CN105152549A - Coated glass and preparation method thereof - Google Patents
Coated glass and preparation method thereof Download PDFInfo
- Publication number
- CN105152549A CN105152549A CN201510275011.5A CN201510275011A CN105152549A CN 105152549 A CN105152549 A CN 105152549A CN 201510275011 A CN201510275011 A CN 201510275011A CN 105152549 A CN105152549 A CN 105152549A
- Authority
- CN
- China
- Prior art keywords
- layer
- composite dielectric
- dielectric layer
- infrared reflective
- barrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 63
- 238000002360 preparation method Methods 0.000 title abstract description 6
- 239000002131 composite material Substances 0.000 claims abstract description 89
- 230000004888 barrier function Effects 0.000 claims abstract description 84
- 238000004544 sputter deposition Methods 0.000 claims abstract description 55
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 28
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 28
- 239000011224 oxide ceramic Substances 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 229910003087 TiOx Inorganic materials 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 280
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 38
- 229910001316 Ag alloy Inorganic materials 0.000 claims description 34
- 229910052709 silver Inorganic materials 0.000 claims description 30
- 239000004332 silver Substances 0.000 claims description 30
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 26
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 21
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 20
- 239000001301 oxygen Substances 0.000 claims description 20
- 229910052760 oxygen Inorganic materials 0.000 claims description 20
- 229910052786 argon Inorganic materials 0.000 claims description 19
- 239000011241 protective layer Substances 0.000 claims description 17
- 238000000151 deposition Methods 0.000 claims description 16
- 230000008021 deposition Effects 0.000 claims description 15
- 239000010936 titanium Substances 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 229910052763 palladium Inorganic materials 0.000 claims description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 11
- 229910052737 gold Inorganic materials 0.000 claims description 11
- 239000010931 gold Substances 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 239000010955 niobium Substances 0.000 claims description 11
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 11
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 claims description 10
- PWKWDCOTNGQLID-UHFFFAOYSA-N [N].[Ar] Chemical compound [N].[Ar] PWKWDCOTNGQLID-UHFFFAOYSA-N 0.000 claims description 9
- 239000012298 atmosphere Substances 0.000 claims description 9
- 239000013077 target material Substances 0.000 claims description 7
- 239000012300 argon atmosphere Substances 0.000 claims description 6
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 5
- -1 Si 3 N 4 Inorganic materials 0.000 claims description 4
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 4
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000012495 reaction gas Substances 0.000 claims description 3
- 230000000903 blocking effect Effects 0.000 claims 3
- 238000005496 tempering Methods 0.000 abstract description 20
- 238000002834 transmittance Methods 0.000 abstract description 12
- 239000002893 slag Substances 0.000 abstract description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 239000000919 ceramic Substances 0.000 abstract description 3
- 239000011248 coating agent Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 3
- 239000011701 zinc Substances 0.000 description 24
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000001755 magnetron sputter deposition Methods 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000005546 reactive sputtering Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- 238000005477 sputtering target Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 230000032900 absorption of visible light Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000008092 positive effect Effects 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- OLFCLHDBKGQITG-UHFFFAOYSA-N chromium(3+) nickel(2+) oxygen(2-) Chemical group [Ni+2].[O-2].[Cr+3] OLFCLHDBKGQITG-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000005329 float glass Substances 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Surface Treatment Of Glass (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
技术领域technical field
本发明涉及镀膜玻璃技术领域,尤其涉及一种采用新型阻隔技术、具有热稳定性的镀膜玻璃及其制备方法。The invention relates to the technical field of coated glass, in particular to a thermally stable coated glass using a novel barrier technology and a preparation method thereof.
背景技术Background technique
银基低辐射(Low-Emissivity,Low-E)镀膜玻璃是在浮法玻璃表面沉积多层金属膜和介质膜而制成的,通过适当选取材料并优化膜系结构,可以获得具有良好光学性能、电学性能及热学性能的镀膜产品。Low-E镀膜玻璃因其优异的远红外反射特性,成为建筑节能产品中使用最为广泛的材料之一。而三银低辐射镀膜玻璃又是该领域中目前技术含量最高的Low-E产品,其膜系中包含了介质层、阻挡层和金属层等十几个膜层。Silver-based low-emissivity (Low-E) coated glass is made by depositing multi-layer metal films and dielectric films on the surface of float glass. By properly selecting materials and optimizing the film structure, good optical performance can be obtained , Coating products with electrical and thermal properties. Low-E coated glass has become one of the most widely used materials in building energy-saving products because of its excellent far-infrared reflection characteristics. The triple-silver low-emissivity coated glass is the Low-E product with the highest technical content in this field at present, and its film system includes more than a dozen film layers such as dielectric layer, barrier layer and metal layer.
