[go: up one dir, main page]

CN105158749A - High-frequency radar sea-clutter amplitude statistical distribution test method - Google Patents

High-frequency radar sea-clutter amplitude statistical distribution test method Download PDF

Info

Publication number
CN105158749A
CN105158749A CN201510531225.4A CN201510531225A CN105158749A CN 105158749 A CN105158749 A CN 105158749A CN 201510531225 A CN201510531225 A CN 201510531225A CN 105158749 A CN105158749 A CN 105158749A
Authority
CN
China
Prior art keywords
msub
mrow
mover
msubsup
sea clutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510531225.4A
Other languages
Chinese (zh)
Inventor
位寅生
朱永鹏
许荣庆
朱凯晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN201510531225.4A priority Critical patent/CN105158749A/en
Publication of CN105158749A publication Critical patent/CN105158749A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0218Very long range radars, e.g. surface wave radar, over-the-horizon or ionospheric propagation systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

高频雷达海杂波幅度统计分布检验方法,属于高频雷达信号处理领域。现有的海杂波幅度统计特性分析方法存在理论建模要求高,从理论上定量分析参数化结果的统计分布难度大的问题。一种高频雷达海杂波幅度统计分布检验方法,利用SVD法对待检测海杂波主分量进行提取,对提取出的海杂波主分量进行分段自适应回归模型建模;利用得到的模型阶数和分段数据,计算杂波主分量高阶累积量;根据置信度水平设置检验门限;结合杂波主分量高阶累积量计算结果计算检验统计量,并将检验统计量与检验门限比较,得出结论。本发明可直接对高频雷达单一传播体制以及混合传播体制下的海杂波幅度统计特性进行检验,具有较强的适用性和应用范围。

A high-frequency radar sea clutter amplitude statistical distribution inspection method belongs to the field of high-frequency radar signal processing. The existing methods for analyzing the statistical characteristics of sea clutter amplitude have high requirements for theoretical modeling, and it is difficult to quantitatively analyze the statistical distribution of parameterized results theoretically. A high-frequency radar sea clutter amplitude statistical distribution inspection method, using the SVD method to extract the main component of the sea clutter to be detected, and performing a segmented adaptive regression model modeling on the extracted sea clutter main component; using the obtained model Calculate the high-order cumulants of clutter principal components based on the order and segmented data; set the inspection threshold according to the confidence level; calculate the test statistics based on the calculation results of the high-order cumulants of the clutter principal components, and compare the test statistics with the inspection threshold ,get conclusion. The invention can directly test the statistical characteristics of the sea clutter amplitude under the high-frequency radar single propagation system and the mixed propagation system, and has strong applicability and application range.

Description

高频雷达海杂波幅度统计分布检验方法Test Method for Statistical Distribution of Sea Clutter Amplitude in High Frequency Radar

技术领域technical field

本发明涉及一种高频雷达海杂波幅度统计分布检验方法。The invention relates to a method for inspecting the statistical distribution of the amplitude of high-frequency radar sea clutter.

背景技术Background technique

高频(3-30MHz)雷达工作在短波波段,利用垂直极化电磁波沿海表面绕射传播损耗小的特点,探测距离不受地球曲率的限制,可以完成对于目标的超远距离探测。而海杂波作为海洋回波谱的主要分量,构成了目标检测的主要杂波背景。理论上,岸基高频地波雷达海杂波幅度服从高斯分布,而这一结论在本质上也决定了现有大多数杂波抑制算法的选择和恒虚警检测器的设计。High-frequency (3-30MHz) radar works in the short-wave band, and utilizes the characteristics of small diffraction and propagation loss of vertically polarized electromagnetic waves along the coastal surface. The detection distance is not limited by the curvature of the earth, and can complete ultra-long-distance detection of targets. Sea clutter, as the main component of the ocean echo spectrum, constitutes the main clutter background for target detection. Theoretically, the sea clutter amplitude of shore-based high-frequency ground wave radar obeys Gaussian distribution, and this conclusion essentially determines the selection of most existing clutter suppression algorithms and the design of constant false alarm detectors.

然而,随着近几十年高频雷达的快速发展,其传播模式(天波发射-地波接收,天波发射-舰载平台接收)、布局方式(双/多基地)和工作模式(MIMO)都有了很大的变化,海杂波幅度统计特性也将会不同程度地偏离理论分布。在实际工程中,我们需要及时获得海杂波的统计特性分布,从而改变相应的信号处理手段。目前,为了得到复杂情况下海杂波真实的幅度统计特性分布,主要的分析方法有两种:(1)通过理论建模的方法,将其他因素的影响参数化表示在海杂波回波谱的解析式中,进而在理论上尽量能够描述实际探测环境下海杂波回波的幅度特性;(2)直接根据雷达采样的实测回波数据进行统计检验。前一种方法,虽然避免了录取实测数据对人力、物力的要求,但是该方法对理论建模要求较高,特别在一些复杂情况下,很难得到准确的参数化表示结果,而且即便能够得到,最终得到的回波信号也将是一个多参数高复合的表示形式,对于这样的一个形式从理论上定量分析其统计分布,难度很大。对于后一种基于实测数据的方法,由于雷达在一个积累周期内所获得的数据长度往往较大,实际对杂波进行统计检验时,所需要的运算复杂度较高。可即便如此,该方法由于其主要利用实测数据,在本质上规避了对其它复杂扰动参数的分析,分析方法更具灵活性和稳定性。However, with the rapid development of high-frequency radar in recent decades, its propagation mode (sky-wave transmission-ground wave reception, sky-wave transmission-shipboard platform reception), layout mode (dual/multi-base) and working mode (MIMO) are all different. With great changes, the statistical characteristics of sea clutter amplitude will also deviate from the theoretical distribution to varying degrees. In practical engineering, we need to obtain the statistical characteristic distribution of sea clutter in time, so as to change the corresponding signal processing methods. At present, in order to obtain the real amplitude statistical characteristic distribution of sea clutter under complex conditions, there are two main analysis methods: (1) Through the method of theoretical modeling, the influence of other factors is parametrically expressed in the analysis of sea clutter echo spectrum In the formula, the amplitude characteristics of the sea clutter echo in the actual detection environment can be described as much as possible in theory; (2) Statistical inspection is carried out directly according to the measured echo data sampled by the radar. Although the former method avoids the requirement of manpower and material resources for the acquisition of measured data, this method has higher requirements for theoretical modeling, especially in some complex cases, it is difficult to obtain accurate parametric representation results, and even if it can be obtained , the final echo signal will also be a multi-parameter high-composite expression form, and it is very difficult to quantitatively analyze its statistical distribution in theory for such a form. For the latter method based on measured data, since the length of data obtained by the radar in one accumulation period is often relatively large, the computational complexity required for the actual statistical inspection of clutter is relatively high. But even so, because this method mainly uses measured data, it essentially avoids the analysis of other complex disturbance parameters, and the analysis method is more flexible and stable.

发明内容Contents of the invention

本发明的目的是为了解决现有的海杂波幅度统计特性分析方法存在理论建模要求高,从理论上定量分析参数化结果的统计分布难度大的问题,而提出一种高频雷达海杂波幅度统计分布检验方法。The purpose of the present invention is to solve the problem that the existing sea clutter amplitude statistical characteristic analysis method has high requirements for theoretical modeling, and it is difficult to quantitatively analyze the statistical distribution of parameterized results theoretically, and proposes a high-frequency radar sea clutter Wave amplitude statistical distribution test method.

一种高频雷达海杂波幅度统计分布检验方法,所述高频雷达海杂波幅度统计分布检验方法通过以下步骤实现:A high-frequency radar sea clutter amplitude statistical distribution inspection method, the high-frequency radar sea clutter amplitude statistical distribution inspection method is realized by the following steps:

步骤一、对天线各阵元采集的回波数据进行距离方位处理,得到待检测回波的三维数据矩阵,完成回波数据预处理过程;Step 1. Perform distance and azimuth processing on the echo data collected by each array element of the antenna to obtain a three-dimensional data matrix of the echo to be detected, and complete the echo data preprocessing process;

步骤二、利用SVD法对待检测海杂波主分量进行提取,并对提取出的海杂波主分量进行分段自适应回归模型建模,得到模型阶数与分段后数据长度;其中,所述SVD法为奇异值分解方法;其中,所述SVD法为奇异值分解方法;Step 2: Use the SVD method to extract the principal components of the sea clutter to be detected, and perform segmented adaptive regression model modeling on the extracted principal components of the sea clutter to obtain the model order and the length of the segmented data; The SVD method is a singular value decomposition method; wherein, the SVD method is a singular value decomposition method;

步骤三、利用步骤二计算得到的模型阶数和分段数据,计算杂波主分量高阶累积量;Step 3, using the model order and segmented data calculated in step 2 to calculate the high-order cumulant of the principal component of the clutter;

步骤四、根据置信度水平设置检验门限;Step 4, setting the inspection threshold according to the confidence level;

步骤五、结合步骤三的杂波主分量高阶累积量计算结果计算检验统计量,并将检验统计量与检验门限比较,从而确定回波数据的后续处理手段。Step 5. Combining the calculation result of the high-order cumulant of the clutter principal component in step 3 to calculate the test statistic, and compare the test statistic with the test threshold, so as to determine the subsequent processing means of the echo data.

