CN105152585A - Preparation method of fly ash-waste glass powder inorganic polymer sludge curing material - Google Patents
Preparation method of fly ash-waste glass powder inorganic polymer sludge curing material Download PDFInfo
- Publication number
- CN105152585A CN105152585A CN201510540101.2A CN201510540101A CN105152585A CN 105152585 A CN105152585 A CN 105152585A CN 201510540101 A CN201510540101 A CN 201510540101A CN 105152585 A CN105152585 A CN 105152585A
- Authority
- CN
- China
- Prior art keywords
- fly ash
- waste glass
- inorganic polymer
- glass powder
- sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 96
- 229920000592 inorganic polymer Polymers 0.000 title claims abstract description 86
- 239000000463 material Substances 0.000 title claims abstract description 77
- 239000002699 waste material Substances 0.000 title claims abstract description 75
- 239000011521 glass Substances 0.000 title claims abstract description 61
- 239000000843 powder Substances 0.000 title claims abstract description 50
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 42
- 238000007711 solidification Methods 0.000 claims abstract description 39
- 230000008023 solidification Effects 0.000 claims abstract description 39
- 239000010881 fly ash Substances 0.000 claims abstract description 16
- HRZFUMHJMZEROT-UHFFFAOYSA-L sodium disulfite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 claims abstract description 14
- 235000010262 sodium metabisulphite Nutrition 0.000 claims abstract description 14
- 229940001584 sodium metabisulfite Drugs 0.000 claims abstract description 11
- 238000003756 stirring Methods 0.000 claims description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 15
- 239000002002 slurry Substances 0.000 claims description 15
- 239000000835 fiber Substances 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 12
- 239000004743 Polypropylene Substances 0.000 claims description 10
- -1 polypropylene Polymers 0.000 claims description 10
- 229920001155 polypropylene Polymers 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 238000004140 cleaning Methods 0.000 claims description 3
- 230000001788 irregular Effects 0.000 claims description 3
- 239000000243 solution Substances 0.000 claims description 2
- 239000004568 cement Substances 0.000 abstract description 22
- 238000000034 method Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000002910 solid waste Substances 0.000 abstract description 3
- 239000012190 activator Substances 0.000 abstract description 2
- 239000002131 composite material Substances 0.000 abstract description 2
- 239000000428 dust Substances 0.000 abstract description 2
- 239000005431 greenhouse gas Substances 0.000 abstract description 2
- 239000002440 industrial waste Substances 0.000 abstract description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 11
- 238000002386 leaching Methods 0.000 description 7
- 238000001723 curing Methods 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000007596 consolidation process Methods 0.000 description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000036571 hydration Effects 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000012213 gelatinous substance Substances 0.000 description 1
- 239000010922 glass waste Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Treatment Of Sludge (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
本发明公开了一种粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料的制备方法。首先,将粉煤灰和经过预处理的废弃玻璃粉混和。然后,加入氢氧化钠和焦亚硫酸钠复合激发剂溶液。制备出粉煤灰-废弃玻璃粉无机聚合物对淤泥进行固化。使用此种无机聚合物对淤泥进行固化,一方面克服了传统粉煤灰-水泥无机聚合物淤泥固化材料制备过程中需大量使用水泥的缺点,减少了水泥生产过程中CO2等温室气体、工业粉尘排放对环境的影响。另一方面使用粉煤灰、废弃玻璃粉固体废弃物来制备淤泥固化材料,工业废弃物粉煤灰、废弃玻璃粉得到充分的循环再生利用,大量消耗了粉煤灰和废弃玻璃,避免了传统填埋方法处理这些固体废弃物需占用大量土地和对周围环境产生严重污染的问题。
The invention discloses a preparation method of fly ash-waste glass powder inorganic polymer sludge solidification material. First, fly ash is mixed with pretreated waste glass powder. Then, add sodium hydroxide and sodium metabisulfite composite activator solution. The fly ash-waste glass powder inorganic polymer was prepared to solidify the sludge. Using this kind of inorganic polymer to solidify the sludge, on the one hand, overcomes the shortcomings of using a large amount of cement in the preparation process of the traditional fly ash-cement inorganic polymer sludge solidification material, and reduces greenhouse gases such as CO 2 in the cement production process. Impact of dust emissions on the environment. On the other hand, solid wastes such as fly ash and waste glass powder are used to prepare sludge solidification materials. Industrial waste fly ash and waste glass powder are fully recycled and reused. A large amount of fly ash and waste glass are consumed, avoiding the traditional The landfill method needs to occupy a large amount of land and cause serious pollution to the surrounding environment to deal with these solid wastes.
Description
技术领域technical field
本发明属于固体废弃物循环再生利用和固化污染物材料制备领域。具体涉及一种粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料的制备方法。The invention belongs to the fields of solid waste recycling and utilization and preparation of solidified pollutant materials. Specifically relates to a preparation method of fly ash-waste glass powder inorganic polymer sludge solidification material.