但是,现有的三银低辐射镀膜玻璃存在透过率偏低,钢化前后产品不能混用的问题。这是由于现有Low-E膜系中多采用金属材料做阻挡层,如NiCr、Ti和Cr等,保护银层免受后续溅射工艺影响,并使其在钢化过程中不被破坏。但是,金属膜对光有吸收,因此三银Low-E镀膜玻璃透过率很难提高。另外,在钢化过程中,金属材料作为牺牲层,吸收氧气,部分或全部变为金属氧化物,钢化后Low-E产品的透过率显著增加,颜色发生较大改变,因此钢化前后获得的镀膜玻璃产品不能混用。However, the existing triple-silver low-emissivity coated glass has a low transmittance, and the products before and after tempering cannot be used together. This is because the existing Low-E film systems mostly use metal materials as barrier layers, such as NiCr, Ti and Cr, etc., to protect the silver layer from the subsequent sputtering process and prevent it from being damaged during the tempering process. However, the metal film absorbs light, so it is difficult to improve the transmittance of triple silver Low-E coated glass. In addition, during the tempering process, the metal material acts as a sacrificial layer, absorbs oxygen, and turns part or all of it into a metal oxide. After tempering, the transmittance of Low-E products increases significantly, and the color changes greatly. Therefore, the coating film obtained before and after tempering Glass products cannot be mixed.
授权公告号为CN202448400U的实用新型专利中介绍采用复合阻隔层结构——金属阻隔层/AZO阻隔层,提高可钢化双功能层结构的低辐射镀膜玻璃的可见光透过率,并减小钢化后颜色变化。虽然取得一定效果,但两层阻隔层意味着产线需要多配置一个溅射腔室,额外增加设备资本投入。另外,CN202448400U专利中采用中频电源加旋转阴极溅射沉积AZO,这种生产方式存在一个问题:AZO靶在安装使用一段时间后,表面容易出现结瘤放电现象,甚至出现掉渣,严重影响了靶材的使用功率和寿命,有时迫使产线提前回气,清扫残渣,降低了生产效率。The utility model patent with the authorized announcement number CN202448400U introduces the use of a composite barrier layer structure - a metal barrier layer/AZO barrier layer, to improve the visible light transmittance of low-emissivity coated glass with a toughened dual-functional layer structure, and to reduce the color after tempering Variety. Although a certain effect has been achieved, the two barrier layers mean that the production line needs to be equipped with an additional sputtering chamber, which increases the capital investment of equipment. In addition, the CN202448400U patent adopts intermediate frequency power supply and rotating cathode sputtering to deposit AZO. There is a problem in this production method: after the AZO target is installed and used for a period of time, the surface of the AZO target is prone to nodules and discharges, and even slag will appear, which seriously affects the target. The use power and life of the material sometimes force the production line to return air in advance to clean up the residue and reduce the production efficiency.
发明内容Contents of the invention
本发明提供一种采用新型阻隔技术、具有热稳定性的镀膜玻璃及其制备方法。The invention provides a heat-stabilized coated glass with novel barrier technology and a preparation method thereof.
根据本发明的第一方面,本发明提供一种镀膜玻璃,该镀膜玻璃包括玻璃基底和形成于该玻璃基底上的膜层,该膜层自上述玻璃基底向外依次为:第一复合介质层、第一红外反射层、第一阻挡层、第二复合介质层、第二红外反射层、第二阻挡层、第三复合介质层、第三红外反射层、第三阻挡层和第四复合介质层,其中上述第一阻挡层、第二阻挡层和第三阻挡层是采用直流电源溅射金属氧化物陶瓷靶制备得到的,上述金属氧化物陶瓷靶选自AZO、TiOx或NiCrOx,且为旋转靶。According to the first aspect of the present invention, the present invention provides a kind of coated glass, this coated glass comprises glass substrate and the film layer that is formed on this glass substrate, and this film layer outwardly from above-mentioned glass substrate is: first composite dielectric layer , the first infrared reflective layer, the first barrier layer, the second composite dielectric layer, the second infrared reflective layer, the second barrier layer, the third composite dielectric layer, the third infrared reflective layer, the third barrier layer and the fourth composite dielectric layer, wherein the first barrier layer, the second barrier layer and the third barrier layer are prepared by sputtering a metal oxide ceramic target with a DC power supply, and the metal oxide ceramic target is selected from AZO, TiO x or NiCrO x , and for the rotating target.
作为本发明的优选方案,上述第一阻挡层、第二阻挡层和第三阻挡层的厚度各自为0.5~5nm。As a preferred solution of the present invention, the thicknesses of the first barrier layer, the second barrier layer and the third barrier layer are each 0.5-5 nm.