本发明的有益效果为:The beneficial effects of the present invention are:

本发明提供一种高频雷达系统中海杂波幅度统计特性检测方法,该方法能够定量给出,在一定置信概率条件下,多个探测距离单元上海杂波幅度统计特性与理论高斯分布的差异大小,从而为后续杂波协方差矩阵估计、杂波抑制方法的选择和目标检测器的构造提供参考。主要针对经过距离压缩处理后的实测数据,通过分段自回归模型的建立,使得用于进行杂波幅度统计检验的数据样本长度大大减少,从而在很大程度上降低了运算量,同时结合高阶累积量计算结果,最终实现了快速检测多个距离单元上海杂波的幅度统计特性分布。提供一种高频雷达系统中海杂波幅度统计特性检测方法,该方法能够定量给出,在一定置信概率条件下,多个探测距离单元上海杂波幅度统计特性与理论高斯分布的差异大小,从而为后续杂波协方差矩阵估计、杂波抑制方法的选择和目标检测器的构造提供参考。The invention provides a method for detecting the statistical characteristics of sea clutter amplitude in a high-frequency radar system. The method can quantitatively give the difference between the statistical characteristics of sea clutter amplitude in multiple detection distance units and the theoretical Gaussian distribution under a certain confidence probability condition. , so as to provide reference for subsequent estimation of clutter covariance matrix, selection of clutter suppression method and construction of target detector. Mainly for the measured data after the distance compression processing, through the establishment of the segmented autoregressive model, the length of the data sample used for the statistical test of the clutter amplitude is greatly reduced, thereby reducing the amount of calculation to a large extent, and combined with high Finally, the rapid detection of the amplitude statistical characteristic distribution of Shanghai clutter in multiple range units is realized. A method for detecting the statistical characteristics of the sea clutter amplitude in a high-frequency radar system is provided. The method can quantitatively give the difference between the statistical characteristics of the sea clutter amplitude of multiple detection range units and the theoretical Gaussian distribution under a certain confidence probability condition, so that It provides reference for subsequent estimation of clutter covariance matrix, selection of clutter suppression method and construction of target detector.

并且,本发明方法的一阶海杂波提取算法有效性验证如图2-5所示,给出了对实测数据某距离门回波信号的一阶海杂波提取结果,可以看出,本文所提方法可以比较准确的确定一阶海杂波的实际分布范围。和以往通过固定杂波多普勒区域确定一阶海杂波分布范围方法相比,该方法具有很强的自适应性,此外,通过对大量实测数据划分结果来看,一阶海杂波即使发生谱峰分裂、平移等复杂现象,该方法依然有效。Moreover, the validity verification of the first-order sea clutter extraction algorithm of the method of the present invention is shown in Fig. The proposed method can accurately determine the actual distribution range of the first-order sea clutter. Compared with the previous method of determining the distribution range of first-order sea clutter by fixing the clutter Doppler region, this method has strong adaptability. This method is still effective for complex phenomena such as spectral peak splitting and translation.

附图说明Description of drawings

图1为本发明方法的流程图;Fig. 1 is the flowchart of the inventive method;

图2为实测数据经预处理后,某一个距离单元回波数据的多普勒谱;Fig. 2 is the Doppler spectrum of the echo data of a range unit after the measured data is preprocessed;

图3为二次平滑处理后所确定的一阶谱峰极值点分布范围;Fig. 3 is the distribution range of the first-order spectral peak extremum points determined after the secondary smoothing process;

图4为谱峰划分结果与实际一阶海杂波分布范围的比较;Figure 4 shows the comparison between the spectral peak division results and the actual first-order sea clutter distribution range;

图5基于SVD的一阶海杂波提取算法有效性验证;Figure 5 Validation of the first-order sea clutter extraction algorithm based on SVD;

图6为一阶海杂波幅度统计特性检验方法流程图;Fig. 6 is a flow chart of the first-order sea clutter amplitude statistical characteristic inspection method;

图7为某一个波束单元上的实测海杂波回波数据距离多普勒图;Fig. 7 is the distance Doppler map of the measured sea clutter echo data on a certain beam unit;

图8为基于三阶累积量的一阶海杂波幅度统计特性多个距离单元检验结果;Figure 8 shows the test results of multiple distance units based on the statistical characteristics of the first-order sea clutter amplitude based on the third-order cumulant;

图9高频雷达系统数据预处理基本流程;Figure 9. The basic process of data preprocessing of the high-frequency radar system;

具体实施方式Detailed ways

具体实施方式一:Specific implementation mode one:

本实施方式的高频雷达海杂波幅度统计分布检验方法,结合图1所示的流程图,所述高频雷达海杂波幅度统计分布检验方法通过以下步骤实现:The high-frequency radar sea clutter amplitude statistical distribution inspection method of the present embodiment, in conjunction with the flowchart shown in Figure 1, the high-frequency radar sea clutter amplitude statistical distribution inspection method is realized by the following steps:

步骤一、对天线各阵元采集的回波数据进行距离方位处理,得到待检测回波的三维数据矩阵,完成回波数据预处理过程;Step 1. Perform distance and azimuth processing on the echo data collected by each array element of the antenna to obtain a three-dimensional data matrix of the echo to be detected, and complete the echo data preprocessing process;

步骤二、利用SVD法对待检测海杂波主分量进行提取,并对提取出的海杂波主分量进行分段自适应回归模型建模,得到模型阶数与分段后数据长度;其中,所述SVD法为奇异值分解方法;Step 2: Use the SVD method to extract the principal components of the sea clutter to be detected, and perform segmented adaptive regression model modeling on the extracted principal components of the sea clutter to obtain the model order and the length of the segmented data; The SVD method is a singular value decomposition method;

步骤三、利用步骤二计算得到的模型阶数和分段数据,计算杂波主分量高阶累积量;其中,所述高阶累积量包括三阶累积量和四阶累积量;Step 3, using the model order and segmented data calculated in step 2 to calculate the high-order cumulant of the clutter principal component; wherein, the high-order cumulant includes a third-order cumulant and a fourth-order cumulant;

步骤四、根据置信度水平设置检验门限;Step 4, setting the inspection threshold according to the confidence level;

步骤五、结合步骤三的杂波主分量高阶累积量计算结果计算检验统计量,并将检验统计量与检验门限比较,从而确定回波数据的后续处理手段。Step 5. Combining the calculation result of the high-order cumulant of the clutter principal component in step 3 to calculate the test statistic, and compare the test statistic with the test threshold, so as to determine the subsequent processing means of the echo data.

具体实施方式二:Specific implementation mode two:

与具体实施方式一不同的是,本实施方式的高频雷达海杂波幅度统计分布检验方法,步骤二所述利用SVD法对待检测海杂波主分量进行提取的过程为:The difference from the first embodiment is that in the method for testing the statistical distribution of the amplitude of high-frequency radar sea clutter in this embodiment, the process of extracting the main component of the sea clutter to be detected by using the SVD method in step two is as follows:

一般来说,海杂波分量包括一阶海杂波分量、二阶海杂波分量和高阶海杂波分量,其中一阶海杂波分量占优,且对舰船等慢速目标检测影响最大,将一阶海杂波分量确定为待检测海杂波主分量,根据这一特点,利用SVD法对待检测海杂波主分量进行提取。Generally speaking, sea clutter components include first-order sea clutter components, second-order sea clutter components and higher-order sea clutter components, among which the first-order sea clutter components are dominant and have the greatest impact on the detection of slow targets such as ships. The first-order sea clutter component is determined as the main component of the sea clutter to be detected. According to this characteristic, the main component of the sea clutter to be detected is extracted by using the SVD method.

