CN105156290A - Novel three-annulus mixed electric thruster - Google Patents
Novel three-annulus mixed electric thruster Download PDFInfo
- Publication number
- CN105156290A CN105156290A CN201510408939.6A CN201510408939A CN105156290A CN 105156290 A CN105156290 A CN 105156290A CN 201510408939 A CN201510408939 A CN 201510408939A CN 105156290 A CN105156290 A CN 105156290A
- Authority
- CN
- China
- Prior art keywords
- ring
- thruster
- deionization unit
- neutralizer
- power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Plasma Technology (AREA)
Abstract
本发明公开了一种新型三环混合电推力器,通过三个推力器的混合使用,可实现最多七种工作模式,根据不同的空间推进需求采用相应的工作模式,一方面具有很好的性能范围扩展性,另一方面具有结合具体使命的良好可优化性,从而使得该三环混合推力器具有广泛的应用空间;因此可以实现很宽范围的功率、推力、比冲范围覆盖和调节能力,满足多用途和宽使命;功率范围从最小千瓦到最大数百千瓦,比冲范围2000~6000秒;(2)本发明的三环混合离子推力器能够解决大尺寸栅极的制造、组装、抗力学、热稳定等系列难题,给同时实现高功率和高比冲创造了条件。
The invention discloses a new three-ring hybrid electric thruster, through the mixed use of three thrusters, up to seven working modes can be realized, and corresponding working modes can be adopted according to different space propulsion requirements, on the one hand, it has good performance Range expansion, on the other hand, has good optimizeability combined with specific missions, so that the three-ring hybrid thruster has a wide range of application space; therefore, it can achieve a wide range of power, thrust, specific impulse range coverage and adjustment capabilities, Satisfies multi-purpose and wide mission; power ranges from the smallest kilowatts to the largest hundreds of kilowatts, and the specific impulse ranges from 2000 to 6000 seconds; (2) The three-ring mixed ion thruster of the present invention can solve the manufacturing, assembly, anti-corrosion and A series of problems such as mechanics and thermal stability have created conditions for the simultaneous realization of high power and high specific impulse.
Description
技术领域technical field
本发明涉及航天器推进技术领域,尤其涉及一种用于空间的三环混合电推力器。The invention relates to the technical field of spacecraft propulsion, in particular to a three-ring hybrid electric thruster for space.
背景技术Background technique
我国未来军、民航天都需要高性能的新一代空间推进技术,比冲很高的电推进技术是主要发展方向,但目前电推进技术存在如下方面不足:(1)技术最成熟的离子和霍尔电推进的功率最大到数十千瓦,距离未来大型航天器轨道转移、载人航天、星际探测等需求的数百千瓦到兆瓦级还存在较大的技术差距;(2)未来航天任务需要多模式的电推进系统,如载人航天和地球轨道转移需要尽量缩短周期以避免辐射环境不利影响,要求电推进具有象霍尔那样的大推力特性,而机器人星际探测和HEO轨道维持需要尽量节省推进剂用量以降低使命成本,要求电推进具有象离子那样的高比冲特性。事实上,未来大量航天任务需要多模式的电推进系统以满足不同阶段对电推进系统的需求并实现使命整体优化;(3)正在发展的磁等离子动力(MPD)、变比冲磁等离子(VASIMR)、脉冲感应(PIT)等电推进类型尽管适合高功率需求使命,但在技术成熟性方面差距还很大,特别是长寿命问题解决还看不到希望。my country's future military and civil aerospace needs a new generation of space propulsion technology with high performance. Electric propulsion technology with high specific impulse is the main development direction. The maximum power of electric propulsion is tens of kilowatts, and there is still a large technical gap between hundreds of kilowatts and megawatts required for future large-scale spacecraft orbit transfer, manned spaceflight, and interstellar exploration; (2) Future space missions require Multi-mode electric propulsion systems, such as manned spaceflight and earth orbit transfer, need to shorten the cycle as much as possible to avoid the adverse effects of radiation environment, requiring electric propulsion to have a large thrust characteristic like Hall, while robotic interstellar exploration and HEO orbit maintenance need to save as much as possible The amount of propellant used to reduce mission costs requires electric propulsion to have high specific impulse properties like ions. In fact, a large number of space missions in the future require multi-mode electric propulsion systems to meet the needs of electric propulsion systems at different stages and achieve overall mission optimization; (3) the developing magnetoplasma power (MPD), variable ratio impulse ), pulse induction (PIT) and other electric propulsion types are suitable for missions with high power requirements, but there is still a big gap in technological maturity, especially the long-life problem is still hopeless.