作为本发明的优选方案,上述第一红外反射层、第二红外反射层和第三红外反射层为银或银合金。As a preferred solution of the present invention, the above-mentioned first infrared reflective layer, second infrared reflective layer and third infrared reflective layer are silver or silver alloy.
作为本发明的优选方案,上述第一红外反射层、第二红外反射层和第三红外反射层为银合金,上述银合金的主要成分为银,并包括金、钛、钯、铜和铌中的至少一种元素,其中上述金、钛、钯、铜和铌中的至少一种元素的含量占银合金总量的0.3~10at.%。As a preferred version of the present invention, the above-mentioned first infrared reflective layer, the second infrared reflective layer and the third infrared reflective layer are silver alloys, the main component of the above-mentioned silver alloys is silver, and includes gold, titanium, palladium, copper and niobium at least one element, wherein the content of at least one element among the above-mentioned gold, titanium, palladium, copper and niobium accounts for 0.3-10 at.% of the total amount of the silver alloy.
作为本发明的优选方案,上述第一红外反射层、第二红外反射层和第三红外反射层的厚度各自为5~15nm。As a preferred solution of the present invention, the thicknesses of the first infrared reflective layer, the second infrared reflective layer and the third infrared reflective layer are each 5-15 nm.
作为本发明的优选方案,上述第一复合介质层、第二复合介质层、第三复合介质层和第四复合介质层为Si3N4、SnO2、Zn2SnO4、Nb2O5和ZnAlOx中两种以上组合膜层。As a preferred solution of the present invention, the above-mentioned first composite dielectric layer, second composite dielectric layer, third composite dielectric layer and fourth composite dielectric layer are made of Si 3 N 4 , SnO 2 , Zn 2 SnO 4 , Nb 2 O 5 and Two or more combined film layers in ZnAlO x .
作为本发明的优选方案,上述第一复合介质层、第二复合介质层、第三复合介质层和第四复合介质层的厚度各自为10~85nm。As a preferred solution of the present invention, the thicknesses of the first composite dielectric layer, the second composite dielectric layer, the third composite dielectric layer and the fourth composite dielectric layer are each 10-85 nm in thickness.
作为本发明的优选方案,上述镀膜玻璃在第四复合介质层外还包括保护层,该保护层为TiO2、Si3N4、SiNxOy或ZrO2的至少一种,厚度为5~30nm。As a preferred solution of the present invention, the above-mentioned coated glass further includes a protective layer outside the fourth composite dielectric layer, the protective layer is at least one of TiO 2 , Si 3 N 4 , SiN x O y or ZrO 2 , with a thickness of 5-5. 30nm.
根据本发明的第二方面,本发明提供一种制备第一方面的镀膜玻璃的方法,该方法包括:在玻璃基底上通过溅射形成自该玻璃基底向外依次为下列顺序的膜层:第一复合介质层、第一红外反射层、第一阻挡层、第二复合介质层、第二红外反射层、第二阻挡层、第三复合介质层、第三红外反射层、第三阻挡层和第四复合介质层,上述方法采用直流电源溅射金属氧化物陶瓷靶制备上述第一阻挡层、第二阻挡层和第三阻挡层,上述金属氧化物陶瓷靶选自AZO、TiOx或NiCrOx,且为旋转靶。According to a second aspect of the present invention, the present invention provides a method for preparing the coated glass of the first aspect, the method comprising: forming film layers in the following order outward from the glass substrate on a glass substrate by sputtering: A composite medium layer, a first infrared reflective layer, a first barrier layer, a second composite medium layer, a second infrared reflective layer, a second barrier layer, a third composite medium layer, a third infrared reflective layer, a third barrier layer and The fourth composite dielectric layer, the above method uses a direct current power source to sputter a metal oxide ceramic target to prepare the above first barrier layer, second barrier layer and third barrier layer, and the above metal oxide ceramic target is selected from AZO, TiO x or NiCrO x , and is a rotating target.
作为本发明的优选方案,若选用AZO作为阻挡层的靶材,则使用纯氩气作为溅射气体,不加反应气体;若选用TiOx或NiCrOx作为阻挡层的靶材,则使用氩气和氧气的混合气体作为溅射气体,其中氧气的体积含量小于等于10%,优选小于等于7%。As a preferred solution of the present invention, if AZO is selected as the target material of the barrier layer, pure argon is used as the sputtering gas, and no reaction gas is added; if TiOx or NiCrOx is selected as the target material of the barrier layer, argon gas is used Mixed gas with oxygen is used as the sputtering gas, wherein the volume content of oxygen is less than or equal to 10%, preferably less than or equal to 7%.