步骤二一、针对步骤一经过预处理后的回波数据z(n)且(1<n<N),构造一个C列、N-C+1行的矩阵H(,H为Hankel矩阵):Step 21. For the preprocessed echo data z(n) and (1<n<N) in step 1, construct a matrix H with C columns and N-C+1 rows (where H is a Hankel matrix):

其中,N表示数据长度;C=3r,r表示预处理后的回波数据z(n)中正弦信号的个数,C的取值直接影响SVD法的计算量以及杂波提取的效果,通过熵谱分析的方法,C一般选择为N/6,便可以保证较好的提取效果;Among them, N represents the data length; C=3r, r represents the number of sinusoidal signals in the preprocessed echo data z(n), and the value of C directly affects the calculation amount of the SVD method and the effect of clutter extraction, through For the method of entropy spectrum analysis, C is generally selected as N/6, which can ensure a better extraction effect;

步骤二二、对矩阵H进行SVD分解,得:Step 22: Perform SVD decomposition on the matrix H to get:

H=U·S·V(2)H=U·S·V(2)

其中,U,V分别表示正交或酉矩阵,且满足U∈C(N-C+1)×(N-C+1),V∈CC×C,C表示为复数空间;S表示奇异值矩阵。Among them, U and V represent orthogonal or unitary matrices respectively, and satisfy U∈C (N-C+1)×(N-C+1) , V∈C C×C , C represents complex space; S represents singular matrix of values.

具体实施方式三:Specific implementation mode three:

与具体实施方式一或二不同的是,本实施方式的高频雷达海杂波幅度统计分布检验方法,The difference from the specific embodiment 1 or 2 is that the method for inspecting the statistical distribution of the amplitude of high-frequency radar sea clutter in this embodiment,

步骤二所述对提取出的海杂波主分量进行分段自适应回归模型建模,得到模型阶数与分段后数据长度的过程为,根据SVD分解原理,每一个奇异值对应预处理后的回波数据z(n)中的一个主分量回波信号,通过一阶海杂波的多普勒分布范围进行一阶海杂波对应奇异值的判决和识别,在实际环境中,一阶海杂波由于易受海态、雷达布局以及外界电磁环境等因素的影响,谱峰将发生展宽、分裂、平移等复杂变化,为了准确判定待检测海杂波主分量多普勒分布范围,我们拟进行如下步骤的处理:In Step 2, the extracted sea clutter principal component is modeled with a segmented adaptive regression model, and the process of obtaining the model order and segmented data length is as follows. According to the principle of SVD decomposition, each singular value corresponds to the preprocessed A principal component echo signal in the echo data z(n), through the Doppler distribution range of the first-order sea clutter to judge and identify the corresponding singular value of the first-order sea clutter, in the actual environment, the first-order sea clutter Sea clutter is easily affected by factors such as sea state, radar layout, and external electromagnetic environment, and the spectral peak will undergo complex changes such as broadening, splitting, and translation. In order to accurately determine the Doppler distribution range of the main component of the sea clutter to be detected, we The following steps are to be taken:

第一、对待检测海杂波主分量进行FFT变换得到多普勒谱,并对得到的多普勒谱进行3点平滑处理,即等效为低通滤波处理,以消除谱峰分裂、毛刺等现象的影响;First, perform FFT transformation on the main component of the sea clutter to be detected to obtain the Doppler spectrum, and perform three-point smoothing processing on the obtained Doppler spectrum, which is equivalent to low-pass filtering processing to eliminate spectral peak splitting, glitches, etc. the impact of the phenomenon;

第二、对平滑处理后的傅氏谱取对数,并进行相邻点差分处理得到差谱,将得到的差谱进行二次平滑处理,进一步避免局部尖峰毛刺所造成的极值误判可能;Second, take the logarithm of the smoothed Fourier spectrum, and perform differential processing of adjacent points to obtain the difference spectrum, and perform secondary smoothing on the obtained difference spectrum to further avoid the possibility of extreme value misjudgment caused by local spikes and burrs ;

第三、根据待检测海杂波主分量的多普勒域局部占优的特点,将经过上一步处理后的差谱中的极大值点和极小值点的分布范围确定为海杂波主分量的多普勒分布范围;Third, according to the local dominance of the Doppler domain of the main component of the sea clutter to be detected, the distribution range of the maximum and minimum points in the difference spectrum after the previous step processing is determined as the sea clutter Doppler distribution range of principal components;

第四、根据如上步骤的划分结果,判定海杂波主分量对应的奇异值范围,同时将不在这个范围内的其他奇异值归零;并假设置零后的奇异值矩阵为S1,根据奇异值矩阵S1得到重构后矩阵为:Fourth, according to the division results of the above steps, determine the singular value range corresponding to the main component of sea clutter, and return to zero other singular values that are not in this range; and assume that the singular value matrix after setting zero is S 1 , according to the singular value The value matrix S 1 obtained after reconstruction is:

H1=U1·S1·V1(3)H 1 =U 1 ·S 1 ·V 1 (3)

根据式(3),得到仅含有一阶海杂波信号的时域回波数据z1(n):According to formula (3), the time-domain echo data z 1 (n) containing only the first-order sea clutter signal is obtained:

z1(n)=(∑H1(i,j))/M(4)z 1 (n)=(∑H 1(i,j) )/M(4)

式(4)中,i+j-1=n,M为符合i+j-1=n的H1(i,j)的个数;In formula (4), i+j-1=n, M is the number of H1 (i, j) meeting i+j-1=n;

第五、对仅含有一阶海杂波信号的时域回波数据z1(n)通过分段AR模型的方法进行自回归模型建模,得到P阶AR模型,并确定出P阶AR模型最小的非冗余延时域为:Fifth, the time-domain echo data z 1 (n) containing only the first-order sea clutter signal is modeled with an autoregressive model through the method of the segmented AR model, and the P-order AR model is obtained, and the P-order AR model is determined The minimum non-redundant delay domain is:

II kk (( 33 PP )) == &Delta;&Delta; {{ || ll 11 || ,, || ll 22 || &le;&le; 33 PP ,, -- PP &le;&le; ll ii &le;&le; 22 PP ,, ii == 33 ,, ...... ,, kk -- 11 }} -- -- -- (( 55 ))

通过分段AR模型的方法进行AR模型建模,一方面缩小了非冗余延时域的大小,另一方面随着数据长度的减小,也在很大程度上降低了运算量,提高了新方法的检测效率;Modeling the AR model through the method of the segmented AR model reduces the size of the non-redundant delay domain on the one hand, and on the other hand, with the reduction of the data length, it also greatly reduces the amount of computation and improves the new method. detection efficiency;

第六、根据以上获得的仅含有一阶海杂波信号的时域回波数据z1(n),并结合上一步确定的非冗余延时域及模型阶数,进一步计算高阶累积量大小(,大量实验表明,最高计算到四阶累积量即可满足检验要求)Sixth, according to the above obtained time-domain echo data z 1 (n) containing only the first-order sea clutter signal, combined with the non-redundant delay domain and model order determined in the previous step, further calculate the size of the high-order cumulant ( , a large number of experiments have shown that the highest calculation to the fourth-order cumulant can meet the test requirements)

其中,三阶累积量计算式为:Among them, the third-order cumulant calculation formula is:

cc ^^ 33 zz 11 (( ll 11 ,, ll 22 )) == 11 NN &Sigma;&Sigma; nno == 00 NN -- 11 -- ll 11 zz 11 (( nno )) zz 11 (( nno ++ ll 11 )) zz 11 (( nno ++ ll 22 )) (( ll 11 ,, ll 22 )) &Element;&Element; II 33 NN -- -- -- (( 66 ))

四阶累积量计算式为:The formula for calculating the fourth-order cumulant is:

cc ^^ 44 zz 11 (( ll 11 ,, ll 22 ,, ll 33 )) == 11 NN &Sigma;&Sigma; nno == 00 NN -- 11 -- ll 11 zz 11 (( nno )) zz 11 (( nno ++ ll 11 )) zz 11 (( nno ++ ll 22 )) zz 11 (( nno ++ ll 33 )) -- cc ^^ 22 zz 11 (( ll 11 )) cc ^^ 22 zz 11 (( ll 22 -- ll 33 )) -- cc ^^ 22 zz 11 (( ll 22 )) cc ^^ 22 zz 11 (( ll 33 -- ll 11 )) -- cc ^^ 22 zz 11 (( ll 33 )) cc ^^ 22 zz 11 (( ll 22 -- ll 11 )) (( ll 11 ,, ll 22 ,, ll 33 )) &Element;&Element; II 44 NN -- -- -- (( 77 ))

其中,表示非冗余延时域,由上一步模型参数结果确定,例如且式7中的二阶累积量计算式为:in, Indicates the non-redundant delay domain, which is determined by the model parameter results in the previous step, for example And the second-order cumulant calculation formula in formula 7 is:

cc ^^ 22 zz 11 (( ll 11 )) == 11 NN &Sigma;&Sigma; nno == 00 NN -- 11 -- ll 11 zz 11 (( nno )) zz 11 (( nno ++ ll 11 )) ,, ll 11 &GreaterEqual;&Greater Equal; 00 -- -- -- (( 88 )) ..

