CN105157725B - A kind of hand and eye calibrating method of two-dimensional laser visual sensor and robot - Google Patents
A kind of hand and eye calibrating method of two-dimensional laser visual sensor and robot Download PDFInfo
- Publication number
- CN105157725B CN105157725B CN201510460526.2A CN201510460526A CN105157725B CN 105157725 B CN105157725 B CN 105157725B CN 201510460526 A CN201510460526 A CN 201510460526A CN 105157725 B CN105157725 B CN 105157725B
- Authority
- CN
- China
- Prior art keywords
- coordinate system
- formula
- robot
- calibration
- coordinate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000000007 visual effect Effects 0.000 title description 4
- 238000013178 mathematical model Methods 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 52
- 230000009466 transformation Effects 0.000 claims description 33
- 238000005259 measurement Methods 0.000 claims description 31
- 239000013598 vector Substances 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000009795 derivation Methods 0.000 abstract 1
- 238000005070 sampling Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 206010034719 Personality change Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Manipulator (AREA)
Abstract
本发明公开了一种二维激光视觉传感器和机器人的手眼标定方法,包括以下步骤:步骤A、建立标定算法的数学模型;步骤B、制定手眼标定的实施操作步骤;其中建立标定算法的数学模型的步骤实现了对手眼标定算法的数学模型进行推导;制定手眼标定的实施操作的步骤解决了二维激光传感器和机器人进行手眼标定过程中的具体实施操作流程。具有该方法具有简便、实用、灵活和精度好等优点。
The invention discloses a hand-eye calibration method for a two-dimensional laser vision sensor and a robot, comprising the following steps: step A, establishing a mathematical model of the calibration algorithm; step B, formulating the implementation steps of hand-eye calibration; wherein establishing the mathematical model of the calibration algorithm The steps realize the derivation of the mathematical model of the hand-eye calibration algorithm; the steps of formulating the implementation operation of the hand-eye calibration solve the specific implementation operation process in the hand-eye calibration process of the two-dimensional laser sensor and the robot. The method has the advantages of simplicity, practicality, flexibility, good precision and the like.
Description
技术领域technical field
本发明涉及一种激光传感器和机器人的手眼标定技术,特别涉及一种二维激光视觉传感器和机器人的手眼标定方法,该手眼标定方法是以工业机器人为机械变姿运动执行装置,以工业机器人自身和二维激光传感器为测量装置,机器人变姿带动激光传感器对若干空间固定点进行测量,分别记录机器人的姿态和该空间点在机器人基坐标系和激光传感器测量坐标系内的坐标值,通过一定算法求解传感器测量坐标系与机器人末端法兰坐标系之间的变换关系,即进行二维激光传感器的手眼标定。The present invention relates to a hand-eye calibration technology for laser sensors and robots, in particular to a two-dimensional laser vision sensor and a hand-eye calibration method for robots. And the two-dimensional laser sensor is the measuring device. The attitude change of the robot drives the laser sensor to measure several fixed points in space, and records the attitude of the robot and the coordinate values of the space point in the robot base coordinate system and the laser sensor measurement coordinate system respectively. The algorithm solves the transformation relationship between the sensor measurement coordinate system and the robot end flange coordinate system, that is, the hand-eye calibration of the two-dimensional laser sensor.
背景技术Background technique
由于视觉系统具有良好的检测性能和定位性能,所以机器人视觉系统开发己成为机器人研究领域的热点与重点。视觉传感方法因获得的信息量丰富,以及高灵敏度、高精度、与工件无接触等优点,而越来越受到人们的重视。Because the vision system has good detection performance and positioning performance, the development of robot vision system has become a hot spot and focus in the field of robot research. Due to the abundant information obtained, high sensitivity, high precision, and no contact with the workpiece, the visual sensing method has attracted more and more attention.
目前,视觉传感采集的图像有基于自然光、人工普通光的图像和以激光为主动光源的结构光图像。在某些特殊的工业环境中,比如在焊接现场存在着强弧光、粉尘、烟雾等不良干扰因素,传统CCD相机的性能受到了较为严重的干扰,在这种环境下传统的CCD相机就不能良好地完成任务,实用性差。相比之下,所述二维激光传感器基于三角测量原理,通过线性激光束激光进行物体截面轮廓测量,采用与激光同等波长的光学滤光片滤掉所有的包括弧光在内的杂散光,传感器内部集成的光学接收装置、CMOS平面检测器只接收并形成激光条纹的图像。这种二维激光传感器的优点是不采用任何移动式部件,坚固耐用,不受电弧光、烟尘、飞溅等干扰。At present, the images collected by visual sensors include images based on natural light, artificial ordinary light, and structured light images with lasers as active light sources. In some special industrial environments, such as strong arc light, dust, smoke and other adverse interference factors in the welding site, the performance of traditional CCD cameras has been seriously disturbed, and traditional CCD cameras cannot perform well in this environment. To complete the task, practicality is poor. In contrast, the two-dimensional laser sensor is based on the principle of triangulation, and uses a linear laser beam to measure the cross-sectional profile of an object. An optical filter with the same wavelength as the laser is used to filter out all stray light including arc light. The sensor The internal integrated optical receiving device and CMOS planar detector only receive and form the image of the laser stripes. The advantage of this two-dimensional laser sensor is that it does not use any moving parts, is durable, and is not disturbed by arc light, smoke, splashes, etc.