发明内容Contents of the invention
有鉴于此,本发明提供了一种用于空间的三环混合电推力器,克服现有成熟的离子与霍尔电推力器的不足,实现电推力器的高功率、多模式和长寿命。In view of this, the present invention provides a three-ring hybrid electric thruster for space, which overcomes the shortcomings of the existing mature ion and Hall electric thrusters, and realizes high power, multi-mode and long life of the electric thruster.
为了解决上述技术问题,本发明是这样实现的:In order to solve the problems of the technologies described above, the present invention is achieved in that:
一种三环混合电推力器,安装基座上从内到外依次加工有三个同轴的环形空腔结构,分别定义为第一、第二和第三环形腔结构;A three-ring hybrid electric thruster, three coaxial annular cavity structures are sequentially processed from the inside to the outside on the installation base, which are respectively defined as the first, second and third annular cavity structures;
所述第一环形腔结构的顶端中部位置固定安装中和器阴极,环形空腔底部对称布置两个霍尔组件阳极,由此形成霍尔组件;The neutralizer cathode is fixedly installed in the middle of the top of the first annular cavity structure, and two Hall component anodes are symmetrically arranged at the bottom of the annular cavity, thereby forming a Hall component;
所述第二环形腔结构的空腔底部中心对称布置两个第一离子组件主阴极,该环形空腔的周向布置永久磁铁,环形空腔的开口上方布置第一离子组件栅极,由此形成第一离子组件;The cavity bottom of the second annular cavity structure is symmetrically arranged with two main cathodes of the first ion assembly, the circumferential direction of the annular cavity is arranged with permanent magnets, and the first ion assembly grid is arranged above the opening of the annular cavity, thereby forming a first ionic assembly;
所述第三环形腔结构的空腔底部中心对称布置两个第二离子组件主阴极,该环形空腔的周向布置永久磁铁,环形空腔的开口上方布置第二离子组件栅极,由此形成第二离子组件。The cavity bottom of the third annular cavity structure is symmetrically arranged with two second ion assembly main cathodes, the circumferential direction of the annular cavity is arranged with permanent magnets, and the second ion assembly grid is arranged above the opening of the annular cavity, thus A second ionic assembly is formed.
当所述霍尔组件的环形放电室的内径为15cm、功率为5kW,第一离子组件的环形放电室的外径为30cm、功率为10kW且第二离子组件的环形放电室的外径为45cm、功率为10kW时,所述混合离子推力器还包括均为圆柱状的第二中和器阴极和第三中和器阴极,两者沿与第二离子组件的圆柱外形的母线平行的方向对称布置在其外侧。When the inner diameter of the annular discharge chamber of the Hall assembly is 15cm, the power is 5kW, the outer diameter of the annular discharge chamber of the first ion assembly is 30cm, the power is 10kW and the outer diameter of the annular discharge chamber of the second ion assembly is 45cm 1. When the power is 10kW, the mixed ion thruster also includes the second neutralizer cathode and the third neutralizer cathode, both of which are cylindrical, symmetrical along the direction parallel to the generatrix of the cylindrical shape of the second ion assembly placed outside it.
所述中和器阴极镶嵌在所述第一环形腔结构的顶端,中和器阴极可沿第一环形腔结构的中心轴线上、下移动,其移动行程为2cm以内。The neutralizer cathode is inlaid on the top of the first annular cavity structure, and the neutralizer cathode can move up and down along the central axis of the first annular cavity structure, and its moving distance is within 2cm.