具体实施方式四:Specific implementation mode four:

与具体实施方式三不同的是,本实施方式的高频雷达海杂波幅度统计分布检验方法,步骤五所述计算检验统计量,并将检验统计量与检验门限比较的过程为,Different from the third specific embodiment, in the method for testing the statistical distribution of the amplitude of high-frequency radar sea clutter in this embodiment, the process of calculating the test statistic as described in step 5 and comparing the test statistic with the test threshold is as follows:

步骤五一、根据上一步计算结果,重新定义检验统计量dG为:Step 51. According to the calculation result of the previous step, redefine the test statistic d G as:

基于三阶累积量的检验统计量公式为: d G , 3 = &Delta; N ( c ^ 3 z 1 ) T S ^ c 3 - 1 c ^ 3 z 1 - - - ( 9 ) The formula for the test statistic based on a third-order cumulant is: d G , 3 = &Delta; N ( c ^ 3 z 1 ) T S ^ c 3 - 1 c ^ 3 z 1 - - - ( 9 )

基于四阶累积量的检验统计量公式为: d G , 4 = &Delta; N ( c ^ 4 z 1 ) T S ^ c 4 - 1 c ^ 4 z 1 - - - ( 10 ) The formula for the test statistic based on the fourth-order cumulant is: d G , 4 = &Delta; N ( c ^ 4 z 1 ) T S ^ c 4 - 1 c ^ 4 z 1 - - - ( 10 )

结合确定的置信概率下的判决结论,使高斯变量高阶累积量计算结果为零;其中,为统计意义上的高阶累积量协方差矩阵;表示三阶累积量协方差矩阵估计值;表示四阶累积量协方差矩阵估计值;(·)T表示矩阵转置运算;Combined with the judgment conclusion under the determined confidence probability, the calculation result of the high-order cumulant of the Gaussian variable is zero; where, is the high-order cumulant covariance matrix in the statistical sense; Represents the third-order cumulant covariance matrix estimate; Indicates the estimated value of the covariance matrix of the fourth-order cumulant; ( ) T indicates the matrix transposition operation;

步骤五二、当置信水平为α时,通过查阅χ2分布表获得χ2分布检验门限tg,得到在确定的置信概率下的判决结论的表示如下:Step 52. When the confidence level is α, obtain the χ 2 distribution inspection threshold t g by consulting the χ 2 distribution table, and obtain the judgment conclusion under a certain confidence probability as follows:

dd GG Hh 11 >> << Hh 00 tt gg == &chi;&chi; NN cc 22 (( &alpha;&alpha; )) -- -- -- (( 1111 ))

步骤五三、设H0代表事件为检验结果服从高斯分布,H1代表事件为检验结果不服从高斯分布,在H0条件下,检验统计量收敛于自由度为Nc=3P(3P+1)/2的卡方分布,即:进一步结合确定的置信概率下的判决门限,得到判决结论:Step 53. Let H 0 represent the event that the test result obeys the Gaussian distribution, and H 1 represent the event that the test result does not obey the Gaussian distribution. Under the condition of H 0 , the test statistic converges to the degree of freedom as N c =3P(3P+1 )/2 chi-square distribution, namely: Further combined with the judgment threshold under the determined confidence probability, the judgment conclusion is obtained:

若检验统计量小于检验门限,表明杂波主分量服从高斯分布,则选择基于杂波二阶统计信息的方法构造协方差矩阵,完成后续相应的杂波抑制、目标检测等信号处理过程;If the test statistic is less than the test threshold, it indicates that the main component of the clutter obeys the Gaussian distribution, then choose the method based on the second-order statistical information of the clutter to construct the covariance matrix, and complete the subsequent corresponding signal processing processes such as clutter suppression and target detection;

若检验统计量大于检验门限,表明杂波主分量不服从高斯分布,则应选择更高阶杂波统计信息,继续完成后续的回波数据处理;If the test statistic is greater than the test threshold, indicating that the main component of the clutter does not obey the Gaussian distribution, you should select higher-order clutter statistics and continue to complete the subsequent echo data processing;

至此,完成海杂波主分量幅度统计特性检验过程,并以三阶累积量为例,流程图见图3。So far, the inspection process of the statistical characteristics of the amplitude of the principal component of sea clutter is completed, and the third-order cumulant is taken as an example. The flow chart is shown in Figure 3.

其中,符号χ2表示卡方分布。Among them, the symbol χ2 represents chi - square distribution.

具体实施方式五:Specific implementation mode five:

与具体实施方式一、二或四不同的是,本实施方式的高频雷达海杂波幅度统计分布检验方法,步骤五一所述三阶累积量协方差矩阵估计值和四阶累积量协方差矩阵估计值的计算过程为,The difference from specific implementation modes 1, 2 or 4 is that in the method for testing the statistical distribution of the amplitude of high-frequency radar sea clutter in this embodiment, the estimated value of the third-order cumulant covariance matrix and the fourth-order cumulant covariance matrix described in step 51 The calculation process of the matrix estimate is,

根据实测数据样本,得到基于样本数据的高阶累积量协方差矩阵估计值,即:According to the measured data samples, the estimated value of the high-order cumulant covariance matrix based on the sample data is obtained, namely:

三阶累积量协方差矩阵估计值:Estimated third-order cumulant covariance matrix:

SS ^^ cc 33 &ap;&ap; NN &CenterDot;&Center Dot; PP ^^ cc 33 (( ll ,, jj )) &ap;&ap; NN RR &Sigma;&Sigma; rr == 11 RR &lsqb;&lsqb; cc ^^ 33 zz 11 (( rr )) (( ll 11 ,, ll 22 )) -- cc &OverBar;&OverBar; 33 zz 11 (( ll 11 ,, ll 22 )) &rsqb;&rsqb; &times;&times; &lsqb;&lsqb; cc ^^ 33 zz 11 (( rr )) (( jj 11 ,, jj 22 )) -- cc &OverBar;&OverBar; 33 zz 11 (( jj 11 ,, jj 22 )) &rsqb;&rsqb; -- -- -- (( 1212 ))

和四阶累积量协方差矩阵估计值:and fourth-order cumulant covariance matrix estimates:

SS ^^ cc 44 &ap;&ap; NN &CenterDot;&CenterDot; PP ^^ cc 44 (( ll ,, jj )) &ap;&ap; NN RR &Sigma;&Sigma; rr == 11 RR &lsqb;&lsqb; cc ^^ 44 zz 11 (( rr )) (( ll 11 ,, ll 22 ,, ll 33 )) -- cc &OverBar;&OverBar; 44 zz 11 (( ll 11 ,, ll 22 ,, ll 33 )) &rsqb;&rsqb; &times;&times; &lsqb;&lsqb; cc ^^ 44 zz 11 (( rr )) (( jj 11 ,, jj 22 ,, jj 33 )) -- cc &OverBar;&OverBar; 44 zz 11 (( jj 11 ,, jj 22 ,, jj 33 )) &rsqb;&rsqb; -- -- -- (( 1313 ))

其中, c &OverBar; 3 z 1 ( l 1 , l 2 ) = ( 1 / R ) &Sigma; r = 1 R c ^ 3 z 1 ( r ) ( l 1 , l 2 ) , c &OverBar; 4 z 1 ( l 1 , l 2 , l 3 ) = ( 1 / R ) &Sigma; r = 1 R c ^ 4 z 1 ( r ) ( l 1 , l 2 , l 3 ) ; R表示所用回波数据对应的距离门数。in, c &OverBar; 3 z 1 ( l 1 , l 2 ) = ( 1 / R ) &Sigma; r = 1 R c ^ 3 z 1 ( r ) ( l 1 , l 2 ) , c &OverBar; 4 z 1 ( l 1 , l 2 , l 3 ) = ( 1 / R ) &Sigma; r = 1 R c ^ 4 z 1 ( r ) ( l 1 , l 2 , l 3 ) ; R represents the number of range gates corresponding to the echo data used.