作为本发明的优选方案,上述第一阻挡层、第二阻挡层和第三阻挡层的厚度各自为0.5~5nm。As a preferred solution of the present invention, the thicknesses of the first barrier layer, the second barrier layer and the third barrier layer are each 0.5-5 nm.
作为本发明的优选方案,上述方法采用直流电源和平面阴极在氩气氛围下溅射沉积形成第一红外反射层、第二红外反射层和第三红外反射层。As a preferred solution of the present invention, the above method adopts a DC power supply and a planar cathode to form the first infrared reflective layer, the second infrared reflective layer and the third infrared reflective layer by sputtering deposition in an argon atmosphere.
作为本发明的优选方案,上述第一红外反射层、第二红外反射层和第三红外反射层的厚度各自为5~15nm。As a preferred solution of the present invention, the thicknesses of the first infrared reflective layer, the second infrared reflective layer and the third infrared reflective layer are each 5-15 nm.
作为本发明的优选方案,上述第一红外反射层、第二红外反射层和第三红外反射层为银或银合金。As a preferred solution of the present invention, the above-mentioned first infrared reflective layer, second infrared reflective layer and third infrared reflective layer are silver or silver alloy.
作为本发明的优选方案,上述第一红外反射层、第二红外反射层和第三红外反射层为银合金,上述银合金的主要成分为银,并包括金、钛、钯、铜和铌中的至少一种元素,其中上述金、钛、钯、铜和铌中的至少一种元素的含量占银合金总量的0.3~10at.%。As a preferred version of the present invention, the above-mentioned first infrared reflective layer, the second infrared reflective layer and the third infrared reflective layer are silver alloys, the main component of the above-mentioned silver alloys is silver, and includes gold, titanium, palladium, copper and niobium at least one element, wherein the content of at least one element among the above-mentioned gold, titanium, palladium, copper and niobium accounts for 0.3-10 at.% of the total amount of the silver alloy.
作为本发明的优选方案,上述方法采用中频交流电压和双旋转阴极在氩氮或氩氧混合气氛下溅射沉积形成第一复合介质层、第二复合介质层、第三复合介质层和第四复合介质层。As a preferred solution of the present invention, the above method adopts intermediate frequency AC voltage and double rotating cathodes to form the first composite dielectric layer, the second composite dielectric layer, the third composite dielectric layer and the fourth composite dielectric layer by sputtering deposition under argon nitrogen or argon oxygen mixed atmosphere. Composite medium layer.
作为本发明的优选方案,上述第一复合介质层、第二复合介质层、第三复合介质层和第四复合介质层的厚度各自为10~85nm。As a preferred solution of the present invention, the thicknesses of the first composite dielectric layer, the second composite dielectric layer, the third composite dielectric layer and the fourth composite dielectric layer are each 10-85 nm in thickness.
作为本发明的优选方案,上述第一复合介质层、第二复合介质层、第三复合介质层和第四复合介质层为Si3N4、SnO2、Zn2SnO4、Nb2O5和ZnAlOx中两种以上组合膜层。As a preferred solution of the present invention, the above-mentioned first composite dielectric layer, second composite dielectric layer, third composite dielectric layer and fourth composite dielectric layer are made of Si 3 N 4 , SnO 2 , Zn 2 SnO 4 , Nb 2 O 5 and Two or more combined film layers in ZnAlO x .
作为本发明的优选方案,上述方法还包括在上述第四复合介质层外通过溅射形成保护层,该保护层为TiO2、Si3N4、SiNxOy或ZrO2的至少一种,厚度为5~30nm。As a preferred solution of the present invention, the above method further includes forming a protective layer by sputtering outside the fourth composite dielectric layer, the protective layer is at least one of TiO 2 , Si 3 N 4 , SiN x O y or ZrO 2 , The thickness is 5-30nm.
作为本发明的优选方案,上述方法采用中频交流电压和双旋转阴极在氩氮或氩氧的混合气氛下溅射沉积形成上述保护层。As a preferred solution of the present invention, the above-mentioned protective layer is formed by sputtering deposition under a mixed atmosphere of argon-nitrogen or argon-oxygen by using intermediate frequency AC voltage and double rotating cathodes.