背景技术Background technique
随着我国港口、航道、近海和海洋工程建设的迅速发展,每年各类工程清理出的淤泥数量不断增加,2010年仅我国珠江三角洲地区产生的淤泥总量就达8000万m3。淤泥中含有大量有毒的重金属元素,若不采取措施直接进行倾倒处理会污染土壤和水体,进而严重危害人们的身体健康。传统的倾倒处理淤泥的方式有很大的局限性且处理成本较高,已无法满足实际需要。寻找更为有效、更加经济的方法去处置日益增加的淤泥废物已成为世界各国普遍关注的热点问题。With the rapid development of China's ports, waterways, offshore and marine engineering construction, the amount of silt removed from various projects is increasing every year. In 2010, the total amount of silt produced in the Pearl River Delta region of China reached 80 million m 3 . Sludge contains a large amount of toxic heavy metal elements. If no measures are taken to dump it directly, it will pollute the soil and water, and seriously endanger people's health. The traditional method of dumping sludge has great limitations and high processing costs, which can no longer meet the actual needs. Finding a more effective and economical method to dispose of the increasing sludge waste has become a hot issue that is generally concerned by countries all over the world.
上世纪九十年代开始,日本等国开始使用粉煤灰-水泥无机聚合物对淤泥进行固化处理。此种淤泥固化方法主要是在淤泥中掺入水泥、粉煤灰、石灰等无机固化材料,通过搅拌、混合和养护后,固化材料与淤泥发生一系列的水解和水化反应使得原本无强度的淤泥变成具备一定力学性能的固结体。固化材料添加到淤泥中,在淤泥颗粒表面包裹上一层不可逆转的胶凝物质硬化壳,使淤泥颗粒具备一定的水稳定性和强度稳定性。同时具有胶凝性质的水化产物在淤泥颗粒之间形成了网状结构,即构成了淤泥的骨架,结晶类的水化产物填充网状结构的孔隙,导致淤泥内部变得致密。由于包裹在淤泥颗粒上的凝结硬化壳和淤泥颗粒之间网状结构的形成有效降低了淤泥中重金属活性,从而减少了重金属从固结体渗出的可能性。使用粉煤灰-水泥无机聚合物对淤泥进行固化是一种非常有效的处理淤泥方法。但是,目前使用的粉煤灰-水泥无机聚合物固化淤泥还存在一些问题,如制备此种无机聚合物需大量使用水泥,粉煤灰、磨细矿渣等工业废弃物取代水泥的比例较低,粉煤灰-水泥无机聚合物固化淤泥所形成固结体强度发展缓慢,固结体干缩大、易开裂。Beginning in the 1990s, Japan and other countries began to use fly ash-cement inorganic polymers to solidify sludge. This kind of sludge solidification method is mainly to mix inorganic solidification materials such as cement, fly ash, and lime into the sludge. After stirring, mixing and curing, a series of hydrolysis and hydration reactions between the solidified material and the sludge will make the original strengthless The sludge becomes a consolidated body with certain mechanical properties. The solidification material is added to the sludge, and a layer of irreversible gelatinous substance hardening shell is wrapped on the surface of the sludge particles, so that the sludge particles have certain water stability and strength stability. At the same time, the hydration products with gelling properties form a network structure between the sludge particles, that is, constitute the skeleton of the sludge, and the crystalline hydration products fill the pores of the network structure, causing the inside of the sludge to become dense. Due to the coagulation and hardening shell wrapped on the sludge particles and the formation of the network structure between the sludge particles, the activity of heavy metals in the sludge is effectively reduced, thereby reducing the possibility of seepage of heavy metals from the consolidated body. Using fly ash-cement inorganic polymer to solidify sludge is a very effective method of sludge treatment. But there are still some problems in the currently used fly ash-cement inorganic polymer solidified sludge, such as the preparation of this inorganic polymer requires a large amount of cement, and the ratio of industrial wastes such as fly ash and ground slag to replace cement is relatively low. The strength of the consolidated body formed by the fly ash-cement inorganic polymer solidified silt develops slowly, and the consolidated body shrinks greatly and is easy to crack.
发明内容Contents of the invention
本发明的目的在于针对传统粉煤灰-水泥无机聚合物淤泥固化材料大量使用水泥、固结体强度发展缓慢且干缩大、易开裂等难题。提供了一种完全不使用水泥、只使用废弃物、固化速度快、固结体体积稳定性好的粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料的制备方法。The purpose of the present invention is to solve the problems that the traditional fly ash-cement inorganic polymer sludge solidification material uses a large amount of cement, the strength of the solidified body develops slowly, has large drying shrinkage, and is easy to crack. Provided is a preparation method of a fly ash-waste glass powder inorganic polymer sludge solidification material that does not use cement at all, only uses waste, has fast solidification speed and good volume stability of solidified bodies.