实施例1:Example 1:

步骤一、对天线各阵元采集的回波数据进行距离方位处理,得到待检测回波的三维数据矩阵,完成回波数据预处理过程;Step 1. Perform distance and azimuth processing on the echo data collected by each array element of the antenna to obtain a three-dimensional data matrix of the echo to be detected, and complete the echo data preprocessing process;

步骤二、利用SVD法对待检测海杂波主分量进行提取,并对提取出的海杂波主分量进行分段自适应回归模型建模,得到模型阶数与分段后数据长度;Step 2, using the SVD method to extract the main component of the sea clutter to be detected, and performing a segmented adaptive regression model modeling on the extracted main component of the sea clutter to obtain the model order and the length of the segmented data;

步骤二一、针对步骤一经过预处理后的回波数据z(n)且(1<n<N),构造一个C列、N-C+1行的矩阵H(,H为Hankel矩阵):Step 21. For the preprocessed echo data z(n) and (1<n<N) in step 1, construct a matrix H with C columns and N-C+1 rows (where H is a Hankel matrix):

其中,N表示数据长度;C=3r,r表示预处理后的回波数据z(n)中正弦信号的个数,C的取值选择为N/6;Wherein, N represents the data length; C=3r, r represents the number of sinusoidal signals in the preprocessed echo data z(n), and the value of C is selected as N/6;

步骤二二、对矩阵H进行SVD分解,得:Step 22: Perform SVD decomposition on the matrix H to get:

H=U·S·V(2)H=U·S·V(2)

其中,U,V分别表示正交或酉矩阵,且满足U∈C(N-C+1)×(N-C+1),V∈CC×C,C表示为复数空间;S表示奇异值矩阵。Among them, U and V represent orthogonal or unitary matrices respectively, and satisfy U∈C (N-C+1)×(N-C+1) , V∈C C×C , C represents complex space; S represents singular matrix of values.

第一、对待检测海杂波主分量进行FFT变换得到多普勒谱,并对得到的多普勒谱进行3点平滑处理;First, perform FFT transformation on the main component of the sea clutter to be detected to obtain the Doppler spectrum, and perform 3-point smoothing on the obtained Doppler spectrum;

第二、对平滑处理后的傅氏谱取对数,并进行相邻点差分处理得到差谱,将得到的差谱进行二次平滑处理;Second, take the logarithm of the smoothed Fourier spectrum, and perform adjacent point difference processing to obtain the difference spectrum, and perform secondary smoothing processing on the obtained difference spectrum;

第三、将经过上一步处理后的差谱中的极大值点和极小值点的分布范围确定为海杂波主分量的多普勒分布范围;Thirdly, the distribution range of the maximum point and the minimum point in the difference spectrum processed in the previous step is determined as the Doppler distribution range of the main component of sea clutter;

第四、根据如上步骤的划分结果,判定海杂波主分量对应的奇异值范围,同时将不在这个范围内的其他奇异值归零;并假设置零后的奇异值矩阵为S1,根据奇异值矩阵S1得到重构后矩阵为:Fourth, according to the division results of the above steps, determine the singular value range corresponding to the main component of sea clutter, and return to zero other singular values that are not in this range; and assume that the singular value matrix after setting zero is S 1 , according to the singular value The value matrix S 1 obtained after reconstruction is:

H1=U1·S1·V1(3)H 1 =U 1 ·S 1 ·V 1 (3)

根据式(3),得到仅含有一阶海杂波信号的时域回波数据z1(n):According to formula (3), the time-domain echo data z 1 (n) containing only the first-order sea clutter signal is obtained:

z1(n)=(∑H1(i,j))/M(4)z 1 (n)=(∑H 1(i,j) )/M(4)

式(4)中,i+j-1=n,M为符合i+j-1=n的H1(i,j)的个数;In formula (4), i+j-1=n, M is the number of H1 (i, j) meeting i+j-1=n;

根据以上方法,图2给出了对实测数据某距离门回波信号的一阶海杂波提取结果,可以看出,本文所提方法可以比较准确的确定一阶海杂波的实际分布范围。和以往通过固定杂波多普勒区域确定一阶海杂波分布范围方法相比,该方法具有很强的自适应性,此外,通过对大量实测数据划分结果来看,一阶海杂波即使发生谱峰分裂、平移等复杂现象,该方法依然有效。According to the above method, Fig. 2 shows the first-order sea clutter extraction results of a certain range gate echo signal in the measured data. It can be seen that the method proposed in this paper can accurately determine the actual distribution range of the first-order sea clutter. Compared with the previous method of determining the distribution range of first-order sea clutter by fixing the clutter Doppler region, this method has strong adaptability. This method is still effective for complex phenomena such as spectral peak splitting and translation.

图2-5一阶海杂波多普勒分布范围划分与提取方法验证。Figure 2-5 First-order sea clutter Doppler distribution range division and verification of extraction method.

第五、对仅含有一阶海杂波信号的时域回波数据z1(n)通过分段AR模型的方法进行自回归模型建模,得到P阶AR模型,并确定出P阶AR模型最小的非冗余延时域为:Fifth, the time-domain echo data z 1 (n) containing only the first-order sea clutter signal is modeled with an autoregressive model through the method of the segmented AR model, and the P-order AR model is obtained, and the P-order AR model is determined The minimum non-redundant delay domain is:

II kk (( 33 PP )) == &Delta;&Delta; {{ || ll 11 || ,, || ll 22 || &le;&le; 33 PP ,, -- PP &le;&le; ll ii &le;&le; 22 PP ,, ii == 33 ,, ...... ,, kk -- 11 }} -- -- -- (( 55 )) ;;

第六、根据以上获得的仅含有一阶海杂波信号的时域回波数据z1(n),并结合上一步确定的非冗余延时域及模型阶数,进一步计算高阶累积量大小,大量实验表明,最高计算到四阶累积量即可满足检验要求;Sixth, according to the time-domain echo data z 1 (n) obtained above containing only the first-order sea clutter signal, combined with the non-redundant delay domain and model order determined in the previous step, further calculate the size of the high-order cumulant, A large number of experiments show that the highest calculation to the fourth-order cumulant can meet the inspection requirements;

其中,三阶累积量计算式为:Among them, the third-order cumulant calculation formula is:

cc ^^ 33 zz 11 (( ll 11 ,, ll 22 )) == 11 NN &Sigma;&Sigma; nno == 00 NN -- 11 -- ll 11 zz 11 (( nno )) zz 11 (( nno ++ ll 11 )) zz 11 (( nno ++ ll 22 )) (( ll 11 ,, ll 22 )) &Element;&Element; II 33 NN -- -- -- (( 66 ))

四阶累积量计算式为:The formula for calculating the fourth-order cumulant is:

cc ^^ 44 zz 11 (( ll 11 ,, ll 22 ,, ll 33 )) == 11 NN &Sigma;&Sigma; nno == 00 NN -- 11 -- ll 11 zz 11 (( nno )) zz 11 (( nno ++ ll 11 )) zz 11 (( nno ++ ll 22 )) zz 11 (( nno ++ ll 33 )) -- cc ^^ 22 zz 11 (( ll 11 )) cc ^^ 22 zz 11 (( ll 22 -- ll 33 )) -- cc ^^ 22 zz 11 (( ll 22 )) cc ^^ 22 zz 11 (( ll 33 -- ll 11 )) -- cc ^^ 22 zz 11 (( ll 33 )) cc ^^ 22 zz 11 (( ll 22 -- ll 11 )) (( ll 11 ,, ll 22 ,, ll 33 )) &Element;&Element; II 44 NN -- -- -- (( 77 ))

其中,表示非冗余延时域,由上一步模型参数结果确定;且式7中的二阶累积量计算式为:in, Indicates the non-redundant delay domain, which is determined by the model parameter results in the previous step; and the second-order cumulant calculation formula in Equation 7 is:

cc ^^ 22 zz 11 (( ll 11 )) == 11 NN &Sigma;&Sigma; nno == 00 NN -- 11 -- ll 11 zz 11 (( nno )) zz 11 (( nno ++ ll 11 )) ,, ll 11 &GreaterEqual;&Greater Equal; 00 -- -- -- (( 88 )) ..

