778A (en) * 2016-05-16 2017-03-15 南京航空航天大学 A kind of sane waveform design methods of DMRS optimized based on radio frequency Stealth Fighter
CN106501778B (en) * 2016-05-16 2019-06-04 南京航空航天大学 A Robust Waveform Design Method for DMRS Based on RF Stealth Performance Optimization
CN106021697A (en) * 2016-05-17 2016-10-12 电子科技大学 Quick phased array radar time-energy resource combined management method
CN106405536B (en) * 2016-08-30 2019-05-10 电子科技大学 A MIMO radar multi-target tracking resource management method
CN106405536A (en) * 2016-08-30 2017-02-15 电子科技大学 MIMO radar multi-target tracking resource management method
CN107064882A (en) * 2017-01-22 2017-08-18 南京航空航天大学 Based on the radar network composite resource control method that radio frequency is stealthy under passive collaboration
CN107064882B (en) * 2017-01-22 2019-12-20 南京航空航天大学 Radar networking resource control method based on radio frequency stealth under passive cooperation
CN107450070A (en) * 2017-04-14 2017-12-08 电子科技大学 Phased-array radar wave beam and residence time combined distributing method based on target following
CN107450070B (en) * 2017-04-14 2020-02-21 电子科技大学 A Joint Allocation Method of Phased Array Radar Beam and Dwell Time Based on Target Tracking
CN108738140A (en) * 2017-04-21 2018-11-02 中国移动通信有限公司研究院 A kind of terminal staying method, base station, terminal and computer readable storage medium
CN107329136A (en) * 2017-06-13 2017-11-07 电子科技大学 MIMO radar multiple target adaptive tracking method based on the variable analysis moment
CN107329136B (en) * 2017-06-13 2020-12-29 电子科技大学 Multi-target adaptive tracking method for MIMO radar based on variable analysis time
CN108594203B (en) * 2018-04-25 2022-05-03 西安电子科技大学 Distributed radar multi-station detection sequence planning and designing method
CN108594203A (en) * 2018-04-25 2018-09-28 西安电子科技大学 A kind of distributed radar multistation detection sequence planning and designing method
CN108734343B (en) * 2018-05-02 2022-03-15 电子科技大学 Phased array beam resident scheduling method based on scheduling profit and genetic algorithm
CN108734343A (en) * 2018-05-02 2018-11-02 电子科技大学 A Phased Array Beam Dwell Scheduling Method Based on Scheduling Gain and Genetic Algorithm
CN109164420A (en) * 2018-09-14 2019-01-08 西安电子科技大学 A kind of phased-array radar search adds the implementation method of tracking operating mode
CN109164420B (en) * 2018-09-14 2022-11-18 西安电子科技大学 A Realization Method of Phased Array Radar Searching and Tracking Mode
CN109117594B (en) * 2018-09-20 2022-09-13 中国人民解放军92942部队 Submarine lifting device search probability obtaining method based on radar waves
CN109117594A (en) * 2018-09-20 2019-01-01 中国人民解放军92942部队 A kind of submarine mast searching probability acquisition methods based on radar wave
CN109581354A (en) * 2018-12-05 2019-04-05 电子科技大学 The co-located MIMO radar multiple target tracking method for managing resource of simultaneous multiple beams
CN109581354B (en) * 2018-12-05 2022-11-08 电子科技大学 Multi-target tracking resource management method for simultaneous multi-beam co-site MIMO radar
CN109581342A (en) * 2018-12-07 2019-04-05 中国船舶重工集团公司第七二四研究所 A kind of rotating phased array radar complete period time resource distribution method
CN109581342B (en) * 2018-12-07 2022-12-27 中国船舶重工集团公司第七二四研究所 Full-period time resource allocation method for rotary phased array radar
CN109581355B (en) * 2018-12-10 2022-12-06 电子科技大学 Centralized MIMO radar self-adaptive resource management method for target tracking
CN109581355A (en) * 2018-12-10 2019-04-05 电子科技大学 The centralized MIMO radar adaptive resource management method of target following
CN109375174A (en) * 2018-12-17 2019-02-22 西安八阵图电子科技有限公司 Bidimensional electric scanning three-dimensional radar method based on inverted T shaped linear array
CN110412559B (en) * 2019-07-26 2023-05-26 西安电子科技大学 Noncoherent Fusion Target Detection Method for Distributed UAV MIMO Radar
CN110412559A (en) * 2019-07-26 2019-11-05 西安电子科技大学 Non-coherent fusion target detection method for distributed UAV MIMO radar
CN111190176A (en) * 2020-01-14 2020-05-22 电子科技大学 Adaptive resource management method for co-located MIMO radar networking system
CN111190176B (en) * 2020-01-14 2023-05-05 电子科技大学 Adaptive Resource Management Method for Co-located MIMO Radar Networking System
CN111337918A (en) * 2020-02-17 2020-06-26 南京航空航天大学 Airborne radar radio frequency stealth waveform selection method based on neural network
CN111596270A (en) * 2020-05-27 2020-08-28 中国人民解放军63921部队 Evaluation method for target discovery probability of phased array radar search screen
CN111596270B (en) * 2020-05-27 2023-01-31 中国人民解放军63921部队 Evaluation method for target discovery probability of phased array radar search screen
CN112068114A (en) * 2020-09-09 2020-12-11 中国航空工业集团公司雷华电子技术研究所 Method for long-distance measurement of mechanical scanning radar
CN113391274A (en) * 2021-06-15 2021-09-14 电子科技大学 Low-altitude target optimal search method for airborne phased array radar
CN113391274B (en) * 2021-06-15 2022-08-05 电子科技大学 Low-altitude target optimal search method for airborne phased array radar
CN113466854A (en) * 2021-06-29 2021-10-01 哈尔滨工业大学 High-frequency ground wave radar inversion vector flow velocity method based on ocean power model
CN113466854B (en) * 2021-06-29 2022-09-30 哈尔滨工业大学 A method for inversion of vector flow velocity by high frequency ground wave radar based on ocean dynamic model
CN113671487A (en) * 2021-07-19 2021-11-19 南京航空航天大学 A Target Search Resource Optimization Method Based on Hybrid Phased Array-MIMO Radar
CN113671487B (en) * 2021-07-19 2024-06-07 南京航空航天大学 A target search resource optimization method based on hybrid phased array-MIMO radar
CN114779232A (en) * 2022-04-27 2022-07-22 电子科技大学 Real-time simultaneous multi-beam CMIMO radar networking resource management algorithm
CN114779232B (en) * 2022-04-27 2023-06-06 电子科技大学 A Real-time Simultaneous Multi-beam CMIMO Radar Networking Resource Management Algorithm