实现本发明的技术方案是:Realize the technical scheme of the present invention is:
一种粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料的制备方法,包括以下步骤:A kind of preparation method of fly ash-waste glass powder inorganic polymer sludge solidification material, comprises the following steps:
(1)对废弃玻璃进行分拣、清洗、晾干、粉碎处理后,过筛去除废弃玻璃中的杂质与形状不规则的颗粒;然后将废弃玻璃颗粒放入球磨机中球磨30-60分钟后得磨细废弃玻璃粉待用;(1) Sorting, cleaning, drying and pulverizing the waste glass, sieving to remove impurities and irregular particles in the waste glass; then putting the waste glass particles into a ball mill and milling for 30-60 minutes to obtain Finely grind waste glass powder for use;
(2)将氢氧化钠与焦亚硫酸钠溶解在拌和水中,控制搅拌速度和水溶液pH值,使其形成均一溶液;(2) Sodium hydroxide and sodium metabisulfite are dissolved in stirring water, and the stirring speed and the pH value of the aqueous solution are controlled to form a uniform solution;
(3)将胶凝材料、废弃聚丙烯地毯纤维放入装有搅拌器的容器中以30转/分钟搅拌速度混合1-2分钟,所述胶凝材料为粉煤灰和磨细废弃玻璃粉。然后将含有氢氧化钠与焦亚硫酸钠的拌和水溶液加入到容器中,在30转/分钟搅拌速度下继续搅拌1-2小时。为避免无机聚合物在容器底部层积,需使用铁铲对无机聚合物浆体进行人工搅拌1-2次。最后,60转/分钟的搅拌速度下加速拌合0.5小时,去除无机聚合物浆体中气泡,制备出粉煤灰-废弃玻璃粉无机聚合物固化材料。(3) Put the cementitious material and waste polypropylene carpet fiber into a container equipped with a stirrer and mix for 1-2 minutes at a stirring speed of 30 rpm. The cementitious material is fly ash and finely ground waste glass powder . Then add the stirring aqueous solution containing sodium hydroxide and sodium metabisulfite into the container, and continue stirring for 1-2 hours at a stirring speed of 30 rpm. In order to avoid the accumulation of inorganic polymers at the bottom of the container, it is necessary to use a shovel to manually stir the inorganic polymer slurry for 1-2 times. Finally, stirring was accelerated for 0.5 hours at a stirring speed of 60 rpm to remove air bubbles in the inorganic polymer slurry, and a fly ash-waste glass powder inorganic polymer solidified material was prepared.
进一步,所述步骤(2)中氢氧化钠用量为拌合水重量的8%,焦亚硫酸钠用量为拌合水重量的4.5%。Further, the amount of sodium hydroxide in the step (2) is 8% of the weight of the mixing water, and the amount of sodium metabisulfite is 4.5% of the weight of the mixing water.
进一步,所述步骤(2)中控制拌速度在30转/分钟和水溶液pH值控制在12以上。Further, in the step (2), the mixing speed is controlled at 30 rpm and the pH value of the aqueous solution is controlled above 12.
进一步,所述步骤(3)中废弃聚丙烯地毯纤维为胶凝材料用量的0.5%。Further, the waste polypropylene carpet fiber in the step (3) is 0.5% of the amount of the cementitious material.
本发明制备的粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料有如下优点:The fly ash-waste glass powder inorganic polymer sludge solidification material prepared by the present invention has the following advantages:
(1)与传统的粉煤灰-水泥无机聚合物淤泥固化材料相比,虽然新型粉煤灰-废弃玻璃粉无机聚合物由于氢氧化钠、焦亚硫酸钠、废弃聚丙烯地毯纤维的加入,每生产一吨此种固化材料需增加原材料费用10元。但粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料中,粉煤灰和废弃玻璃粉完全取代水泥,每生产一吨此种固化材料仅水泥材料费用的节约可达25元。综合计算,生产一吨粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料可节约原材料费用15元。以每年生产此种新型固化材料10000吨计算,可节约原材料成本15万元。(1) Compared with the traditional fly ash-cement inorganic polymer sludge solidification material, although the new fly ash-waste glass powder inorganic polymer is due to the addition of sodium hydroxide, sodium pyrosulfite, and waste polypropylene carpet fibers, every production One ton of this solidified material needs to increase the cost of raw materials by 10 yuan. However, in the fly ash-waste glass powder inorganic polymer sludge solidification material, fly ash and waste glass powder can completely replace cement, and the cost of cement material can be saved up to 25 yuan per ton of this solidification material. Comprehensive calculation, the production of one ton of fly ash-waste glass powder inorganic polymer sludge solidification material can save 15 yuan in raw material costs. Based on the annual production of 10,000 tons of this new type of solidified material, the cost of raw materials can be saved by 150,000 yuan.
(2)制备粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料完全不使用水泥,减少了水泥生产过程中CO2等温室气体和工业粉尘排放对环境的影响。利用磨细废弃玻璃粉来制备淤泥固化材料大量消耗了废弃玻璃,避免了传统填埋方法处理废弃玻璃需占用大量土地和对周围环境产生严重污染的问题。废弃玻璃作为一种资源用于制备淤泥固化材料是循环使用废弃玻璃废物的最佳途径。(2) The preparation of fly ash-waste glass powder inorganic polymer sludge solidification material does not use cement at all, which reduces the impact of CO2 and other greenhouse gases and industrial dust emissions on the environment during the cement production process. The use of ground waste glass powder to prepare sludge solidified materials consumes a large amount of waste glass, avoiding the traditional landfill method that takes up a lot of land and causes serious pollution to the surrounding environment. The use of waste glass as a resource for the preparation of sludge solidification materials is the best way to recycle waste glass waste.