步骤三、利用步骤二计算得到的模型阶数和分段数据,计算杂波主分量高阶累积量;其中,所述高阶累积量包括三阶累积量和四阶累积量;Step 3, using the model order and segmented data calculated in step 2 to calculate the high-order cumulant of the clutter principal component; wherein, the high-order cumulant includes a third-order cumulant and a fourth-order cumulant;

步骤四、根据置信度水平设置检验门限;Step 4, setting the inspection threshold according to the confidence level;

步骤五、结合步骤三的杂波主分量高阶累积量计算结果计算检验统计量,并将检验统计量与检验门限比较,得出结论:Step 5. Combining the calculation results of the high-order cumulant of the clutter principal component in step 3 to calculate the test statistic, and compare the test statistic with the test threshold to draw a conclusion:

第一、根据实测数据样本,得到基于样本数据的高阶累积量协方差矩阵估计值,即:三阶累积量协方差矩阵估计值:First, according to the measured data samples, the estimated value of the high-order cumulant covariance matrix based on the sample data is obtained, that is, the estimated value of the third-order cumulant covariance matrix:

SS ^^ cc 33 &ap;&ap; NN &times;&times; PP ^^ cc 33 (( ll ,, jj )) &ap;&ap; NN RR &Sigma;&Sigma; rr == 11 RR &lsqb;&lsqb; cc ^^ 33 zz 11 (( rr )) (( ll 11 ,, ll 22 )) -- cc &OverBar;&OverBar; 33 zz 11 (( ll 11 ,, ll 22 )) &rsqb;&rsqb; &times;&times; &lsqb;&lsqb; cc ^^ 33 zz 11 (( rr )) (( jj 11 ,, jj 22 )) -- cc &OverBar;&OverBar; 33 zz 11 (( jj 11 ,, jj 22 )) &rsqb;&rsqb; -- -- -- (( 1212 ))

和四阶累积量协方差矩阵估计值:and fourth-order cumulant covariance matrix estimates:

SS ^^ cc 44 &ap;&ap; NN &times;&times; PP ^^ cc 44 (( ll ,, jj )) &ap;&ap; NN RR &Sigma;&Sigma; rr == 11 RR &lsqb;&lsqb; cc ^^ 44 zz 11 (( rr )) (( ll 11 ,, ll 22 ,, ll 33 )) -- cc &OverBar;&OverBar; 44 zz 11 (( ll 11 ,, ll 22 ,, ll 33 )) &rsqb;&rsqb; &times;&times; &lsqb;&lsqb; cc ^^ 44 zz 11 (( rr )) (( jj 11 ,, jj 22 ,, jj 33 )) -- cc &OverBar;&OverBar; 44 zz 11 (( jj 11 ,, jj 22 ,, jj 33 )) &rsqb;&rsqb; -- -- -- (( 1313 ))

其中, c &OverBar; 3 z 1 ( l 1 , l 2 ) = ( 1 / R ) &Sigma; r = 1 R c ^ 3 z 1 ( r ) ( l 1 , l 2 ) , c &OverBar; 4 z 1 ( l 1 , l 2 , l 3 ) = ( 1 / R ) &Sigma; r = 1 R c ^ 4 z 1 ( r ) ( l 1 , l 2 , l 3 ) ; R表示所用回波数据对应的距离门数;in, c &OverBar; 3 z 1 ( l 1 , l 2 ) = ( 1 / R ) &Sigma; r = 1 R c ^ 3 z 1 ( r ) ( l 1 , l 2 ) , c &OverBar; 4 z 1 ( l 1 , l 2 , l 3 ) = ( 1 / R ) &Sigma; r = 1 R c ^ 4 z 1 ( r ) ( l 1 , l 2 , l 3 ) ; R represents the number of range gates corresponding to the echo data used;

第二、根据上一步计算结果,重新定义检验统计量dG为:Second, according to the calculation results of the previous step, redefine the test statistic d G as:

基于三阶累积量的检验统计量公式为: d G , 3 = &Delta; N ( c ^ 3 z 1 ) T S ^ c 3 - 1 c ^ 3 z 1 - - - ( 9 ) The formula for the test statistic based on a third-order cumulant is: d G , 3 = &Delta; N ( c ^ 3 z 1 ) T S ^ c 3 - 1 c ^ 3 z 1 - - - ( 9 )

基于四阶累积量的检验统计量公式为: d G , 4 = &Delta; N ( c ^ 4 z 1 ) T S ^ c 4 - 1 c ^ 4 z 1 - - - ( 10 ) The formula for the test statistic based on the fourth-order cumulant is: d G , 4 = &Delta; N ( c ^ 4 z 1 ) T S ^ c 4 - 1 c ^ 4 z 1 - - - ( 10 )

结合确定的置信概率下的判决结论,使高斯变量高阶累积量计算结果为零;其中,为统计意义上的高阶累积量协方差矩阵;(·)T表示矩阵转置运算;当置信水平为α时,χ2分布检验门限tg可通过查阅χ2分布表获得,从而可以得到在确定的置信概率下的判决结论的表示如下:Combined with the judgment conclusion under the determined confidence probability, the calculation result of the high-order cumulant of the Gaussian variable is zero; where, is the high-order cumulant covariance matrix in the statistical sense; ( ) T represents the matrix transposition operation; when the confidence level is α, the χ 2 distribution test threshold t g can be obtained by consulting the χ 2 distribution table, so that in The expression of the judgment conclusion under the certain confidence probability is as follows:

dd GG Hh 11 >> << Hh 00 tt gg == &chi;&chi; NN cc 22 (( &alpha;&alpha; )) -- -- -- (( 1111 ))

第三、步骤五三、设H0代表事件为检验结果服从高斯分布,H1代表事件为检验结果不服从高斯分布,在H0条件下,检验统计量收敛于自由度为Nc=3P(3P+1)/2的卡方分布,即:进一步结合确定的置信概率下的判决门限,得到判决结论:Third, step 53. Let H 0 represent that the event is that the test result obeys Gaussian distribution, and H 1 represent that the event is that the test result does not obey Gaussian distribution. Under the condition of H 0 , the test statistic converges to N c =3P( The chi-square distribution of 3P+1)/2, namely: Further combined with the judgment threshold under the determined confidence probability, the judgment conclusion is obtained:

若检验统计量小于检验门限,表明杂波主分量服从高斯分布,则选择基于杂波二阶统计信息的方法构造协方差矩阵,完成后续相应的杂波抑制、目标检测等信号处理过程;If the test statistic is less than the test threshold, it indicates that the main component of the clutter obeys the Gaussian distribution, then choose the method based on the second-order statistical information of the clutter to construct the covariance matrix, and complete the subsequent corresponding signal processing processes such as clutter suppression and target detection;

若检验统计量大于检验门限,表明杂波主分量不服从高斯分布,则应选择更高阶杂波统计信息,继续完成后续的回波数据处理;If the test statistic is greater than the test threshold, indicating that the main component of the clutter does not obey the Gaussian distribution, you should select higher-order clutter statistics and continue to complete the subsequent echo data processing;

至此,完成海杂波主分量幅度统计特性检验过程,并以三阶累积量为例,流程图见图6。So far, the inspection process of the statistical characteristics of the amplitude of the principal component of sea clutter is completed, and the third-order cumulant is taken as an example. The flow chart is shown in Figure 6.

基于实测数据的检验方法验证:Validation of test methods based on measured data:

为了检验方法的有效性,我们对某实测回波数据进行了检验。首先对回波数据进行距离方位预处理,对处理后的数据,取某一个波束单元上的海杂波信号,其多普勒处理后结果见图7,随后对其中某些距离单元上的海杂波信号利用上述方法进行幅度统计特性检验,检验结果如图8所示,可以看出多个距离门上的检验结果并没有超过检验门限(置信概率为95%时,检验门限经查表得知为70),这说明此批次回波数据一阶海杂波幅度服从高斯分布,而这一结果也与背景技术中关于岸基高频地波雷达海杂波幅度服从高斯分布的理论分析保持一致。In order to test the effectiveness of the method, we tested some actual echo data. First, range and azimuth preprocessing is performed on the echo data, and the sea clutter signal on a certain beam unit is taken for the processed data, and the result after Doppler processing is shown in Fig. 7, and then the sea clutter signal on some of the range units is The clutter signal is inspected by the above-mentioned method for amplitude statistical characteristics, and the inspection results are shown in Figure 8. It can be seen that the inspection results on multiple range gates do not exceed the inspection threshold (when the confidence probability is 95%, the inspection threshold is obtained by looking up the table It is known as 70), which shows that the first-order sea clutter amplitude of this batch of echo data obeys the Gaussian distribution, and this result is also consistent with the theoretical analysis in the background technology about the sea clutter amplitude of the shore-based high-frequency ground wave radar obeying the Gaussian distribution be consistent.