本发明的镀膜玻璃的每个阻挡层分别只有一层,且采用直流电源溅射金属氧化物陶瓷靶(旋转靶)制备,其中金属氧化物陶瓷靶选自AZO、TiOx或NiCrOx中的一种。这种新型阻隔技术避免了钢化前后出现阻挡层吸收特性改变的问题,有助于制备出具有热稳定性的低辐射镀膜玻璃。同时,这种新型阻隔技术采用直流电源溅射旋转靶,避免陶瓷靶出现打弧或掉渣等问题,解决了AZO靶在实际生产中存在的工艺难题。另外,这种工艺制备的金属氧化物阻挡层具有金属和电介质的双重特性,阻挡层本身对可见光的吸收很低,既可作为银层或银合金层的保护层,又可作为介质层使用。尤其是在钢化过程中,金属氧化物阻挡层对于膜层结构的稳定性及颜色的稳定性具有积极作用。由于金属氧化物阻挡层在受热时不会发生明显的光学性质改变,对氧气又能起到阻隔作用,可有效地保护银层不受破坏。Each barrier layer of the coated glass of the present invention has only one layer respectively, and is prepared by sputtering a metal oxide ceramic target (rotary target) with a DC power supply, wherein the metal oxide ceramic target is selected from one of AZO, TiO x or NiCrO x kind. This new barrier technology avoids the problem of changing the absorption properties of the barrier layer before and after tempering, and helps to prepare low-emissivity coated glass with thermal stability. At the same time, this new barrier technology uses a DC power source to sputter the rotating target, avoiding problems such as arcing or slag falling on the ceramic target, and solving the process problems existing in the actual production of the AZO target. In addition, the metal oxide barrier layer prepared by this process has the dual characteristics of metal and dielectric, and the barrier layer itself has very low absorption of visible light, so it can be used as a protective layer of silver layer or silver alloy layer, and as a dielectric layer. Especially in the tempering process, the metal oxide barrier layer has a positive effect on the stability of the film structure and color. Since the metal oxide barrier layer does not undergo obvious optical property changes when heated, it can also act as a barrier to oxygen, which can effectively protect the silver layer from damage.
因此,本发明的镀膜玻璃的优点在于:(1)产品透过率高,可见光透过率≥60%;(2)产品钢化前后颜色稳定性好;(3)产品具有优异的耐潮性能。Therefore, the advantages of the coated glass of the present invention are: (1) the product has a high transmittance, and the visible light transmittance is ≥ 60%; (2) the product has good color stability before and after tempering; (3) the product has excellent moisture resistance.
附图说明Description of drawings
图1为本发明的镀膜玻璃的结构示意图。Fig. 1 is a schematic structural view of the coated glass of the present invention.
具体实施方式Detailed ways
下面通过具体实施方式结合附图对本发明作进一步详细说明。The present invention will be further described in detail below through specific embodiments in conjunction with the accompanying drawings.
请参考图1,本发明的镀膜玻璃包括玻璃基底和形成于该玻璃基底上的膜层,该膜层自上述玻璃基底向外依次为:第一复合介质层、第一红外反射层、第一阻挡层、第二复合介质层、第二红外反射层、第二阻挡层、第三复合介质层、第三红外反射层、第三阻挡层和第四复合介质层,以及可选的保护层。Please refer to Fig. 1, the coated glass of the present invention comprises a glass substrate and a film layer formed on the glass substrate. A barrier layer, a second composite dielectric layer, a second infrared reflective layer, a second barrier layer, a third composite dielectric layer, a third infrared reflective layer, a third barrier layer, a fourth composite dielectric layer, and an optional protective layer.
需要说明的是,图1仅为镀膜玻璃的结构示意图,其中各个膜层只是示意性的,其真实厚度并不是图1所示的那样。It should be noted that FIG. 1 is only a schematic structural view of the coated glass, in which each film layer is only schematic, and its actual thickness is not as shown in FIG. 1 .
本发明的关键在于,采用直流电源溅射金属氧化物陶瓷靶制备第一阻挡层、第二阻挡层和第三阻挡层,这是在以前的工艺中从来没有采用的技术手段。本发明中的金属氧化物陶瓷靶选自AZO、TiOx或NiCrOx,且为旋转靶。The key of the present invention is that the first barrier layer, the second barrier layer and the third barrier layer are prepared by sputtering the metal oxide ceramic target with a DC power source, which is a technical means never used in the previous technology. The metal oxide ceramic target in the present invention is selected from AZO, TiO x or NiCrO x , and is a rotating target.
其中,AZO即铝掺杂氧化锌,本发明的一个实施例采用的AZO的组成是98wt%ZnO:2wt%Al2O3;TiOx是钛的氧化物,作为溅射靶材,其具有溅射靶材领域中公知的特性,一般是非完全氧化态的氧化物,其中x的取值范围可以在1.6≤x≤1.9范围内;NiCrOx是镍铬氧化物,作为溅射靶材,其具有溅射靶材领域中公知的特性,一般是非完全氧化态的氧化物,其中x的取值范围可以在0.5≤x≤1范围内。Wherein, AZO is aluminum-doped zinc oxide, and the composition of AZO adopted in one embodiment of the present invention is 98wt% ZnO:2wt%Al 2 O 3 ; TiOx is the oxide of titanium, as the sputtering target material, it has sputtering The well-known characteristics in the field of sputtering targets are generally oxides in an incomplete oxidation state, where the value range of x can be in the range of 1.6≤x≤1.9; NiCrO x is nickel chromium oxide, as a sputtering target, it has The well-known characteristics in the field of sputtering targets are generally oxides in an incomplete oxidation state, where the value of x can be in the range of 0.5≤x≤1.