有益效果:Beneficial effect:
(1)本发明的三环混合离子推力器,通过三个推力器的混合使用,可实现最多七种工作模式,根据不同的空间推进需求采用相应的工作模式,一方面具有很好的性能范围扩展性,另一方面具有结合具体使命的良好可优化性,从而使得该三环混合推力器具有广泛的应用空间;因此可以实现很宽范围的功率、推力、比冲范围覆盖和调节能力,满足多用途和宽使命;功率范围从最小千瓦到最大数百千瓦,比冲范围2000~6000秒;(1) The three-ring mixed ion thruster of the present invention can realize up to seven working modes through the mixed use of three thrusters, and adopt corresponding working modes according to different space propulsion requirements, on the one hand, it has a good performance range Scalability, on the other hand, has good optimizeability combined with specific missions, so that the three-ring hybrid thruster has a wide range of application space; therefore, it can achieve a wide range of power, thrust, specific impulse range coverage and adjustment capabilities to meet Multi-purpose and wide mission; power range from minimum kilowatts to maximum hundreds of kilowatts, specific impulse range 2000-6000 seconds;
(2)本发明的三环混合离子推力器能够解决大尺寸栅极的制造、组装、抗力学、热稳定等系列难题,给同时实现高功率和高比冲创造了条件;(2) The three-ring mixed ion thruster of the present invention can solve a series of problems such as the manufacture, assembly, mechanical resistance, and thermal stability of large-scale grids, creating conditions for simultaneously realizing high power and high specific impulse;
(3)本发明的三环混合离子推力器由霍尔推力器和环形离子推力器混合组成,由于两种推力器都具有相对成熟的技术基础,能够降低研制的成本、周期、和风险。(3) The three-ring mixed ion thruster of the present invention is composed of a Hall thruster and an annular ion thruster. Since both thrusters have a relatively mature technical foundation, the cost, period, and risk of development can be reduced.
附图说明Description of drawings
图1为是本发明的一种三环混合电推力器剖面结构示意图。Fig. 1 is a schematic cross-sectional structure diagram of a three-ring hybrid electric thruster of the present invention.
图2为是本发明中带有两个中和阴极的三环混合电推力器示意图。Fig. 2 is a schematic diagram of a three-ring hybrid electric thruster with two neutralizing cathodes in the present invention.
其中,1-第一离子组件栅极、2-第二离子组件II栅极、3-中和器阴极、4-离子组件I、5-离子组件I主阴极、6-离子组件II、7-离子组件II主阴极、8-永久磁体、9-霍尔组件阳极、10-霍尔组件、11-安装基座、12-第二中和器阴极、13-第三中和器阴极。Among them, 1-first ion component grid, 2-second ion component II grid, 3-neutralizer cathode, 4-ion component I, 5-ion component I main cathode, 6-ion component II, 7- Ion component II main cathode, 8-permanent magnet, 9-Hall component anode, 10-Hall component, 11-installation base, 12-second neutralizer cathode, 13-third neutralizer cathode.
具体实施方式Detailed ways
下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and examples.
一种三环混合电推力器,安装基座11上从内到外依次加工有三个同轴的环形空腔结构,分别定义为第一、第二和第三环形腔结构;A three-ring hybrid electric thruster, three coaxial annular cavity structures are sequentially processed on the installation base 11 from the inside to the outside, which are respectively defined as the first, second and third annular cavity structures;
第一环形腔结构的顶端中部位置固定安装中和器阴极3,环形空腔底部对称布置两个霍尔组件阳极9,由此形成霍尔组件10;第二环形腔结构的空腔底部中心对称布置两个第一离子组件主阴极5,该环形空腔的周向布置永久磁铁8,环形空腔的开口上方布置第一离子组件栅极1,由此形成第一离子组件4;所述第三环形腔结构的空腔底部中心对称布置两个第二离子组件主阴极7,该环形空腔的周向布置永久磁铁8,环形空腔的开口上方布置第二离子组件栅极2,由此形成第二离子组件6。The neutralizer cathode 3 is fixedly installed in the middle of the top of the first annular cavity structure, and two Hall element anodes 9 are symmetrically arranged at the bottom of the annular cavity, thus forming the Hall element 10; the cavity bottom of the second annular cavity structure is symmetrical to the center Two first ion assembly main cathodes 5 are arranged, permanent magnets 8 are arranged in the circumferential direction of the annular cavity, and the first ion assembly grid 1 is arranged above the opening of the annular cavity, thus forming the first ion assembly 4; Two second ion component main cathodes 7 are symmetrically arranged in the center of the cavity bottom of the three-ring cavity structure, permanent magnets 8 are arranged in the circumferential direction of the ring cavity, and the second ion component grid 2 is arranged above the opening of the ring cavity, thereby The second ion assembly 6 is formed.