(3)粉煤灰、磨细废弃玻璃粉具有良好的减水效果和很低的吸水率,这导致粉煤灰-废弃玻璃粉无机聚合物浆体不需掺加高效减水剂就能达到对无机聚合物浆体流动性的要求。每生产1吨此种新型淤泥固化材料高效减水剂费用节约达5元,按每年生产此种新型固化材料10000吨计算,可节约材料成本5万元。(3) Fly ash and finely ground waste glass powder have good water reducing effect and low water absorption rate, which leads to the fact that fly ash-waste glass powder inorganic polymer slurry can be achieved without adding high-efficiency water reducer Requirements for the fluidity of inorganic polymer slurries. The cost of high-efficiency water reducer for producing 1 ton of this new type of silt solidification material can be saved up to 5 yuan. According to the annual production of 10,000 tons of this new type of solidification material, the material cost can be saved by 50,000 yuan.
(4)在粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料制备过程中,氢氧化钠和焦亚硫酸钠复合激发剂的掺加,加快了无机聚合物早期聚合速度,粉煤灰-废弃玻璃粉无机聚合物与淤泥形成的固结体强度发展快,废弃玻璃粉胶凝材料早期水化反应产生的微膨胀补偿了淤泥固结体的早期收缩,废弃聚丙烯地毯纤维的加入抑制了淤泥固结体长期收缩开裂。新型粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料克服了传统粉煤灰-水泥无机聚合物淤泥固化材料需大量使用水泥、固结体强度发展慢、干缩大、易开裂等缺点,提高了无机聚合物淤泥固结体的力学性能、体积稳定性、显著降低了固结体中重金属的浸出量。粉煤灰-废弃玻璃粉无机聚合物固化淤泥后形成的固结体可作为土木工程材料继续使用,扩大了粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料的应用范围。(4) In the preparation process of fly ash-waste glass powder inorganic polymer sludge solidification material, the addition of sodium hydroxide and sodium metabisulfite composite activator accelerated the early polymerization speed of inorganic polymer, and fly ash-waste glass powder The strength of the consolidated body formed by inorganic polymers and silt develops rapidly. The micro-expansion produced by the early hydration reaction of the waste glass powder cementitious material compensates for the early shrinkage of the silt consolidated body. The addition of waste polypropylene carpet fibers inhibits the sludge consolidation. Long-term shrinkage and cracking of the body. The new fly ash-waste glass powder inorganic polymer sludge solidification material overcomes the shortcomings of the traditional fly ash-cement inorganic polymer sludge solidification material that requires a large amount of cement, slow development of consolidated body strength, large dry shrinkage, and easy cracking, etc., and improves The mechanical properties and volume stability of the inorganic polymer sludge consolidation body are improved, and the leaching amount of heavy metals in the consolidation body is significantly reduced. The solidified body formed after the fly ash-waste glass powder inorganic polymer solidifies the sludge can continue to be used as a civil engineering material, which expands the application range of the fly ash-waste glass powder inorganic polymer sludge solidification material.
附图说明Description of drawings
图1是本发明粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料的制备流程图。Fig. 1 is the preparation flow chart of fly ash-waste glass powder inorganic polymer sludge solidification material of the present invention.
图2是FAC、FAG无机聚合物固化材料固化淤泥后固结体的抗压强度。Figure 2 shows the compressive strength of the consolidated body after the FAC and FAG inorganic polymer solidified materials solidify the sludge.
图3是FAC、FAG无机聚合物固化材料固化淤泥后固结体的抗折强度。Figure 3 shows the flexural strength of the consolidated body after the FAC and FAG inorganic polymer solidified materials solidify the sludge.
图4是FAC、FAG无机聚合物固化材料固化淤泥后固结体的干燥收缩值。Fig. 4 is the drying shrinkage value of the consolidated body after the sludge is solidified by FAC and FAG inorganic polymer solidified materials.
图5是FAC、FAG无机聚合物固化材料固化淤泥后固结体的碱硅酸反应膨胀值。Fig. 5 is the alkali silicic acid reaction expansion value of the consolidated body after the FAC and FAG inorganic polymer solidified materials solidify the sludge.
图6是FAC、FAG无机聚合物固化材料固化淤泥后固结体的重金属浸出量。Figure 6 shows the amount of heavy metal leached from the consolidated body after the sludge is solidified by FAC and FAG inorganic polymer solidified materials.
具体实施方式detailed description
下面结合附图和具体实施例进一步阐释本发明。The present invention will be further explained below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料的制备方法,包括以下步骤:The preparation method of fly ash-waste glass powder inorganic polymer sludge solidification material comprises the following steps:
1、淤泥的预处理1. Pretreatment of sludge
将污水处理厂、河流清淤、填海工程所得的淤泥进行充分搅拌后,放置在含有顶棚的露天7-10天,60-80℃温度下脱水烘干,粉碎通过5mm方孔筛,去除淤泥中各种杂质。取处理后淤泥按美国环境保护暑毒性特性浸出方法(TCLP,EPAMethod1311)测定淤泥中重金属浸出量。After fully stirring the sludge obtained from sewage treatment plants, river dredging and reclamation projects, place it in the open air with a roof for 7-10 days, dehydrate and dry it at 60-80°C, crush it and pass it through a 5mm square hole sieve to remove the sludge various impurities. The treated sludge was taken to determine the leaching amount of heavy metals in the sludge according to the American Environmental Protection Summer Toxic Characteristic Leaching Method (TCLP, EPAMethod1311).