在本发明的镀膜玻璃的具体制作工艺中,若选用AZO作为阻挡层的靶材,则使用纯氩气作为溅射气体,不加反应气体;若选用TiOx或NiCrOx作为阻挡层的靶材,则使用氩气和氧气的混合气体作为溅射气体,其中氧气的体积含量小于等于10%,优选小于等于7%。溅射功率可以为10-40kw。In the specific manufacturing process of the coated glass of the present invention, if AZO is selected as the target material of the barrier layer, pure argon is used as the sputtering gas without adding reaction gas; if TiOx or NiCrOx is selected as the target material of the barrier layer , a mixed gas of argon and oxygen is used as the sputtering gas, wherein the volume content of oxygen is less than or equal to 10%, preferably less than or equal to 7%. Sputtering power can be 10-40kw.
本发明由于采用直流电源溅射金属氧化物陶瓷靶这种新型阻隔技术,避免了钢化前后出现阻挡层吸收特性改变的问题,有助于制备出具有热稳定性的低辐射镀膜玻璃。同时,这种新型阻隔技术采用直流电源溅射旋转靶,避免陶瓷靶出现打弧或掉渣等问题,解决了AZO靶在实际生产中存在的工艺难题。另外,这种工艺制备的金属氧化物阻挡层具有金属和电介质的双重特性,阻挡层本身对可见光的吸收很低,既可作为银层或银合金层的保护层,又可作为介质层使用。尤其是在钢化过程中,金属氧化物阻挡层对于膜层结构的稳定性及颜色的稳定性具有积极作用。由于金属氧化物阻挡层在受热时不会发生明显的光学性质改变,对氧气又能起到阻隔作用,可有效地保护银层不受破坏。The invention avoids the problem of changing the absorption characteristics of the barrier layer before and after tempering by adopting the novel barrier technology of direct current power source sputtering metal oxide ceramic target, and contributes to the preparation of thermally stable low-radiation coated glass. At the same time, this new barrier technology uses a DC power source to sputter the rotating target, avoiding problems such as arcing or slag falling on the ceramic target, and solving the process problems existing in the actual production of the AZO target. In addition, the metal oxide barrier layer prepared by this process has the dual characteristics of metal and dielectric, and the barrier layer itself has very low absorption of visible light, so it can be used as a protective layer of silver layer or silver alloy layer, and as a dielectric layer. Especially in the tempering process, the metal oxide barrier layer has a positive effect on the stability of the film structure and color. Since the metal oxide barrier layer does not undergo obvious optical property changes when heated, it can also act as a barrier to oxygen, which can effectively protect the silver layer from damage.
本发明的一个实施例中,第一阻挡层、第二阻挡层和第三阻挡层的厚度各自控制在0.5~5nm,能够保证产品的高可见光透过率,并且阻挡效果完好。In one embodiment of the present invention, the thicknesses of the first barrier layer, the second barrier layer and the third barrier layer are respectively controlled at 0.5-5 nm, which can ensure high visible light transmittance of the product, and the barrier effect is intact.
本发明的一个实施例中,第一红外反射层、第二红外反射层和第三红外反射层为银或银合金。优选地,第一红外反射层、第二红外反射层和第三红外反射层为银合金,该银合金的主要成分为银,并包括金、钛、钯、铜和铌中的至少一种元素,其中上述金、钛、钯、铜和铌中的至少一种元素的含量占银合金总量的0.3~10at.%,其中at.%的含义是原子百分比。与纯银层相比,采用银合金层能显著提高银基低辐射镀膜玻璃的耐潮湿和耐水汽的性能,可延长镀膜玻璃的耐氧化时间,并明显减少银基低辐射镀膜玻璃因膜层中银原子迁移团聚造成的白点缺陷。In one embodiment of the present invention, the first infrared reflective layer, the second infrared reflective layer and the third infrared reflective layer are silver or silver alloy. Preferably, the first infrared reflective layer, the second infrared reflective layer and the third infrared reflective layer are silver alloys, the main component of which is silver and includes at least one element of gold, titanium, palladium, copper and niobium , wherein the content of at least one element among the above-mentioned gold, titanium, palladium, copper and niobium accounts for 0.3-10 at.% of the total amount of the silver alloy, wherein at.% means atomic percentage. Compared with the pure silver layer, the silver alloy layer can significantly improve the moisture resistance and water vapor resistance of the silver-based low-emissivity coated glass, prolong the oxidation resistance time of the coated glass, and significantly reduce the silver-based low-emissivity coated glass due to the film layer. White point defects caused by migration and agglomeration of silver atoms.