激光作为主动光源具有高能量、高亮度、单色性好、抗干扰能力强等优点,因此二维激光视觉传感器有很大的发展前景。CCD相机为面阵视觉传感器,而所述二维激光传感器为线阵视觉传感器。机器视觉作为检测领域和人工智能领域的核心技术之一,无疑会大幅提升机器人作业的柔性与效率。其中,视觉坐标系与机器人末端关节坐标系之间的映射关系必须通过手眼标定来获知,标定的精度在很大程度上决定了机器人的作业精度,为此对视觉系统进行标定,标定好的视觉系统可以获得更高的精度成为了需要解决的技术问题。As an active light source, laser has the advantages of high energy, high brightness, good monochromaticity, and strong anti-interference ability. Therefore, two-dimensional laser vision sensors have great development prospects. The CCD camera is an area array vision sensor, and the two-dimensional laser sensor is a line array vision sensor. As one of the core technologies in the field of inspection and artificial intelligence, machine vision will undoubtedly greatly improve the flexibility and efficiency of robot operations. Among them, the mapping relationship between the visual coordinate system and the robot end joint coordinate system must be known through hand-eye calibration. The calibration accuracy largely determines the robot’s operating accuracy. Therefore, the vision system is calibrated, and the calibrated vision It becomes a technical problem to be solved that the system can obtain higher precision.
发明内容Contents of the invention
本发明的目的在于克服现有技术的缺点与不足,提供一种二维激光视觉传感器和机器人的手眼标定方法,该手眼标定方法包括建立标定算法的数学模型、制定手眼标定的实施操作步骤,具有简便、实用、灵活、精度好等特点。The purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and provide a two-dimensional laser vision sensor and a hand-eye calibration method for a robot. The hand-eye calibration method includes establishing a mathematical model of a calibration algorithm, formulating the implementation steps of hand-eye calibration, and having Simple, practical, flexible, good precision and so on.
本发明的目的通过下述技术方案实现:一种二维激光视觉传感器和机器人的手眼标定方法,该手眼标定方法采用一部内部集成有光学接收装置、CMOS平面检测器的二维激光传感器和机器人(含机器人控制器、示教盒),其中二维激光传感器通过支架固定安装在机器人末端法兰,构成Eye-in-hand手眼系统;记机器人基坐标系为{Base}、机器人第六关节末端法兰坐标系为{End}、二维激光传感器测量坐标系为{M},手眼标定的目的即为求解坐标系{M}相对于坐标系{End}的变换矩阵 The object of the present invention is achieved through the following technical solutions: a two-dimensional laser vision sensor and a hand-eye calibration method for a robot, the hand-eye calibration method adopts a two-dimensional laser sensor and a robot that are integrated with an optical receiving device and a CMOS plane detector (including the robot controller and the teaching box), in which the two-dimensional laser sensor is fixedly installed on the end flange of the robot through a bracket to form an Eye-in-hand hand-eye system; the base coordinate system of the robot is {Base}, the end of the sixth joint of the robot The flange coordinate system is {End}, the two-dimensional laser sensor measurement coordinate system is {M}, the purpose of hand-eye calibration is to solve the transformation matrix of the coordinate system {M} relative to the coordinate system {End}
该方法所采用的二维激光传感器发出的线性激光束投射到被测物表面上时,激光束会形成与被测物表面轮廓相一致的图像,在该激光束上有一系列连续、均布的P个激光采样点,然后传感器返回这P个采样点相对于传感器测量坐标系{M}的ZM轴和XM轴坐标值;When the linear laser beam emitted by the two-dimensional laser sensor used in this method is projected onto the surface of the measured object, the laser beam will form an image consistent with the surface contour of the measured object. P laser sampling points, and then the sensor returns the Z M axis and X M axis coordinate values of these P sampling points relative to the sensor measurement coordinate system {M};
该方法还采用计算机来获取二维激光传感器的测量数据、完成标定数据的录入、执行标定的算法运算;The method also uses a computer to obtain the measurement data of the two-dimensional laser sensor, complete the entry of the calibration data, and execute the calibration algorithm operation;
该方法还需要采用一些其他部件,例如:标定板。This method also requires some other components, such as calibration plates.
所述的二维激光视觉传感器和机器人的手眼标定方法,包括以下步骤:The hand-eye calibration method of described two-dimensional laser vision sensor and robot comprises the following steps:
步骤A、建立标定算法的数学模型;Step A, establishing a mathematical model of the calibration algorithm;
步骤B、制定手眼标定的实施操作步骤;Step B, formulate the implementation steps of hand-eye calibration;
所述步骤A包括以下步骤:Described step A comprises the following steps:
A1)获取空间某一点P1在机器人基坐标系{Base}中的坐标为BP1,BP1=[1x1,1y1,1z1,1]T、获取点P1在二维激光传感器测量坐标系{M}中的坐标为MP1,MP1=[Mx1,My1,Mz1,1]T。记手眼矩阵,即坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵为记坐标系{End}相对于坐标系{Base}的变换关系为 A1) Obtain the coordinates of a certain point P 1 in the robot base coordinate system {Base} as B P 1 , B P 1 = [ 1 x 1 , 1 y 1 , 1 z 1 ,1] T , the acquired point P 1 is at The coordinates in the measurement coordinate system {M} of the two-dimensional laser sensor are M P 1 , M P 1 =[ M x 1 , M y 1 , M z 1 ,1] T . Note the hand-eye matrix, that is, the transformation matrix of the coordinate system {M} relative to the robot end flange coordinate system {End} is Note that the transformation relationship of the coordinate system {End} relative to the coordinate system {Base} is
A2)根据坐标系之间的变换关系,可知将等式两端左乘矩阵的逆,得到:A2) According to the transformation relationship between the coordinate systems, it can be known that Left-multiply both sides of the equation by the matrix Inverse of , we get:
式中,为坐标系{End}相对于坐标系{Base}的变换矩阵的逆、BP1为空间某一点P1在机器人基坐标系{Base}中的坐标、为坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵、MP1为点P1在二维激光传感器测量坐标系{M}中的坐标。In the formula, is the inverse of the transformation matrix of the coordinate system {End} relative to the coordinate system {Base}, B P 1 is the coordinate of a certain point P 1 in the robot base coordinate system {Base}, is the transformation matrix of the coordinate system {M} relative to the robot end flange coordinate system {End}, M P 1 is the coordinate of point P 1 in the two-dimensional laser sensor measurement coordinate system {M}.