2、粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料的制备2. Preparation of fly ash-waste glass powder inorganic polymer sludge solidification material
2.1、原材料2.1. Raw materials
将废弃白色玻璃饮料瓶进行分拣、清洗、晾干、粉碎处理后通过5mm方孔筛,去除废弃玻璃中的杂质与形状不规则颗粒。将废弃玻璃砂放入容积为10L球磨机中以40转/分钟速度球磨40分钟,磨细废弃玻璃粉密封放置48小时,使用激光粒度仪测得磨细废弃玻璃粉平均颗粒尺寸为14.878um。Sorting, cleaning, drying, and crushing waste white glass beverage bottles and passing through a 5mm square hole sieve to remove impurities and irregular particles in the waste glass. Put the waste glass sand into a ball mill with a volume of 10L and mill it at a speed of 40 rpm for 40 minutes. The ground waste glass powder is sealed and placed for 48 hours. The average particle size of the ground waste glass powder is 14.878um measured by a laser particle size analyzer.
实验所使用的粉煤灰为南京华能电厂一级粉煤灰。拌和用水为饮用水。氢氧化钠与焦亚硫酸钠为工业品,废弃聚丙烯纤维为废弃地毯经过处理后的短切纤维,短切纤维长度小于12mm。The fly ash used in the experiment is the first grade fly ash of Nanjing Huaneng Power Plant. Mixing water is drinking water. Sodium hydroxide and sodium pyrosulfite are industrial products, and the waste polypropylene fiber is the chopped fiber after the waste carpet is processed, and the length of the chopped fiber is less than 12mm.
2.2、粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料组分配比2.2. Component distribution ratio of fly ash-waste glass powder inorganic polymer sludge solidification material
粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料(FAG)各组分配比为胶凝材料(粉煤灰+磨细废弃玻璃粉):拌合水(制备无机聚合物所使用的水叫拌和水)=1:0.4,粉煤灰占胶凝材料总量30%,磨细废弃玻璃粉占胶凝材料总量70%,氢氧化钠用量为拌合水重量8%,焦亚硫酸钠用量为拌合水重量4.5%,废弃聚丙烯地毯纤维为胶凝材料用量0.5%。同时将未掺氢氧化钠、焦亚硫酸钠、废弃聚丙烯地毯纤维的传统粉煤灰-水泥(FAC)无机聚合物淤泥固化材料作为对比样。两种无机聚合物淤泥固化材料组成配比见表1。Fly ash-waste glass powder Inorganic polymer sludge solidified material (FAG) The distribution ratio of each component is cementitious material (fly ash + finely ground waste glass powder): mixing water (the water used to prepare inorganic polymer is called mixing Water)=1:0.4, fly ash accounts for 30% of cementitious material total amount, ground waste glass powder accounts for 70% of cementitious material total amount, sodium hydroxide consumption is 8% of mixing water weight, and sodium metabisulfite consumption is The weight of water is 4.5%, and the waste polypropylene carpet fiber is 0.5% of the cementitious material. At the same time, the traditional fly ash-cement (FAC) inorganic polymer sludge solidification material without sodium hydroxide, sodium metabisulfite, and waste polypropylene carpet fiber was used as a comparison sample. The composition ratio of the two inorganic polymer sludge solidification materials is shown in Table 1.
表1.无机聚合物淤泥固化材料组分配比Table 1. Inorganic polymer sludge solidification material component distribution ratio
2.3、具体制备过程2.3. Specific preparation process
将2.0-2.5kg氢氧化钠、1.0-1.5kg焦亚硫酸钠加入到28.0-29.0kg拌合水中,30转/分钟搅拌速度下搅拌2分钟形成均一溶液,控制水溶液pH值在12以上。将20-25kg粉煤灰、50-55kg磨细废弃玻璃粉、0.3-0.4kg废弃聚丙烯地毯纤维放入搅拌器中以30转/分钟搅拌速度混合1-2分钟。然后将氢氧化钠和焦亚硫酸钠的拌和水溶液加到容器中,在30转/分钟搅拌速度下继续搅拌1-2小时。为避免无机聚合物在容器底部层积,需使用铁铲对无机聚合物浆体进行人工搅拌1-2次。最后,在60转/分钟的搅拌速度下加速拌合0.5小时,去除无机聚合物浆体中气泡,制备出粉煤灰-废弃玻璃粉无机聚合物固化材料待用。Add 2.0-2.5kg of sodium hydroxide and 1.0-1.5kg of sodium metabisulfite into 28.0-29.0kg of mixing water, stir at a stirring speed of 30 rpm for 2 minutes to form a homogeneous solution, and control the pH value of the aqueous solution to be above 12. Put 20-25kg of fly ash, 50-55kg of finely ground waste glass powder, and 0.3-0.4kg of waste polypropylene carpet fiber into a mixer at a stirring speed of 30 rpm for 1-2 minutes. Then add the stirring aqueous solution of sodium hydroxide and sodium metabisulfite into the container, and continue stirring for 1-2 hours at a stirring speed of 30 rpm. In order to avoid the accumulation of inorganic polymers at the bottom of the container, it is necessary to use a shovel to manually stir the inorganic polymer slurry for 1-2 times. Finally, stirring was accelerated for 0.5 hours at a stirring speed of 60 rpm to remove air bubbles in the inorganic polymer slurry, and a fly ash-waste glass powder inorganic polymer cured material was prepared for use.