本发明的一个实施例中,第一红外反射层、第二红外反射层和第三红外反射层的厚度各自为5~15nm。在具体制作工艺中,可以采用直流电源和平面阴极在氩气氛围下溅射沉积形成第一红外反射层、第二红外反射层和第三红外反射层。真空磁控溅射设备功率可以为3-15kw。In one embodiment of the present invention, the thicknesses of the first infrared reflective layer, the second infrared reflective layer and the third infrared reflective layer are respectively 5-15 nm. In a specific manufacturing process, the first infrared reflective layer, the second infrared reflective layer and the third infrared reflective layer can be formed by sputtering deposition under an argon atmosphere by using a DC power supply and a planar cathode. The power of vacuum magnetron sputtering equipment can be 3-15kw.
本发明的一个实施例中,第一复合介质层、第二复合介质层、第三复合介质层和第四复合介质层为Si3N4、SnO2、Zn2SnO4、Nb2O5和ZnAlOx中两种以上组合膜层,其中ZnAlOx是指铝掺杂的氧化锌(Aldoped-ZnO),在一个实施例中,ZnAlOx具体是掺杂2wt%的Al2O3的ZnO,即2wt%铝掺杂的氧化锌(2wt%Aldoped-ZnO)。在一个优选的实施例中,第一复合介质层、第二复合介质层和第三复合介质层中至少包含一层2wt%Aldoped-ZnO,该层与Ag膜相接,并位于银膜底下,有利于后续银膜的择优取向生长,降低银膜面电阻,进而降低整个银基低辐射膜的辐射率。In one embodiment of the present invention, the first composite dielectric layer, the second composite dielectric layer, the third composite dielectric layer and the fourth composite dielectric layer are Si 3 N 4 , SnO 2 , Zn 2 SnO 4 , Nb 2 O 5 and In ZnAlOx , more than two combined film layers, wherein ZnAlOx refers to aluminum-doped zinc oxide (Aldoped-ZnO), in one embodiment, ZnAlOx is specifically ZnO doped with 2wt% Al 2 O 3 , namely 2 wt% aluminum doped zinc oxide (2 wt% Aldoped-ZnO). In a preferred embodiment, at least one layer of 2wt% Aldoped-ZnO is included in the first composite dielectric layer, the second composite dielectric layer and the third composite dielectric layer, and this layer is in contact with the Ag film and is located under the silver film, It is beneficial to the preferred orientation growth of the subsequent silver film, reduces the surface resistance of the silver film, and then reduces the emissivity of the entire silver-based low-emissivity film.
本发明的一个实施例中,第一复合介质层、第二复合介质层、第三复合介质层和第四复合介质层的厚度各自为10~85nm。这样的复合介质层可有效阻挡钢化或热弯时,玻璃基片扩散出的Na离子。在具体制作工艺中,可以采用中频交流电压和双旋转阴极在氩氮或氩氧混合气氛下溅射沉积形成第一复合介质层、第二复合介质层、第三复合介质层和第四复合介质层。真空磁控溅射设备功率可以为10-60kw,中频电源频率可以为40kHz。In one embodiment of the present invention, the thicknesses of the first composite dielectric layer, the second composite dielectric layer, the third composite dielectric layer and the fourth composite dielectric layer are each 10-85 nm. Such a composite dielectric layer can effectively block Na ions diffused from the glass substrate during tempering or heat bending. In the specific manufacturing process, the first composite dielectric layer, the second composite dielectric layer, the third composite dielectric layer and the fourth composite dielectric can be formed by sputtering deposition under an argon-nitrogen or argon-oxygen mixed atmosphere by using intermediate frequency AC voltage and double rotating cathodes layer. The power of the vacuum magnetron sputtering equipment can be 10-60kw, and the frequency of the intermediate frequency power supply can be 40kHz.
本发明的一个实施例中,镀膜玻璃在第四复合介质层外还包括保护层,该保护层为TiO2、Si3N4、SiNxOy(x/y>1.3)或ZrO2的至少一种,厚度为5~30nm。该保护层增强银基低辐射镀膜玻璃的耐划伤性能和耐磨性能。在具体制作工艺中,可以采用中频交流电压和双旋转阴极在氩氮或氩氧的混合气氛下溅射沉积形成上述保护层。真空磁控溅射设备功率可以为15-50kw,中频电源频率可以为40kHz。 In one embodiment of the present invention, the coated glass further includes a protective layer outside the fourth composite dielectric layer, and the protective layer is at least One, the thickness is 5-30nm. This protective layer enhances the scratch resistance and abrasion resistance of the silver-based low-E coated glass. In a specific manufacturing process, the above-mentioned protective layer can be formed by sputtering deposition under a mixed atmosphere of argon nitrogen or argon oxygen by using intermediate frequency AC voltage and double rotating cathodes. The power of the vacuum magnetron sputtering equipment can be 15-50kw, and the frequency of the intermediate frequency power supply can be 40kHz.