中和器阴极镶嵌在所述第一环形腔结构的顶端,中和器阴极3可沿第一环形腔结构的中心轴线上、下移动,其移动行程为2cm以内。The neutralizer cathode is inlaid on the top of the first annular cavity structure, and the neutralizer cathode 3 can move up and down along the central axis of the first annular cavity structure, and its moving stroke is within 2cm.
霍尔组件10、第一离子组件4和第二离子组件6作为三个推力器可单独工作或组合工作,假定每个推力器只有一种工作模式,三环混合电推力器可以实现七种工作模式,分别是第一离子组件4单独工作,第二离子组件6单独工作,霍尔组件10单独工作,第一离子组件4和第二离子组件6联合工作、第一离子组件4和Hall组件联合工作、第二离子组件6和霍尔组件10联合工作以及三个电推力器联合工作。根据不同的空间推进需求采用相应的工作模式。从而使得该三环混合电推力器具有广泛的应用空间。The Hall assembly 10, the first ion assembly 4 and the second ion assembly 6 can work alone or in combination as three thrusters. Assuming that each thruster has only one working mode, the three-ring hybrid electric thruster can realize seven kinds of work Mode, respectively, the first ion assembly 4 works alone, the second ion assembly 6 works alone, the Hall assembly 10 works alone, the first ion assembly 4 and the second ion assembly 6 work together, and the first ion assembly 4 and the Hall assembly work together Work, the joint work of the second ion assembly 6 and the Hall assembly 10 and the joint work of the three electric thrusters. The corresponding working mode is adopted according to different space propulsion requirements. Therefore, the three-ring hybrid electric thruster has a wide application space.
如图2所示,本发明的三环混合离子推力器功率将达到30kW,其中霍尔组件10的直径为15cm,其功率为5kW,中间第一离子组件4的外径为30cm,其功率为10kW,外环第二离子组件6的外径为45cm,功率为15kW。As shown in Figure 2, the three-ring mixed ion thruster power of the present invention will reach 30kW, and wherein the diameter of Hall assembly 10 is 15cm, and its power is 5kW, and the outer diameter of the first ion assembly 4 in the middle is 30cm, and its power is 10kW, the outer diameter of the second ion component 6 of the outer ring is 45cm, and the power is 15kW.
中和器阴极3的作用主要包括两反面:一是防止在束流中建立高电势,使离子的运动反转,从而使推力消失;二是保持维持飞船的电中性。对于三环混合推力器,中和器阴极3的布局既要考虑到结构的简单,也要考虑中和的效果。因此30kW混合推力器的中和器布局方案为,在推力器的轴线上布局一个中和器阴极3,该中和器阴极3用于中和内环霍尔组件10的束流和中间环第一离子组件4的束流,由于外环第二离子组件6的直径达到45cm,中和器阴极3难以有效中和其束流,因此在外环第二离子组件6的外侧对称布局两个中和器阴极,分别为圆柱状的第二中和器阴极12和第三中和器阴极13,两者沿与第二离子组件6的圆柱外形的母线平行的方向对称布置在其外侧,这两个中和器阴极用于中和第二离子组件6的束流。The function of the cathode 3 of the neutralizer mainly includes two negative aspects: one is to prevent the establishment of a high potential in the beam current, so that the motion of the ions is reversed, so that the thrust disappears; the other is to maintain the electrical neutrality of the spacecraft. For the three-ring hybrid thruster, the layout of the cathode 3 of the neutralizer should consider both the simplicity of the structure and the effect of neutralization. Therefore, the neutralizer layout scheme of the 30kW hybrid thruster is to arrange a neutralizer cathode 3 on the axis of the thruster, and the neutralizer cathode 3 is used to neutralize the beam current of the inner ring Hall assembly 10 and the intermediate ring first For the beam current of an ion assembly 4, since the diameter of the second ion assembly 6 of the outer ring reaches 45 cm, it is difficult for the neutralizer cathode 3 to effectively neutralize the beam current, so two symmetrical layouts are arranged outside the second ion assembly 6 of the outer ring. The neutralizer cathode is respectively a cylindrical second neutralizer cathode 12 and a third neutralizer cathode 13, both of which are symmetrically arranged on the outside along the direction parallel to the generatrix of the cylindrical shape of the second ion assembly 6, the two A neutralizer cathode is used to neutralize the beam current of the second ion assembly 6 .