记得到:remember get:
式中,T为列矩阵、BP1为空间某一点P1在机器人基坐标系{Base}中的坐标、为坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵、MP1为点P1在二维激光传感器测量坐标系{M}中的坐标。In the formula, T is a column matrix, B P 1 is the coordinates of a certain point P 1 in the robot base coordinate system {Base}, is the transformation matrix of the coordinate system {M} relative to the robot end flange coordinate system {End}, M P 1 is the coordinate of point P 1 in the two-dimensional laser sensor measurement coordinate system {M}.
将式(2)展开得:Expand formula (2) to get:
式中,为列矩阵、为坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵的具体形式、为列矩阵,表示点P1在二维激光传感器测量坐标系{M}中坐标。In the formula, is a column matrix, is the specific form of the transformation matrix of the coordinate system {M} relative to the robot end flange coordinate system {End}, is a column matrix, representing the coordinates of point P 1 in the two-dimensional laser sensor measurement coordinate system {M}.
将式(3)进一步展开得到:Further expand the formula (3) to get:
根据二维激光传感器的原理以及特性可知空间点P1在二维激光传感器测量坐标系{M}中的y轴坐标值My1恒定为0,于是得到式(4)。According to the principle and characteristics of the two-dimensional laser sensor, it can be known that the y-axis coordinate value M y 1 of the spatial point P 1 in the measurement coordinate system {M} of the two-dimensional laser sensor is always 0, so the formula (4) is obtained.
式中变量的含义参见式(3);See formula (3) for the meaning of the variables in the formula;
A3)类似于空间某点P1,同理,对于空间某点P2、P3,有:A3) Similar to a certain point P 1 in space, similarly, for certain points P 2 and P 3 in space, there are:
式(5)与式(6)中符号含义参见式(4);See formula (4) for meanings of symbols in formula (5) and formula (6);
由式(4)、式(5)、式(6)可得:From formula (4), formula (5), formula (6) can get:
式中符号含义参见式(3)——式(6);Refer to formula (3) - formula (6) for the meaning of the symbols in the formula;
可将式(7)写成以下形式:Formula (7) can be written in the following form:
进一步变换得:Further transformed into:
式(8)、式(9)中符号含义参见式(7);Refer to formula (7) for meanings of symbols in formula (8) and formula (9);
至此,求解出了r11、r13、Δx;So far, r 11 , r 13 , Δx have been solved;
同理,由式(4)、式(5)、式(6)可得:Similarly, from formula (4), formula (5), formula (6) can get:
式中,为的逆。In the formula, for inverse of.
至此,求解出了r11、r13、Δx和r21、r23、Δy及r31、r33、Δz;So far, r 11 , r 13 , Δx and r 21 , r 23 , Δy and r 31 , r 33 , Δz have been solved;
A4)若要完全确定手眼关系矩阵还需要求解r12、r22、r32,根据姿态矩阵的性质可知:A4) To completely determine the hand-eye relationship matrix Also need to solve r 12 , r 22 , r 32 , according to the nature of the attitude matrix:
且向量均为单位向量且两两正交。and the vector are unit vectors and are orthogonal to each other.
式中,符号均为坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵表示量。In the formula, the symbols are the transformation matrix representations of the coordinate system {M} relative to the robot end flange coordinate system {End}.
所以有:F:
由式(13)可解出了r12、r22、r32,将求解出的向量进行单位化处理,得到归一化的向量,至此求解出手眼关系矩阵 r 12 , r 22 , r 32 can be solved from equation (13), and the obtained vector Perform unitization processing to obtain the normalized Vector, so far solve the hand-eye relationship matrix
A5)由坐标位姿变换关系得:A5) From the coordinate pose transformation relation:
式中,1P'为根据标定结果推导得出的空间某点P在坐标系{Base}内的理论坐标值、MP为该点在坐标系{M}中的坐标,将BP'与BP进行对比便能检验手眼标定的精度,仅利用空间点P1、P2、P3进行手眼标定的结果可能会存在着较大的误差,为了提高标定算法的准确性与容错率,选取N(N>3)个空间点,从中选取3个点,共有种组合,选取其中误差最小的一个组合作为标定结果。In the formula, 1 P' is based on the calibration result The deduced theoretical coordinate value of a point P in the coordinate system {Base}, MP is the coordinate of the point in the coordinate system {M}, comparing BP ' with BP can test the hand-eye calibration Accuracy, the results of hand-eye calibration using only spatial points P 1 , P 2 , and P 3 may have large errors. In order to improve the accuracy and error tolerance of the calibration algorithm, N (N>3) spatial points are selected. Choose 3 points from it, a total of The combination with the smallest error is selected as the calibration result.