3、固化材料固化淤泥的实验配合比3. Experimental mixing ratio of solidified material solidified sludge
固化淤泥实验时,固化材料用量:淤泥用量=1:8,两种无机聚合物固化材料固化淤泥的实验配合比见表2。During the solidification silt experiment, the amount of solidified material: the amount of silt = 1:8, and the experimental mixing ratio of the solidified silt with two kinds of inorganic polymer solidification materials is shown in Table 2.
表2.无机聚合物固化材料固化淤泥的实验配合比Table 2. Experimental mixing ratio of solidified sludge with inorganic polymer solidified material
4、无机聚合物与淤泥形成的固结体抗压强度、抗折强度、干燥收缩值、碱硅酸反应膨胀值、重金属的浸出量测定4. Determination of compressive strength, flexural strength, drying shrinkage value, alkali silicic acid reaction expansion value, and heavy metal leaching amount of the consolidated body formed by inorganic polymer and silt
在进行淤泥固化实验时,在800-850kg淤泥中加入100-110kg上述粉煤灰-废弃玻璃粉无机聚合物固化材料,以60转/分钟的搅拌速度下搅拌2分钟,形成均一的无机聚合物淤泥浆体。将无机聚合物淤泥浆体浇筑到40mm×40mm×160mm三联模中,制备12块试样进行1,3,7,28d固化淤泥的固结体的抗压强度和抗折强度检测。其他新拌无机聚合物淤泥浆体浇筑到25mm×25mm×285mm三联模中,制备6块试样进行固化淤泥的固结体干燥收缩值和碱硅酸反应膨胀值检测。余下的无机聚合物淤泥浆体浇筑φ40mm×80mm模中,制备3块试样进行淤泥固结体重金属浸出量检测。最后将装有FAG-S无机聚合物淤泥浆体的试模放置在室内(温度25℃,湿度55-65%),24小时后试样从试模中移除并放置在温度为20℃,湿度为90±5%养护室直到测试龄期。相同条件下制备相同数量FAC-S无机聚合物淤泥浆体,进行对比实验。When carrying out the sludge solidification experiment, add 100-110kg of the above-mentioned fly ash-waste glass powder inorganic polymer solidification material to 800-850kg of sludge, and stir at a stirring speed of 60 rpm for 2 minutes to form a uniform inorganic polymer Silt slurry. The inorganic polymer sludge slurry was poured into a 40mm×40mm×160mm triple mold, and 12 samples were prepared to test the compressive strength and flexural strength of the consolidated body of the 1, 3, 7, and 28d solidified sludge. Other freshly mixed inorganic polymer slurry was poured into a 25mm×25mm×285mm triple mold, and 6 samples were prepared to detect the drying shrinkage value of the solidified body of the solidified sludge and the expansion value of the alkali silicic acid reaction. The remaining inorganic polymer sludge slurry was poured into a φ40mm×80mm mold, and three samples were prepared to detect the leaching amount of heavy metals consolidated in the sludge. Finally, the test mold containing the FAG-S inorganic polymer slurry slurry was placed indoors (temperature 25°C, humidity 55-65%), and the sample was removed from the test mold after 24 hours and placed in a temperature of 20°C. Humidity 90±5% Curing room until test age. The same amount of FAC-S inorganic polymer sludge slurry was prepared under the same conditions for comparative experiments.
本发明制备的粉煤灰-废弃玻璃粉无机聚合物淤泥固化材料固化淤泥后的固结体的性能如下:The performance of the consolidated body after the fly ash-waste glass powder inorganic polymer sludge solidification material solidified sludge prepared by the present invention is as follows:
如图2所示为FAC、FAG无机聚合物固化材料固化淤泥后固结体的抗压强度对比,图中可以看出,在不同的养护龄期,FAG粉无机聚合物固化淤泥后的固结体具有比传统FAG无机聚合物固化淤泥后的固结体更高的抗压强度。Figure 2 shows the comparison of the compressive strength of the consolidated body after the FAC and FAG inorganic polymer solidified materials solidify the sludge. It can be seen from the figure that in different curing ages, the consolidation of the FAG powder inorganic polymer solidified sludge The body has a higher compressive strength than the consolidated body after the traditional FAG inorganic polymer solidifies the sludge.