Claims (5)

1. A statistical distribution test method for sea clutter amplitude of a high-frequency radar is characterized by comprising the following steps: the statistical distribution test method of the high-frequency radar sea clutter amplitude is realized by the following steps:
step one, carrying out distance and direction processing on echo data acquired by each array element of an antenna to obtain a three-dimensional data matrix of an echo to be detected, and finishing the echo data preprocessing process;
extracting main components of the sea clutter to be detected by using an SVD (singular value decomposition) method, and performing segmented adaptive regression model modeling on the extracted main components of the sea clutter to obtain a model order and a segmented data length;
thirdly, calculating clutter principal component high-order cumulant by using the model order and the segmented data obtained by calculation in the second step; wherein the high order cumulants include a third order cumulant and a fourth order cumulant;
setting a detection threshold according to the confidence level;
and step five, calculating test statistic by combining the clutter principal component high-order cumulant calculation result in the step three, and comparing the test statistic with a test threshold so as to determine a subsequent processing means of the echo data.
2. The statistical distribution test method for the amplitude of the high-frequency radar sea clutter according to claim 1, wherein: step two, the process of extracting the sea clutter main components to be detected by using the SVD method comprises the following steps:
step two, aiming at the echo data z (N) after the pretreatment in the step one and (1< N < N), constructing a matrix H (H is a Hankel matrix) with C columns and N-C +1 rows:
wherein N represents a data length; c is 3r, r represents the number of sinusoidal signals in the preprocessed echo data z (N), and the value of C is selected to be N/6;
secondly, carrying out SVD decomposition on the matrix H to obtain:
H=U·S·V(2)
wherein, U and V respectively represent orthogonal or unitary matrix and satisfy U epsilon C(N-C+1)×(N-C+1),V∈CC×CC represents a complex space; s represents a singular value matrix.
3. The statistical distribution test method for amplitude of high-frequency radar sea clutter according to claim 1 or 2, wherein:
step two, the process of carrying out the segmentation self-adaptive regression model modeling on the extracted sea clutter principal components to obtain the model order and the segmented data length is as follows:
firstly, performing FFT (fast Fourier transform) on a main component of a sea clutter to be detected to obtain a Doppler spectrum, and performing 3-point smoothing on the obtained Doppler spectrum;
secondly, taking logarithm of the Fourier spectrum after smoothing, carrying out adjacent point difference processing to obtain a difference spectrum, and carrying out secondary smoothing on the obtained difference spectrum;
thirdly, determining the distribution range of the maximum value point and the minimum value point in the difference spectrum after the last step of processing as the Doppler distribution range of the sea clutter main component;
fourthly, judging a singular value range corresponding to the sea clutter principal component according to the division result of the step, and simultaneously returning other singular values which are not in the range to zero; and assuming that the singular value matrix after zero setting is S1From a matrix S of singular values1The reconstructed matrix is obtained as follows:
H1=U1·S1·V1(3)
obtaining time domain echo data z only containing first-order sea clutter signals according to the formula (3)1(n):
z1(n)=(∑H1(i,j))/M(4)
In the formula (4), i + j-1 ═ n, and M is H satisfying i + j-1 ═ n1(i,j)The number of (2);
fifthly, time domain echo data z only containing first-order sea clutter signals1(n) performing autoregressive model modeling by using a segmented AR model method to obtain a P-order AR model, and determining the minimum non-redundant time delay domain of the P-order AR model as follows:
<math> <mrow> <msub> <mi>I</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mn>3</mn> <mi>P</mi> <mo>)</mo> </mrow> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <mo>{</mo> <mo>|</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>|</mo> <mo>,</mo> <mo>|</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>|</mo> <mo>&le;</mo> <mn>3</mn> <mi>P</mi> <mo>,</mo> <mo>-</mo> <mi>P</mi> <mo>&le;</mo> <msub> <mi>l</mi> <mi>i</mi> </msub> <mo>&le;</mo> <mn>2</mn> <mi>P</mi> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>}</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
sixthly, obtaining time domain echo data z only containing first-order sea clutter signals according to the method1(n) and combining the non-redundant time delay domain and the model order determined in the last step, further calculating the high-order cumulant magnitude (a large number of experiments show that the highest cumulant to the fourth-order cumulant can meet the inspection requirement)
Wherein, the third-order cumulant calculation formula is:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>3</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> </mrow> </munderover> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>)</mo> <mo>&Element;</mo> <msubsup> <mi>I</mi> <mn>3</mn> <mi>N</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
the fourth order cumulant calculation formula is:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>4</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> </mrow> </munderover> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>2</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>2</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>2</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>2</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>2</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>2</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>)</mo> <mo>&Element;</mo> <msubsup> <mi>I</mi> <mn>4</mn> <mi>N</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, representing a non-redundant time delay domain, and determining by the result of the model parameter in the last step; and the second order cumulant calculation in equation 7 is:
<math> <mrow> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>2</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> </mrow> </munderover> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>+</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>&GreaterEqual;</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
4. the statistical distribution test method for the amplitude of the high-frequency radar sea clutter according to claim 3, wherein: step five, the process of calculating the test statistic and comparing the test statistic with the test threshold is that,
step five, redefining the test statistic d according to the calculation result of the previous stepGComprises the following steps:
the test statistic formula based on the third-order cumulant is as follows:
the test statistic formula based on the fourth order cumulant is as follows:
combining a decision conclusion under the determined confidence probability to enable a high-order cumulant calculation result of the Gaussian variable to be zero; wherein,is a statistical high-order cumulant covariance matrix;representing the third-order cumulant covariance matrix estimation value;representing a fourth-order cumulant covariance matrix estimate; (.)TRepresenting a matrix transposition operation;
step five and step two, when the confidence level is alpha, by consulting chi2Obtaining χ of distribution table2Distribution check threshold tgThe decision conclusions at a certain confidence probability are expressed as follows:
step five and step three, setting H0The representative event is that the test result follows Gaussian distribution, H1The representative event is that the test result does not obey Gaussian distribution, and is in H0Under the condition, the test statistic converges to the degree of freedom NcChi-square distribution of 3P (3P +1)/2, i.e.:and further combining the determined judgment threshold under the confidence probability to obtain a judgment conclusion:
if the test statistic is smaller than the test threshold, indicating that the clutter principal component obeys Gaussian distribution, selecting a method based on clutter second-order statistical information to construct a covariance matrix, and completing subsequent corresponding signal processing processes such as clutter suppression, target detection and the like;
if the test statistic is larger than the test threshold, indicating that the clutter principal components do not obey Gaussian distribution, selecting higher-order clutter statistical information and continuing to complete subsequent echo data processing;
and finishing the sea clutter principal component amplitude statistical characteristic test process.
5. The statistical distribution test method for the amplitude of the high-frequency radar sea clutter according to claim 1, 2 or 4, wherein: step fifthly, the calculation process of the third-order cumulant covariance matrix estimation value and the fourth-order cumulant covariance matrix estimation value is,
according to the measured data sample, obtaining a high-order cumulant covariance matrix estimation value based on the sample data, namely:
third-order cumulant covariance matrix estimation:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>S</mi> <mo>^</mo> </mover> <mrow> <mi>c</mi> <mn>3</mn> </mrow> </msub> <mo>&ap;</mo> <mi>N</mi> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>c</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&ap;</mo> <mfrac> <mi>N</mi> <mi>R</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>R</mi> </munderover> <mo>&lsqb;</mo> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>3</mn> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>c</mi> <mo>&OverBar;</mo> </mover> <mn>3</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>&times;</mo> <mo>&lsqb;</mo> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>3</mn> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>j</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>j</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>c</mi> <mo>&OverBar;</mo> </mover> <mn>3</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>j</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>j</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
and fourth order cumulant covariance matrix estimate:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>S</mi> <mo>^</mo> </mover> <mrow> <mi>c</mi> <mn>4</mn> </mrow> </msub> <mo>&ap;</mo> <mi>N</mi> <mo>&CenterDot;</mo> <msub> <mover> <mi>P</mi> <mo>^</mo> </mover> <mrow> <mi>c</mi> <mn>4</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>l</mi> <mo>,</mo> <mi>j</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&ap;</mo> <mfrac> <mi>N</mi> <mi>R</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>R</mi> </munderover> <mo>&lsqb;</mo> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>4</mn> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>c</mi> <mo>&OverBar;</mo> </mover> <mn>4</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> <mo>&times;</mo> <mo>&lsqb;</mo> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>4</mn> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>j</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>j</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>j</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>c</mi> <mo>&OverBar;</mo> </mover> <mn>4</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>j</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>j</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>j</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein, <math> <mrow> <msubsup> <mover> <mi>c</mi> <mo>&OverBar;</mo> </mover> <mn>3</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mi>R</mi> <mo>)</mo> </mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>R</mi> </msubsup> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>3</mn> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mover> <mi>c</mi> <mo>&OverBar;</mo> </mover> <mn>4</mn> <msub> <mi>z</mi> <mn>1</mn> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>/</mo> <mi>R</mi> <mo>)</mo> </mrow> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>R</mi> </msubsup> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mn>4</mn> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>l</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math> r represents the number of range gates corresponding to the echo data used.
CN201510531225.4A 2015-08-26 2015-08-26 High-frequency radar sea-clutter amplitude statistical distribution test method Pending CN105158749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510531225.4A CN105158749A (en) 2015-08-26 2015-08-26 High-frequency radar sea-clutter amplitude statistical distribution test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510531225.4A CN105158749A (en) 2015-08-26 2015-08-26 High-frequency radar sea-clutter amplitude statistical distribution test method

Publications (1)

Publication Number Publication Date
CN105158749A true CN105158749A (en) 2015-12-16