Also Published As

Publication number Publication date
CN105182317B (en) 2018-04-06

Similar Documents

Publication Publication Date Title
CN105182317B (en) A kind of method for managing resource based under centralized MIMO radar search pattern
CN110412515B (en) Multi-target tracking transmission power distribution method for networking radar based on radio frequency stealth
KR102665123B1 (en) Joint optimization method of integrated network radar residence time and radiated power for low observability
CN105137410B (en) The waveform optimization method of high-resolution radar communicating integral based on OFDM
CN103728595B (en) Networking radar based on subspace projection suppresses pressing type major lobe suppression method
CN106199579A (en) Distributed MIMO radar target tracking precision method for joint optimization of resources
CN111025275B (en) Multi-objective joint optimization method of multi-base radar radiation parameters based on radio frequency stealth
CN108896985B (en) Networking radar multi-target tracking sampling interval control method based on radio frequency stealth
CN105158756A (en) Centralized MIMO radar radio frequency stealth multi-target tracking wave beam pointing method
CN105319545B (en) Improve the MIMO-OFDM radar waveform design methods of STAP detection performances
CN110133631A (en) A target location method for frequency-steered array MIMO radar based on fuzzy function
CN108614261B (en) Radiation parameter control method under multi-target tracking of networking radar system
CN105487054B (en) Improve the sane waveform design method based on the worst detection performances of MIMO-OFDM radars STAP
CN113671487B (en) A target search resource optimization method based on hybrid phased array-MIMO radar
CN105807275A (en) MIMO-OFDM-STAP steady waveform design method based on partial clutter priori knowledge
CN104977567A (en) OFDM monopulse radar self-adaptive transmitting wave beam formation method
CN108196239A (en) A kind of frequency diversity MIMO radar without fuzzy parameter method of estimation
CN107064926A (en) Bistatic MIMO radar angle evaluation method under the Colored Noise of spatial domain
Wang et al. Antenna placement algorithm for distributed MIMO radar with distance constrains
CN104020459A (en) Waveform optimization method for improving MIMO-STAP detection performance
Wang et al. Optimisation of practically constrained waveforms for Rician target detection with multiple‐input‐multiple‐output radar
CN104808178B (en) A kind of airborne radar transmitting pattern method for designing
CN111198366A (en) Method for quickly selecting finite array elements under distributed MIMO radar multitasking
Manjunath et al. Sensor scheduling with waveform design for dynamic target tracking using MIMO radar
CN112612007B (en) Distance deambiguation method for moving target in ultra-sparse array airborne radar based on near-field effect

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180406

Termination date: 20200820