所述步骤A2)中,根据坐标系之间的变换关系,得到将等式两端左乘矩阵的逆,得到:In the step A2), according to the transformation relationship between the coordinate systems, it is obtained Left-multiply both sides of the equation by the matrix Inverse of , we get:
记得到:remember get:
将式(2)展开得:Expand formula (2) to get:
将式(3)进一步展开得到:Further expand the formula (3) to get:
根据二维激光传感器的原理以及特性可知空间点P1在二维激光传感器测量坐标系{M}中的y轴坐标值My1恒定为0,于是得到式(4)。According to the principle and characteristics of the two-dimensional laser sensor, it can be known that the y-axis coordinate value M y 1 of the spatial point P 1 in the measurement coordinate system {M} of the two-dimensional laser sensor is always 0, so the formula (4) is obtained.
式中,为列矩阵、为坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵的具体形式、为列矩阵,表示点P1在二维激光传感器测量坐标系{M}中坐标。In the formula, is a column matrix, is the specific form of the transformation matrix of the coordinate system {M} relative to the robot end flange coordinate system {End}, is a column matrix, representing the coordinates of point P 1 in the two-dimensional laser sensor measurement coordinate system {M}.
所述步骤A3)中,类似于空间某点P1,取另外的空间某点P2、P3,同理有:In the step A3), similar to a certain point P 1 in space, other certain points P 2 and P 3 in space are taken, similarly:
由式(4)、式(5)和式(6)可得:From formula (4), formula (5) and formula (6) can get:
将式(7)写成以下形式:Write formula (7) in the following form:
进一步变换得:Further transformed into:
式(8)、式(9)中符号含义参见式(7);Refer to formula (7) for meanings of symbols in formula (8) and formula (9);
至此,解出了r11、r13、Δx;So far, r 11 , r 13 , Δx have been solved;
同理,由式(4)、式(5)、式(6)可得:Similarly, from formula (4), formula (5), formula (6) can get:
式中,为的逆;In the formula, for inverse of
至此,解出了r11、r13、Δx、r21、r23、Δy、r31、r33和Δz。So far, r 11 , r 13 , Δx, r 21 , r 23 , Δy, r 31 , r 33 and Δz have been solved.
所述步骤B包括以下步骤:Described step B comprises the following steps:
B1)将标定板摆在空间某一合适的位置,操作机器人使得安装在其末端法兰上的二维激光传感器发射出的激光线投射在标定板上某点上,记为点P,根据标定板和激光光传感器之间的几何关系读取此时P点在激光传感器测量坐标系{M}内的坐标值MP;保持机器人不动读取并记下此时机器人末端法兰工具坐标系{End}相对于机器人基坐标系{Base}的位姿 B1) Place the calibration board at a suitable position in the space, operate the robot so that the laser line emitted by the two-dimensional laser sensor installed on its end flange is projected on a certain point on the calibration board, which is marked as point P, according to the calibration The geometric relationship between the plate and the laser light sensor reads the coordinate value M P of point P in the laser sensor measurement coordinate system {M} at this time; keep the robot still and read and record the tool coordinate system at the end of the robot at this time The pose of {End} relative to the robot base coordinate system {Base}
B2)操作机器人使得另外一个已经建立好的工具坐标系的TCP到达所述P点,读取到P点在机器人基坐标系{Base}内的坐标BP。将得到的MP、 BP作为一组标定数据;B2) Operate the robot so that the TCP of another established tool coordinate system reaches the point P, and read the coordinate B P of point P in the robot base coordinate system {Base}. Will get MP , B P as a set of calibration data;
B3)重复步骤B1)、B2),得到N组不同的标定数据;B3) Steps B1), B2) are repeated to obtain N groups of different calibration data;
B4)将步骤B3)中得到的N组标定数据输入标定程序,通过计算机计算得出手眼标定结果 B4) Input the N sets of calibration data obtained in step B3) into the calibration program, and obtain the hand-eye calibration result through computer calculation
本发明相对于现有技术具有如下的优点及效果:Compared with the prior art, the present invention has the following advantages and effects:
1、本发明的实用性强,使用灵活、简便,手眼标定精度高。1. The present invention has strong practicability, flexible and convenient use, and high accuracy of hand-eye calibration.
2、本发明的适用于二维激光视觉传感器与机器人构成的手眼系统,很好地利用激光视觉传感器代替传统CCD视觉,满足了机器人在特殊场合下的应用需求。2. The hand-eye system of the present invention, which is suitable for the two-dimensional laser vision sensor and the robot, makes good use of the laser vision sensor to replace the traditional CCD vision, and meets the application requirements of the robot in special occasions.
附图说明Description of drawings
图1a是本发明中获取空间标定点在传感器测量坐标系内坐标和机器人当前姿态示意图。Fig. 1a is a schematic diagram of obtaining the coordinates of the spatial calibration point in the sensor measurement coordinate system and the current posture of the robot in the present invention.
图1b是激光传感器的局部放大图。Figure 1b is a partial enlarged view of the laser sensor.
图2是本发明中获取空间标定点在机器人基坐标系内坐标示意图。Fig. 2 is a schematic diagram of coordinates of acquired spatial calibration points in the robot base coordinate system in the present invention.
具体实施方式Detailed ways
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.
实施例Example
通过安装支架在机器人(含机器人控制器、示教盒)末端法兰安装上一部二维激光传感器,该传感器和计算机进行通信,计算机接收传感器返回的测量数据。A two-dimensional laser sensor is installed on the end flange of the robot (including robot controller and teaching box) through the mounting bracket. The sensor communicates with the computer, and the computer receives the measurement data returned by the sensor.