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510408939.6A CN105156290A (en) | 2015-07-13 | 2015-07-13 | Novel three-annulus mixed electric thruster |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510408939.6A CN105156290A (en) | 2015-07-13 | 2015-07-13 | Novel three-annulus mixed electric thruster |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105156290A true CN105156290A (en) | 2015-12-16 |
Family
ID=54797288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510408939.6A Pending CN105156290A (en) | 2015-07-13 | 2015-07-13 | Novel three-annulus mixed electric thruster |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105156290A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106542122A (en) * | 2016-12-07 | 2017-03-29 | 兰州空间技术物理研究所 | A kind of three ring Vacuum Arc thrusters |
CN106837723A (en) * | 2017-01-04 | 2017-06-13 | 兰州空间技术物理研究所 | Based on the efficient Optimize magnetic circult design organization of stepper motor driven hall thruster |
CN107798178A (en) * | 2017-10-16 | 2018-03-13 | 兰州空间技术物理研究所 | One kind mixing thruster performance optimization method |
CN108317062A (en) * | 2017-12-22 | 2018-07-24 | 兰州空间技术物理研究所 | A kind of mixing thruster |
CN108317061A (en) * | 2017-12-22 | 2018-07-24 | 兰州空间技术物理研究所 | A kind of ion Hall mixing thruster of common magnet |
CN109751214A (en) * | 2019-03-25 | 2019-05-14 | 哈尔滨工业大学 | A Microbull-level fast-response field launch thruster with large-scale continuously adjustable thrust |
CN111852802A (en) * | 2020-07-27 | 2020-10-30 | 大连理工大学 | A Hall-effect annular ion thruster |
CN111852803A (en) * | 2020-07-27 | 2020-10-30 | 大连理工大学 | A mixed-effect annular ion thruster based on segmented anodes |
WO2021082873A1 (en) * | 2019-10-29 | 2021-05-06 | 国防科技大学 | Intelligent control gas suction-type electric propulsion system applicable to multi-flow regimes |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1418290A (en) * | 2000-03-22 | 2003-05-14 | 塔莱斯电子设备有限公司 | Plasma accelerator arrangement |
US20060010851A1 (en) * | 2002-07-09 | 2006-01-19 | Centre National D'etudes Spatiales | Hall-effect plasma thruster |
WO2011088335A1 (en) * | 2010-01-15 | 2011-07-21 | Nasa Glenn Research Center | Electric propulsion apparatus |
-
2015
- 2015-07-13 CN CN201510408939.6A patent/CN105156290A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1418290A (en) * | 2000-03-22 | 2003-05-14 | 塔莱斯电子设备有限公司 | Plasma accelerator arrangement |
US20060010851A1 (en) * | 2002-07-09 | 2006-01-19 | Centre National D'etudes Spatiales | Hall-effect plasma thruster |
WO2011088335A1 (en) * | 2010-01-15 | 2011-07-21 | Nasa Glenn Research Center | Electric propulsion apparatus |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106542122A (en) * | 2016-12-07 | 2017-03-29 | 兰州空间技术物理研究所 | A kind of three ring Vacuum Arc thrusters |
CN106837723B (en) * | 2017-01-04 | 2019-07-19 | 兰州空间技术物理研究所 | High-efficiency magnetic circuit optimization design mechanism of Hall thruster based on stepping motor drive |
CN106837723A (en) * | 2017-01-04 | 2017-06-13 | 兰州空间技术物理研究所 | Based on the efficient Optimize magnetic circult design organization of stepper motor driven hall thruster |
CN107798178B (en) * | 2017-10-16 | 2020-12-25 | 兰州空间技术物理研究所 | Hybrid thruster performance optimization method |
CN107798178A (en) * | 2017-10-16 | 2018-03-13 | 兰州空间技术物理研究所 | One kind mixing thruster performance optimization method |