如图3所示为FAC、FAG无机聚合物固化材料固化淤泥后固结体的抗折强度对比,图中可以看出在不同的养护龄期,FAG无机聚合物固化淤泥后的固结体具有比传统FAC无机聚合物固化淤泥后的固结体更高的抗折强度。Figure 3 shows the comparison of the flexural strength of the consolidated body after the FAC and FAG inorganic polymer solidified materials solidify the sludge. It can be seen from the figure that at different curing ages, the consolidated body after the FAG inorganic polymer solidified the sludge has Higher flexural strength than that of traditional FAC inorganic polymer solidified sludge.
如图4所示为FAC、FAG无机聚合物固化材料固化淤泥后固结体的干燥收缩值,图中可以看出FAG无机聚合物固化淤泥后的固结体具有比传统FAC无机聚合物固化淤泥后的固结体更低的干燥收缩值。As shown in Figure 4, it is the drying shrinkage value of the consolidated body after the FAC and FAG inorganic polymer solidified materials solidify the sludge. It can be seen from the figure that the consolidated body after the FAG inorganic polymer solidified sludge has a higher density than the traditional FAC inorganic polymer solidified sludge. The post-consolidation body has a lower drying shrinkage value.
如图5所示为FAC、FAG无机聚合物固化材料固化淤泥后固结体的碱硅酸反应膨胀值,图中可以看出FAG无机聚合物固化淤泥后的固结体具有比传统FAC无机聚合物固化淤泥后的固结体更大的碱硅酸反应膨胀。As shown in Figure 5, the alkali silicic acid reaction expansion value of the consolidated body after the FAC and FAG inorganic polymer solidified materials solidify the sludge, it can be seen from the figure that the consolidated body after the FAG inorganic polymer solidified the sludge has a higher density than the traditional FAC inorganic polymer. After solidification of sludge, the solidified body has greater alkali silicic acid reaction expansion.
如图6所示为FAC、FAG无机聚合物固化材料固化淤泥后固结体的重金属浸出量,图中可以看出FAG无机聚合物固化淤泥后的固结体具有比传统FAC无机聚合物固化淤泥后的固结体更低的重金属浸出量。As shown in Figure 6, the amount of heavy metals leached from the consolidated body after the FAC and FAG inorganic polymer solidified materials solidified the sludge. It can be seen from the figure that the consolidated body after the FAG inorganic polymer solidified the sludge has a higher concentration than the traditional FAC inorganic polymer solidified sludge. The final consolidated body has lower heavy metal leaching.
本发明制备的粉煤灰-废弃玻璃粉无机聚合物固化材料完全不使用水泥、固化速度快,固结体体积稳定性好、固结体的重金属浸出量低。使用粉煤灰、废弃玻璃粉来制备无机聚合物淤泥固化材料具有广阔的应用领域,能产生良好的技术、经济、社会和环保效益。The fly ash-waste glass powder inorganic polymer curing material prepared by the invention does not use cement at all, has fast curing speed, good volume stability of the consolidated body, and low heavy metal leaching amount of the consolidated body. The use of fly ash and waste glass powder to prepare inorganic polymer sludge solidification materials has a wide range of applications and can produce good technical, economic, social and environmental benefits.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510540101.2A CN105152585B (en) | 2015-08-28 | 2015-08-28 | Preparation method of fly ash-waste glass powder inorganic polymer sludge curing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510540101.2A CN105152585B (en) | 2015-08-28 | 2015-08-28 | Preparation method of fly ash-waste glass powder inorganic polymer sludge curing material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105152585A true CN105152585A (en) | 2015-12-16 |
CN105152585B CN105152585B (en) | 2017-07-04 |
Family
ID=54793707
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510540101.2A Active CN105152585B (en) | 2015-08-28 | 2015-08-28 | Preparation method of fly ash-waste glass powder inorganic polymer sludge curing material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105152585B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109928591A (en) * | 2019-04-18 | 2019-06-25 | 常州机电职业技术学院 | Sludge curing agent based on waste recycling and sludge treatment method |
CN110922159A (en) * | 2019-11-24 | 2020-03-27 | 沈阳理工大学 | Alkali excited waste brick powder to solidify heavy metal ion lightweight thermal insulation material and preparation method thereof |
CN111410449A (en) * | 2020-03-27 | 2020-07-14 | 芜湖市骏辰新型材料有限公司 | High-strength composite filler for concrete and preparation method and application thereof |
CN112321269A (en) * | 2020-10-27 | 2021-02-05 | 南京林业大学 | A carbon dioxide carbonized recycled permeable brick and its preparation process |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1239085A (en) * | 1998-06-12 | 1999-12-22 | 武汉水利电力大学 | Soil solidifying agent |
CN1337927A (en) * | 1999-01-27 | 2002-02-27 | 金伟华 | Inorganic binder employing waste glass |
KR20100037889A (en) * | 2008-10-02 | 2010-04-12 | 한국건설기술연구원 | Manufacturing method of cement zero concrete using mixed waste glass powder and fly ash as binder |
CN102633449A (en) * | 2012-05-03 | 2012-08-15 | 南京大学 | High-strength glass base polymer and preparation method thereof |
CN103880378A (en) * | 2014-02-15 | 2014-06-25 | 江苏坤泽科技股份有限公司 | Fiber-reinforced sludge curing agent |
-
2015
- 2015-08-28 CN CN201510540101.2A patent/CN105152585B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1239085A (en) * | 1998-06-12 | 1999-12-22 | 武汉水利电力大学 | Soil solidifying agent |