二维激光传感器发出的激光束投射到被测物表面上时,激光束会形成与被测物表面轮廓相一致的图像,在该激光束上有一系列连续、均布的P个激光采样点,然后传感器返回该束激光中的P个采样点相对于传感器测量坐标系中的Z轴和X轴坐标值。When the laser beam emitted by the two-dimensional laser sensor is projected onto the surface of the measured object, the laser beam will form an image consistent with the surface contour of the measured object. There are a series of continuous and uniformly distributed P laser sampling points on the laser beam. Then the sensor returns the Z-axis and X-axis coordinate values of the P sampling points in the laser beam relative to the sensor measurement coordinate system.
结合标定板,利用激光传感器和机器人来获取手眼标定所需数据。该方法还采用计算机来获取二维激光传感器的测量数据、完成标定数据的录入、执行标定的算法运算,利用这些数据计算求解出手眼关系。Combined with the calibration board, laser sensors and robots are used to obtain the data required for hand-eye calibration. The method also uses a computer to obtain the measurement data of the two-dimensional laser sensor, completes the entry of the calibration data, executes the calibration algorithm, and uses these data to calculate and solve the hand-eye relationship.
本实施例中还采用了标定板这个附件。In this embodiment, the attachment of a calibration plate is also used.
如图1a和图1b所示,所述步骤A(建立标定算法的数学模型)包括以下步骤:As shown in Fig. 1a and Fig. 1b, described step A (establishing the mathematical model of calibration algorithm) comprises the following steps:
A1)获取空间某一点P1在机器人基坐标系{Base}1中的坐标为BP1,BP1=[1x1,1y1,1z1,1]T、获取点P1在二维激光传感器的测量坐标系{M}2中的坐标为MP1,MP1=[Mx1,My1,Mz1,1]T。记手眼矩阵,即坐标系{M}相对于机器人末端法兰坐标系{End}3的变换矩阵为记坐标系{End}相对于坐标系{Base}的变换关系为 A1) Obtain the coordinates of a point P 1 in the robot base coordinate system {Base}1 as B P 1 , B P 1 = [ 1 x 1 , 1 y 1 , 1 z 1 ,1] T , and obtain point P 1 The coordinates in the measurement coordinate system {M}2 of the two-dimensional laser sensor are M P 1 , M P 1 =[ M x 1 , M y 1 , M z 1 ,1] T . Note the hand-eye matrix, that is, the transformation matrix of the coordinate system {M} relative to the robot end flange coordinate system {End}3 is Note that the transformation relationship of the coordinate system {End} relative to the coordinate system {Base} is
式中,为坐标系{End}相对于坐标系{Base}的变换矩阵的逆、BP1为空间某一点P1在机器人基坐标系{Base}中的坐标、为坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵、MP1为点P1在二维激光传感器测量坐标系{M}中的坐标。In the formula, is the inverse of the transformation matrix of the coordinate system {End} relative to the coordinate system {Base}, B P 1 is the coordinate of a certain point P 1 in the robot base coordinate system {Base}, is the transformation matrix of the coordinate system {M} relative to the robot end flange coordinate system {End}, M P 1 is the coordinate of point P 1 in the two-dimensional laser sensor measurement coordinate system {M}.
其中:in:
中的十二个变量均是未知的;也是一个4x4矩阵。 All twelve variables in are unknown; Also a 4x4 matrix.
其值是已知的,可以直接从机器人示教盒4读取获知。Its value is known and can be read directly from the robot teaching box 4 .
A2)根据坐标系之间的变换关系,可知将等式两端左乘矩阵的逆,得到:A2) According to the transformation relationship between the coordinate systems, it can be known that Left-multiply both sides of the equation by the matrix Inverse of , we get:
式中,为坐标系{End}相对于坐标系{Base}的变换矩阵的逆、BP1为空间某一点P1在机器人基坐标系{Base}中的坐标、为坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵、MP1为点P1在二维激光传感器测量坐标系{M}中的坐标。In the formula, is the inverse of the transformation matrix of the coordinate system {End} relative to the coordinate system {Base}, B P 1 is the coordinate of a certain point P 1 in the robot base coordinate system {Base}, is the transformation matrix of the coordinate system {M} relative to the robot end flange coordinate system {End}, M P 1 is the coordinate of point P 1 in the two-dimensional laser sensor measurement coordinate system {M}.
记得到:remember get:
式中,T为列矩阵、BP1为空间某一点P1在机器人基坐标系{Base}中的坐标、为坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵、MP1为点P1在二维激光传感器测量坐标系{M}中的坐标。In the formula, T is a column matrix, B P 1 is the coordinates of a certain point P 1 in the robot base coordinate system {Base}, is the transformation matrix of the coordinate system {M} relative to the robot end flange coordinate system {End}, M P 1 is the coordinate of point P 1 in the two-dimensional laser sensor measurement coordinate system {M}.
将式(2)展开得:Expand formula (2) to get:
式中,为列矩阵、为坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵的具体形式、为列矩阵,表示点P1在二维激光传感器测量坐标系{M}中坐标。In the formula, is a column matrix, is the specific form of the transformation matrix of the coordinate system {M} relative to the robot end flange coordinate system {End}, is a column matrix, representing the coordinates of point P 1 in the two-dimensional laser sensor measurement coordinate system {M}.
将式(3)进一步展开得到:Further expand the formula (3) to get:
根据二维激光传感器的原理以及特性可知空间点P1在二维激光传感器测量坐标系{M}中的y轴坐标值My1恒定为0,于是得到式(4)。According to the principle and characteristics of the two-dimensional laser sensor, it can be known that the y-axis coordinate value M y 1 of the spatial point P 1 in the measurement coordinate system {M} of the two-dimensional laser sensor is always 0, so the formula (4) is obtained.