CN108317061A (en) * | 2017-12-22 | 2018-07-24 | 兰州空间技术物理研究所 | A kind of ion Hall mixing thruster of common magnet |
CN108317062A (en) * | 2017-12-22 | 2018-07-24 | 兰州空间技术物理研究所 | A kind of mixing thruster |
CN109751214A (en) * | 2019-03-25 | 2019-05-14 | 哈尔滨工业大学 | A Microbull-level fast-response field launch thruster with large-scale continuously adjustable thrust |
WO2021082873A1 (en) * | 2019-10-29 | 2021-05-06 | 国防科技大学 | Intelligent control gas suction-type electric propulsion system applicable to multi-flow regimes |
US11754058B2 (en) | 2019-10-29 | 2023-09-12 | National University Of Defense Technology | Intelligent control gas suction-type electric propulsion system applicable to multi-flow regimes |
CN111852802A (en) * | 2020-07-27 | 2020-10-30 | 大连理工大学 | A Hall-effect annular ion thruster |
CN111852803A (en) * | 2020-07-27 | 2020-10-30 | 大连理工大学 | A mixed-effect annular ion thruster based on segmented anodes |
CN111852803B (en) * | 2020-07-27 | 2021-07-16 | 大连理工大学 | A mixed-effect annular ion thruster based on segmented anodes |
CN111852802B (en) * | 2020-07-27 | 2021-10-15 | 大连理工大学 | A Hall effect ring type ion thruster |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105156290A (en) | Novel three-annulus mixed electric thruster | |
US9494143B1 (en) | Ion propulsion thruster including a plurality of ion optic electrode pairs | |
CN104653422A (en) | Three-stage accelerated helicon wave plasma propulsion device | |
CN106014900A (en) | A Gas Distributor/Anode Integrated Structure of a Hall Thruster | |
CN104454417B (en) | Double-stage grid helicon wave ion propulsion device | |
CN103953517A (en) | Hall thruster improving device | |
CN108317061A (en) | A kind of ion Hall mixing thruster of common magnet | |
CN105704901B (en) | A kind of honeycomb type dielectric barrier discharge plasma propulsion plant | |
CN111852802A (en) | A Hall-effect annular ion thruster | |
CN111852803B (en) | A mixed-effect annular ion thruster based on segmented anodes | |
WO2020023654A1 (en) | Thruster device | |
CN105592618B (en) | A kind of tubular dielectric barrier discharge plasma propulsion device | |
WO2014141581A1 (en) | Thermoelectric generation unit and thermoelectric generation system | |
CN113133173B (en) | Magnetic circuit structure of a multi-ring magnetic conductive column Hall thruster | |
CN106887704A (en) | A kind of variable water surface floating radio telescope structure of track type gravity-center | |
CN108317062A (en) | A kind of mixing thruster | |
CN113374662B (en) | Magnetic circuit structure for changing background magnetic field of middle-placed cathode | |
CN106542122A (en) | A kind of three ring Vacuum Arc thrusters | |
JP5681843B1 (en) | Thermoelectric generator unit and thermoelectric generator system | |
CN112017840A (en) | Magnetic screen and fixed structure for low-power Hall thruster | |
JP5715739B2 (en) | Thermal power generation system | |
Chesta et al. | Flexible variable-specific-impulse electric propulsion systems for planetary missions | |
Mingming et al. | A study of the influence of different grid structures on plasma characteristics in the discharge chamber of an ion thruster | |
KR20220026748A (en) | Electric field thruster and its method of generating thruster | |
CN114294192B (en) | Annular permanent magnet of Hall thruster |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151216 |
|
WD01 | Invention patent application deemed withdrawn after publication |