Family

ID=54799666

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510531225.4A Pending CN105158749A (en) 2015-08-26 2015-08-26 High-frequency radar sea-clutter amplitude statistical distribution test method

Country Status (1)

Country Link
CN (1) CN105158749A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054153A (en) * 2016-05-23 2016-10-26 武汉大学 Sea clutter zone target detection and adaptive clutter inhibition method based on fractional transform
CN106646400A (en) * 2016-09-22 2017-05-10 金陵科技学院 Method for checking error of sine wave frequency estimation result
CN107886113A (en) * 2017-10-27 2018-04-06 成都中星世通电子科技有限公司 A kind of extraction of electromagnetic spectrum noise and filtering algorithm based on Chi-square Test
CN108387880A (en) * 2018-01-17 2018-08-10 西安大衡天成信息科技有限公司 Detection method of small target under a kind of sea clutter background based on multiple dimensioned oriented Lyapunov indexes
CN109446910A (en) * 2018-09-17 2019-03-08 中国人民解放军空军工程大学 A kind of communication emitter Signals classifying identification method
CN113050056A (en) * 2021-03-17 2021-06-29 森思泰克河北科技有限公司 Radar working environment identification method and device and terminal equipment
CN115372922A (en) * 2022-07-18 2022-11-22 西北工业大学 Sea Surface Target Detection Method Based on Statistical Entropy

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230549A (en) * 2009-03-27 2010-10-14 Mitsubishi Electric Corp Generator for simulated clutter
US20110187584A1 (en) * 2010-01-29 2011-08-04 Man-On Pun Method for Suppressing Clutter in Space-Time Adaptive Processing Systems
CN102176000A (en) * 2011-01-27 2011-09-07 电子科技大学 Sea clutter suppression method for marine radar
CN102184408A (en) * 2011-04-11 2011-09-14 西安电子科技大学 Autoregressive-model-based high range resolution profile radar target recognition method
CN103645467A (en) * 2013-11-11 2014-03-19 北京环境特性研究所 Method and system for sea-clutter restraining and target detection in sea-clutter background
US20140240169A1 (en) * 2013-02-28 2014-08-28 Electronics And Telecommunications Research Institute Radar apparatus using image change detector and method of operating the same
CN104330783A (en) * 2014-11-05 2015-02-04 河海大学 High-order cumulant based bistatic MIMO (Multiple Input Multiple Output) radar parameter estimation method
CN104535981A (en) * 2015-01-21 2015-04-22 西安电子科技大学 Double-quantile estimation method for sea clutter Pareto amplitude distribution parameters
CN104569948A (en) * 2015-01-21 2015-04-29 西安电子科技大学 Sub-band self-adaptive GLRT-LTD detection method under sea clutter background
CN104749564A (en) * 2015-04-10 2015-07-01 西安电子科技大学 Multi-quantile estimation method of sea clutter Weibull amplitude distribution parameters

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230549A (en) * 2009-03-27 2010-10-14 Mitsubishi Electric Corp Generator for simulated clutter
US20110187584A1 (en) * 2010-01-29 2011-08-04 Man-On Pun Method for Suppressing Clutter in Space-Time Adaptive Processing Systems
CN102176000A (en) * 2011-01-27 2011-09-07 电子科技大学 Sea clutter suppression method for marine radar
CN102184408A (en) * 2011-04-11 2011-09-14 西安电子科技大学 Autoregressive-model-based high range resolution profile radar target recognition method
US20140240169A1 (en) * 2013-02-28 2014-08-28 Electronics And Telecommunications Research Institute Radar apparatus using image change detector and method of operating the same
CN103645467A (en) * 2013-11-11 2014-03-19 北京环境特性研究所 Method and system for sea-clutter restraining and target detection in sea-clutter background
CN104330783A (en) * 2014-11-05 2015-02-04 河海大学 High-order cumulant based bistatic MIMO (Multiple Input Multiple Output) radar parameter estimation method
CN104535981A (en) * 2015-01-21 2015-04-22 西安电子科技大学 Double-quantile estimation method for sea clutter Pareto amplitude distribution parameters
CN104569948A (en) * 2015-01-21 2015-04-29 西安电子科技大学 Sub-band self-adaptive GLRT-LTD detection method under sea clutter background
CN104749564A (en) * 2015-04-10 2015-07-01 西安电子科技大学 Multi-quantile estimation method of sea clutter Weibull amplitude distribution parameters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
朱永鹏: "天地波高频雷达一阶海杂波特性分析与抑制", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106054153A (en) * 2016-05-23 2016-10-26 武汉大学 Sea clutter zone target detection and adaptive clutter inhibition method based on fractional transform
CN106646400B (en) * 2016-09-22 2019-03-26 金陵科技学院 A kind of error checking method of sine-wave frequency estimation result
CN106646400A (en) * 2016-09-22 2017-05-10 金陵科技学院 Method for checking error of sine wave frequency estimation result
CN107886113A (en) * 2017-10-27 2018-04-06 成都中星世通电子科技有限公司 A kind of extraction of electromagnetic spectrum noise and filtering algorithm based on Chi-square Test
CN107886113B (en) * 2017-10-27 2021-05-11 成都中星世通电子科技有限公司 Electromagnetic spectrum noise extraction and filtering method based on chi-square test
CN108387880B (en) * 2018-01-17 2020-06-09 西安大衡天成信息科技有限公司 Multi-scale directed Lyapunov index-based method for detecting weak and small targets in sea clutter background
CN108387880A (en) * 2018-01-17 2018-08-10 西安大衡天成信息科技有限公司 Detection method of small target under a kind of sea clutter background based on multiple dimensioned oriented Lyapunov indexes
CN109446910A (en) * 2018-09-17 2019-03-08 中国人民解放军空军工程大学 A kind of communication emitter Signals classifying identification method
CN109446910B (en) * 2018-09-17 2021-12-07 中国人民解放军空军工程大学 Communication radiation source signal classification and identification method
CN113050056A (en) * 2021-03-17 2021-06-29 森思泰克河北科技有限公司 Radar working environment identification method and device and terminal equipment
CN113050056B (en) * 2021-03-17 2022-08-26 森思泰克河北科技有限公司 Radar working environment identification method and device and terminal equipment
CN115372922A (en) * 2022-07-18 2022-11-22 西北工业大学 Sea Surface Target Detection Method Based on Statistical Entropy
CN115372922B (en) * 2022-07-18 2024-10-01 西北工业大学 Sea surface target detection method based on statistical entropy

Similar Documents

Publication Publication Date Title
CN105158749A (en) High-frequency radar sea-clutter amplitude statistical distribution test method
CN102788969B (en) Sea surface micromotion target detection and feature extraction method based on short-time fractional Fourier transform
CN113887398B (en) A GPR signal denoising method based on variational mode decomposition and singular spectrum analysis
CN111985426A (en) Sea clutter hybrid denoising algorithm based on variational modal decomposition
CN105137498A (en) Underground target detection and recognition system and method based on feature fusion
CN102879766A (en) Method and apparatus for detecting and tracking faint target of high frequency ground wave radar
CN110427878B (en) Method and system for identifying rapid radio storm signals
CN106569196A (en) Ground-based radar multi-target detection method based on compressed sensing
CN107329115B (en) Parameter Estimation Method of LFM Signal Based on GCRBF Network
CN109581516B (en) Denoising method and system for data of curvelet domain statistic adaptive threshold value ground penetrating radar
CN106483516A (en) Radar clutter space-time adaptive processing method based on priori
CN101587186A (en) Feature extraction method of radar intra-pulse modulation signal
CN104215939B (en) Knowledge assisted space-time adaptive processing method integrating generalized symmetrical structure information
CN106199539A (en) Ground bounce removal method based on prewhitening filter
CN109085547B (en) Denoising method and related device for surface penetrating radar echo signal
CN115685096B (en) Secondary radar side lobe suppression method based on logistic regression
CN102621535B (en) High-efficiency method for estimating covariance matrix structures
CN111695461A (en) Radar clutter intelligent classification method based on image frequency characteristics
CN115630492A (en) Intelligent inversion method, system and storage medium for tunnel lining disease change characteristics
CN107132518A (en) A kind of range extension target detection method based on rarefaction representation and time-frequency characteristics
CN101644768A (en) Torpedo target recognition method based on cepstrum analysis
CN118276021A (en) A radar target detection method based on WPE-EEMD and improved multifractal spectrum characteristic parameters
CN105738882B (en) To the Whitened degree evaluation method of actual measurement clutter covariance matrix estimation performance
Kim et al. Statistical modeling and denoising of microseismic signal for dropping ambient noise in wavelet domain
CN116679278B (en) Target radar detection method under strong ground clutter interference

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151216

WD01 Invention patent application deemed withdrawn after publication