式中变量的含义参见式(3);See formula (3) for the meaning of the variables in the formula;
A3)类似于空间某点P1,同理,对于空间某点P2、P3,有:A3) Similar to a certain point P 1 in space, similarly, for certain points P 2 and P 3 in space, there are:
式(5)、(6)中符号含义参见式(4);See formula (4) for meanings of symbols in formulas (5) and (6);
由式(4)、式(5)、式(6)可得:From formula (4), formula (5), formula (6) can get:
式中符号含义参见式(3)——式(6);Refer to formula (3) - formula (6) for the meaning of the symbols in the formula;
可将式(7)写成以下形式:Formula (7) can be written in the following form:
进一步将等式两端同乘以矩阵的逆,得:Further multiply both sides of the equation by the inverse of the matrix to get:
式(8)、式(9)中符号含义参见式(7);Refer to formula (7) for meanings of symbols in formula (8) and formula (9);
至此,解出了r11、r13、Δx;So far, r 11 , r 13 , Δx have been solved;
同理,由式(4)、式(5)、式(6)可得:Similarly, from formula (4), formula (5), formula (6) can get:
式中,为的逆。In the formula, for inverse of.
至此,解出了r11、r13、Δx和r21、r23、Δy及r31、r33、Δz;So far, r 11 , r 13 , Δx and r 21 , r 23 , Δy and r 31 , r 33 , Δz have been solved;
A4)若要完全确定手眼关系矩阵还需要求解r12、r22、r32,根据姿态矩阵的性质可知:A4) To completely determine the hand-eye relationship matrix It is also necessary to solve r 12 , r 22 , and r 32 , according to the properties of the attitude matrix:
向量均为单位向量且两两正交。vector are unit vectors and are orthogonal to each other.
式中,符号均为坐标系{M}相对于机器人末端法兰坐标系{End}的变换矩阵表示量。In the formula, the symbols are the transformation matrix representations of the coordinate system {M} relative to the robot end flange coordinate system {End}.
所以有:F:
由式(13)可解出了r12、r22、r32,将求解出的向量按照和进行单位化处理,得到单位化的向量,至此求解出手眼关系矩阵 r 12 , r 22 , r 32 can be solved from equation (13), and the obtained vector according to and Perform unitization processing to obtain unitized Vector, so far solve the hand-eye relationship matrix
A5)由坐标位姿变换关系得:A5) From the coordinate pose transformation relation:
式中,BP'为根据标定结果推导得出的空间某点P在坐标系{Base}内的理论坐标值、MP为该点在坐标系{M}中的坐标,将BP'与BP进行对比便能检验手眼标定的精度,仅利用空间点P1、P2、P3进行手眼标定的结果可能会存在着较大的误差,为了提高标定算法的准确性与容错率,选取5个空间点,从中选取3个点,共有种组合,选取其中误差最小的一个组合作为标定结果。In the formula, BP ' is the theoretical coordinate value of a certain point P in the coordinate system {Base} derived from the calibration results, MP is the coordinate of the point in the coordinate system {M}, and BP ' and The accuracy of hand-eye calibration can be tested by comparing with B P . The result of hand-eye calibration using only spatial points P 1 , P 2 , and P 3 may have large errors. In order to improve the accuracy and error tolerance of the calibration algorithm, select 5 spatial points, select 3 points from them, a total of The combination with the smallest error is selected as the calibration result.
所述步骤B(制定手眼标定的实施操作步骤)包括以下步骤:Described step B (making the implementation operation step of hand-eye calibration) comprises the following steps:
B1)如图1所示,将标定板5摆在空间某一合适的位置,通过机器人示教盒4操作机器人使得安装在其末端法兰3上的二维激光传感器2发射出的激光线投射在标定板5上的某一P点处,标定板5处在传感器的量程范围内,从图1中的几何关系可以看出,找出传感器2返回的当前采样数据中ZM轴最小值Zmin即为P点在传感器测量坐标系{M}2内的Z轴坐标,与Zmin相对应的XM轴坐标值便为P点在坐标系{M}内的XM轴坐标,这样便读取了P点在激光传感器测量坐标系{M}2内的坐标值MP;保持机器人不动,从机器人示教盒4读取并记下表示此时机器人末端法兰工具坐标系{End}3相对于机器人基坐标系{Base}1位姿的欧拉角α、β、γ和偏移量Δfx、Δfy、Δfz。可由下式获得:B1) As shown in Figure 1, the calibration plate 5 is placed at a suitable position in the space, and the robot is operated through the robot teaching box 4 so that the laser line emitted by the two-dimensional laser sensor 2 installed on its end flange 3 is projected At a point P on the calibration plate 5, the calibration plate 5 is within the range of the sensor. As can be seen from the geometric relationship in Figure 1, find out the minimum value Z of the Z M axis in the current sampling data returned by the sensor 2. min is the Z-axis coordinate of point P in the sensor measurement coordinate system {M}2, and the X -M axis coordinate value corresponding to Z min is the X -M axis coordinate of P point in the coordinate system {M}, so that Read the coordinate value M P of point P in the laser sensor measurement coordinate system {M}2; keep the robot still, read it from the robot teaching box 4 and write it down, indicating that at this time the robot end flange tool coordinate system {End }3 relative to the robot base coordinate system {Base}1 pose Euler angles α, β, γ and offsets Δf x , Δf y , Δf z . Can be obtained by the following formula:
式中,为工具坐标系{End}相对于机器人基坐标系{Base}位姿矩阵;In the formula, is the pose matrix of the tool coordinate system {End} relative to the robot base coordinate system {Base};
其中:sα、cα分别表示sinα、cosα,其余符号以此类推;Among them: sα and cα represent sinα and cosα respectively, and the rest of the symbols can be deduced by analogy;
B2)如图2所示,操作机器人使得另外一个已经建立好的工具坐标系{Tool}6的TCP到达所述P点,读取到P点在机器人基坐标系{Base}1内的坐标BP。将得到的MP、 BP作为一组标定数据;B2) As shown in Figure 2, operate the robot to make another established TCP of the tool coordinate system {Tool}6 reach the point P, and read the coordinate B of point P in the robot base coordinate system {Base}1 p. Will get MP , B P as a set of calibration data;