CN1337927A (en) * | 1999-01-27 | 2002-02-27 | 金伟华 | Inorganic binder employing waste glass |
KR20100037889A (en) * | 2008-10-02 | 2010-04-12 | 한국건설기술연구원 | Manufacturing method of cement zero concrete using mixed waste glass powder and fly ash as binder |
CN102633449A (en) * | 2012-05-03 | 2012-08-15 | 南京大学 | High-strength glass base polymer and preparation method thereof |
CN103880378A (en) * | 2014-02-15 | 2014-06-25 | 江苏坤泽科技股份有限公司 | Fiber-reinforced sludge curing agent |
Non-Patent Citations (3)
Title |
---|
邓寅生等: "《煤炭固体废物利用与处置》", 31 August 2008 * |
郝慧聪: "《太阳能板废玻璃取代部分偏高岭土制备无机聚合物的研究》", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
高术森: "《聚丙烯纤维对固化海涂淤泥物理力学性能的影响研究》", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109928591A (en) * | 2019-04-18 | 2019-06-25 | 常州机电职业技术学院 | Sludge curing agent based on waste recycling and sludge treatment method |
CN110922159A (en) * | 2019-11-24 | 2020-03-27 | 沈阳理工大学 | Alkali excited waste brick powder to solidify heavy metal ion lightweight thermal insulation material and preparation method thereof |
CN111410449A (en) * | 2020-03-27 | 2020-07-14 | 芜湖市骏辰新型材料有限公司 | High-strength composite filler for concrete and preparation method and application thereof |
CN112321269A (en) * | 2020-10-27 | 2021-02-05 | 南京林业大学 | A carbon dioxide carbonized recycled permeable brick and its preparation process |
CN112321269B (en) * | 2020-10-27 | 2022-04-08 | 南京林业大学 | Carbon dioxide carbonized regeneration water permeable brick and preparation process thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105152585B (en) | 2017-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101328029B (en) | Preparation method of manganese slag-based geopolymer cementitious material | |
WO2022062493A1 (en) | Building waste burn-free regeneration brick and preparation method thereof | |
CN106082926B (en) | A kind of inorganic polymer sludge solidification mortar and preparation method thereof | |
CN102826827B (en) | A kind of with ceramic polished slag be major ingredient sintering pitchers brick and production method thereof | |
CN103159448B (en) | A kind of preparation method of the Artificial fish reef concrete material with slag as primary raw material | |
CN106518153A (en) | Foamed concrete building block mainly prepared from phosphogypsum hydraulic composite binding material and preparation method thereof | |
CN102515633B (en) | Baking-free cylindrical attapulgite river bottom mud ceramisites | |
CN105948653A (en) | Recycled wet-mixed mortar and preparation method thereof | |
CN1944324A (en) | Method for treating city ditch mud | |
CN106904924A (en) | The system and method for 3D printing material is built using municipal waste and Industrial Solid Waste | |
CN105884308A (en) | Waste concrete regeneration method | |
CN103319067B (en) | Environment-friendly type mud solidification method | |
CN109574582B (en) | Pervious concrete with heavy metal ion adsorption capacity and preparation method thereof | |
CN105152585B (en) | Preparation method of fly ash-waste glass powder inorganic polymer sludge curing material | |
CN102206073A (en) | Slit burning-free bricks and production method thereof | |
CN113754364B (en) | A kind of artificial aggregate based on slag washing sand tailings and its preparation method | |
CN103965918A (en) | Curing agent for water quenching manganese slag mollisol | |
CN104310880A (en) | Method for improving freeze-thaw resistance of concrete by using waste incineration fly ash pre-treated by washing | |
CN111333286B (en) | A kind of treatment method of high moisture content sludge in storage yard | |
CN101838133A (en) | Building material prepared from dredged sand and preparation method thereof | |
CN112624683A (en) | Lightweight concrete | |
CN108439907A (en) | A kind of preparation process of cement base dregs concrete | |
CN108706944B (en) | Phosphogypsum light board prepared from barium slag and preparation method thereof | |
CN118439833A (en) | Foam concrete grouting material with gold tailings as raw material and preparation method thereof | |
CN106927657A (en) | A kind of method of bottom mud in lake cooperative disposal dreg containing arsenic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220525 Address after: 010000 Room 201, 2 / F, building 9, University Science Park, Genghis Khan East Street, Xincheng District, Hohhot, Inner Mongolia Autonomous Region Patentee after: Inner Mongolia Yuyi Environmental Protection Technology Development Co.,Ltd. Address before: No. 99 Jiangning Road, Nanjing District hirokage 211169 cities in Jiangsu Province Patentee before: JINLING INSTITUTE OF TECHNOLOGY |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Preparation method of fly ash waste glass powder inorganic polymer sludge solidification material Effective date of registration: 20230927 Granted publication date: 20170704 Pledgee: Bank of China Limited by Share Ltd. Hohhot Yuquan branch Pledgor: Inner Mongolia Yuyi Environmental Protection Technology Development Co.,Ltd. Registration number: Y2023150000146 |