B3)重复步骤B1)、B2),得到N组不同的标定数据;B3) Steps B1), B2) are repeated to obtain N groups of different calibration data;
B4)将步骤B3)中得到的N组标定数据输入标定程序,通过计算机7按照标定算法数学模型运算得出手眼标定结果 B4) Input the N sets of calibration data obtained in step B3) into the calibration program, and obtain the hand-eye calibration result through computer 7 according to the mathematical model of the calibration algorithm
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510460526.2A CN105157725B (en) | 2015-07-29 | 2015-07-29 | A kind of hand and eye calibrating method of two-dimensional laser visual sensor and robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510460526.2A CN105157725B (en) | 2015-07-29 | 2015-07-29 | A kind of hand and eye calibrating method of two-dimensional laser visual sensor and robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105157725A CN105157725A (en) | 2015-12-16 |
CN105157725B true CN105157725B (en) | 2018-06-29 |
Family
ID=54798664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510460526.2A Expired - Fee Related CN105157725B (en) | 2015-07-29 | 2015-07-29 | A kind of hand and eye calibrating method of two-dimensional laser visual sensor and robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105157725B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10076842B2 (en) * | 2016-09-28 | 2018-09-18 | Cognex Corporation | Simultaneous kinematic and hand-eye calibration |
CN106426172B (en) * | 2016-10-27 | 2019-04-16 | 深圳元启智能技术有限公司 | A kind of scaling method and system of industrial robot tool coordinates system |
CN106335061A (en) * | 2016-11-11 | 2017-01-18 | 福州大学 | Hand-eye relation calibration method based on four-freedom-degree robot |
CN106643805B (en) * | 2016-12-30 | 2020-07-14 | 上海交通大学 | Position calibration method of laser positioning sensor in AGV car |
CN106839979B (en) * | 2016-12-30 | 2019-08-23 | 上海交通大学 | The hand and eye calibrating method of line structured laser sensor |
CN107256567B (en) * | 2017-01-22 | 2020-08-07 | 梅卡曼德(北京)机器人科技有限公司 | Automatic calibration device and calibration method for hand-eye camera of industrial robot |
CN107253190B (en) * | 2017-01-23 | 2020-09-01 | 梅卡曼德(北京)机器人科技有限公司 | High-precision robot hand-eye camera automatic calibration device and use method thereof |
TWI712473B (en) * | 2017-05-22 | 2020-12-11 | 達明機器人股份有限公司 | Method for calibrating coordinate of robot arm |
CN107152911A (en) * | 2017-06-01 | 2017-09-12 | 无锡中车时代智能装备有限公司 | Based on the PSD dot laser sensors fed back and the scaling method of robot relative position |
CN107560563B (en) * | 2017-07-28 | 2019-10-18 | 华南理工大学 | Calibration and error compensation method of a line laser three-dimensional measuring device |
CN109528274A (en) * | 2017-09-22 | 2019-03-29 | 清华大学深圳研究生院 | A kind of method for registering and device |
CN108406777B (en) * | 2018-05-10 | 2023-06-20 | 华南理工大学 | A robot-based plug-in mechanism for hand-eye coordination of electronic components |
CN108972544A (en) * | 2018-06-21 | 2018-12-11 | 华南理工大学 | A kind of vision laser sensor is fixed on the hand and eye calibrating method of robot |
CN109048893A (en) * | 2018-07-27 | 2018-12-21 | 浙江工业大学 | A kind of mechanical arm localization method based on monocular RGB camera |
CN108972559B (en) * | 2018-08-20 | 2021-08-03 | 上海嘉奥信息科技发展有限公司 | Hand-eye calibration method based on infrared stereoscopic vision positioning system and mechanical arm |
CN111070199A (en) * | 2018-10-18 | 2020-04-28 | 杭州海康威视数字技术股份有限公司 | Hand-eye calibration assessment method and robot |
CN109470138A (en) * | 2018-10-22 | 2019-03-15 | 江苏集萃微纳自动化系统与装备技术研究所有限公司 | The On-line Measuring Method of part |
CN109615662A (en) * | 2018-12-04 | 2019-04-12 | 中冶赛迪工程技术股份有限公司 | A coordinate system calibration method, system, computer-readable storage medium and device |
CN109623206B (en) * | 2018-12-19 | 2020-05-19 | 清华大学 | A method for optimizing the welding torch pose for offline planning in robotic pipe welding |
CN110000790B (en) * | 2019-04-19 | 2021-11-16 | 深圳市科瑞软件技术有限公司 | Calibration method of eye-to-hand system of SCARA robot |
CN110136208B (en) * | 2019-05-20 | 2020-03-17 | 北京无远弗届科技有限公司 | Joint automatic calibration method and device for robot vision servo system |
CN110355464A (en) * | 2019-07-05 | 2019-10-22 | 上海交通大学 | Visual Matching Method, system and the medium of laser processing |
US20220250248A1 (en) * | 2019-07-19 | 2022-08-11 | Siemens Ltd., China | Robot hand-eye calibration method and apparatus, computing device, medium and product |
CN110345869A (en) * | 2019-08-08 | 2019-10-18 | 江苏汇博机器人技术股份有限公司 | A kind of Robotic Hand-Eye Calibration accuracy evaluation system for Technique Authentication real training |
CN110480642A (en) * | 2019-10-16 | 2019-11-22 | 遨博(江苏)机器人有限公司 | Industrial robot and its method for utilizing vision calibration user coordinate system |
CN110974421B (en) * | 2019-12-13 | 2021-05-11 | 杭州三坛医疗科技有限公司 | Calibration method and system for TCP of surgical robot and storage medium |
CN111956329B (en) * | 2020-08-12 | 2022-04-26 | 中国科学院深圳先进技术研究院 | A dual-arm robot calibration method, system, terminal and storage medium |
CN113759384B (en) * | 2020-09-22 | 2024-04-05 | 北京京东乾石科技有限公司 | Method, device, equipment and medium for determining pose conversion relation of sensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102927908A (en) * | 2012-11-06 | 2013-02-13 | 中国科学院自动化研究所 | Robot eye-on-hand system structured light plane parameter calibration device and method |
CN103558850A (en) * | 2013-07-26 | 2014-02-05 | 无锡信捷电气股份有限公司 | Laser vision guided welding robot full-automatic movement self-calibration method |
CN103991006A (en) * | 2014-04-01 | 2014-08-20 | 浙江大学 | Calibration method and device for robot hole forming platform vision measurement system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080088165A (en) * | 2007-03-29 | 2008-10-02 | 삼성중공업 주식회사 | Robot calibration method |
CN101630409B (en) * | 2009-08-17 | 2011-07-27 | 北京航空航天大学 | Hand-eye vision calibration method for robot hole boring system |
KR20130029883A (en) * | 2011-09-16 | 2013-03-26 | 대우조선해양 주식회사 | Laser vision system calibration method using working joint |
CN102794763B (en) * | 2012-08-31 | 2014-09-24 | 江南大学 | Calibration method of welding robot system based on line structured light vision sensor guidance |
EP2903786A2 (en) * | 2012-10-05 | 2015-08-12 | Beckman Coulter, Inc. | System and method for camera-based auto-alignment |
-
2015
- 2015-07-29 CN CN201510460526.2A patent/CN105157725B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102927908A (en) * | 2012-11-06 | 2013-02-13 | 中国科学院自动化研究所 | Robot eye-on-hand system structured light plane parameter calibration device and method |
CN103558850A (en) * | 2013-07-26 | 2014-02-05 | 无锡信捷电气股份有限公司 | Laser vision guided welding robot full-automatic movement self-calibration method |
CN103991006A (en) * | 2014-04-01 | 2014-08-20 | 浙江大学 | Calibration method and device for robot hole forming platform vision measurement system |
Non-Patent Citations (1)
Title |
---|
机器人定点变位姿手-眼标定方法;王胜华 等;《清华大学学报(自然科学版)》;20070228;第47卷(第2期);第165-168页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105157725A (en) | 2015-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105157725B (en) | A kind of hand and eye calibrating method of two-dimensional laser visual sensor and robot | |
CN105303560B (en) | Robotic laser scanning type weld seam tracking system calibrating method | |
CN107042528B (en) | Kinematics calibration system and method for industrial robot | |
CN106052555B (en) | A kind of industrial robot pedestal coordinate measuring method | |
CN102927908B (en) | Robot eye-on-hand system structured light plane parameter calibration device and method | |
CN102607457B (en) | Measuring device and measuring method for large three-dimensional morphology based on inertial navigation technology | |
CN112361958B (en) | Line laser and mechanical arm calibration method | |
CN110125455B (en) | Method for optimizing drill bit pose in robot drilling | |
CN103438798B (en) | Initiative binocular vision system overall calibration | |
CN108562233B (en) | Utilize the axis part diameter size On-line Measuring Method of conic section invariant | |
CN104819707B (en) | A kind of polyhedron active light target | |
TWI420066B (en) | Object measuring method and system | |
CN105318838B (en) | Single-plane calibration method for relation between laser range finder and tail end of mechanical arm | |
CN107428009A (en) | Method, the industrial robot system using this method and control system for industrial robot debugging | |
CN104802173A (en) | Data generation device for vision sensor and detection simulation system | |
CN104807476A (en) | Pose estimation-based quick probe calibration device and method | |
CN107246866A (en) | A kind of high-precision six-freedom degree measuring system and method | |
CN103817699A (en) | Quick hand-eye coordination method for industrial robot | |
WO2020133878A1 (en) | Method for accurately calibrating robot end and vision system | |
CN107121967A (en) | A kind of laser is in machine centering and inter process measurement apparatus | |
CN101329163A (en) | 3D surface modeling system based on binocular | |
CN103697811A (en) | Method of obtaining three-dimensional coordinates of profile of object through combining camera and structural light source | |
Wan et al. | Flange-based hand-eye calibration using a 3d camera with high resolution, accuracy, and frame rate | |
Chen et al. | Flatness measurement of platform screen system welding assembly using stereo vision and grid pattern projector | |
CN113916128A (en) | A method of improving precision based on light pen type visual measurement system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180629 |