以下通过具体实施例来详细说明本发明的制备工艺以及所制得的镀膜玻璃的性能优势。The preparation process of the present invention and the performance advantages of the prepared coated glass will be described in detail below through specific examples.
实施例1Example 1
该实施例的膜层结构自玻璃基底(6mm)向外依次为Si3N4/Zn2SnO4/ZnAlOx/Ag合金/TiOx/Zn2SnO4/ZnAlOx/Ag合金/TiOx/Zn2SnO4/ZnAlOx/Ag合金/TiOx/Zn2SnO4/Si3N4。The layer structure of this embodiment is Si 3 N 4 /Zn 2 SnO 4 /ZnAlO x /Ag alloy/TiO x /Zn 2 SnO 4 /ZnAlO x /Ag alloy/TiO x / Zn 2 SnO 4 /ZnAlO x /Ag alloy/TiO x /Zn 2 SnO 4 /Si 3 N 4 .
上述膜层的加工工艺及其参数说明如下:The processing technology and parameters of the above-mentioned film layer are described as follows:
所有腔室的本底真空<5×10-5mbar,溅射时气压约为10-3mbar。The background vacuum of all chambers is less than 5×10 -5 mbar, and the gas pressure during sputtering is about 10 -3 mbar.
溅射第一、二、三、四复合介质层:采用中频交流电压和双旋转阴极在混合气氛(氩氮或氩氧)下溅射沉积,真空磁控溅射设备功率为10-60kw,中频电源频率为40kHz。其中,制备Si3N4膜层,采用中频电源溅射双旋转阴极SiAl靶(Si:Al=90:10),氩氮体积比保持在1.2:1;制备Zn2SnO4膜层,采用混合气体反应溅射ZnSn靶(Zn:Sn=50:50),其氩氧体积比保持在1:1.2;制备ZnAlOx膜层,通过交流阴极反应溅射ZnAl靶(Zn:Al=98:2),其氩氧体积比保持在1.3:1。Sputtering of the first, second, third, and fourth composite dielectric layers: Sputtering deposition under a mixed atmosphere (argon nitrogen or argon oxygen) using medium frequency AC voltage and double rotating cathodes, vacuum magnetron sputtering equipment power 10-60kw, medium frequency The mains frequency is 40kHz. Among them, to prepare the Si 3 N 4 film layer, an intermediate frequency power source is used to sputter a double rotating cathode SiAl target (Si:Al=90:10), and the volume ratio of argon to nitrogen is kept at 1.2:1; to prepare the Zn 2 SnO 4 film layer, a mixed Gas reactive sputtering ZnSn target (Zn:Sn=50:50), the volume ratio of argon to oxygen is kept at 1:1.2; ZnAlO x film layer is prepared, and ZnAl target is sputtered by AC cathode reactive sputtering (Zn:Al=98:2) , the volume ratio of argon to oxygen is kept at 1.3:1.
溅射第一、二、三红外反射层:采用直流电源和平面阴极在纯氩气氛围下溅射沉积,真空磁控溅射设备功率为3-15kw。采用银合金,其主要成分为银,并包括0.3at.%的金。Sputtering of the first, second and third infrared reflective layers: DC power supply and planar cathode are used for sputtering deposition in a pure argon atmosphere, and the power of the vacuum magnetron sputtering equipment is 3-15kw. A silver alloy is used, the main component of which is silver and includes 0.3 at.% gold.
溅射第一、二、三阻挡层:采用直流电源溅射金属氧化物陶瓷靶(旋转靶)制备,金属氧化物陶瓷靶选用TiOx(1.6≤x≤1.9),溅射功率为10-40kw。溅射气体为氩气和氧气的混合气体,氧气量较低,氩氧体积比保持在15:1。Sputtering of the first, second and third barrier layers: prepared by sputtering metal oxide ceramic targets (rotary targets) with a DC power supply, the metal oxide ceramic targets are TiO x (1.6≤x≤1.9), and the sputtering power is 10-40kw . The sputtering gas is a mixed gas of argon and oxygen, the amount of oxygen is low, and the volume ratio of argon to oxygen is kept at 15:1.
表1示出了该实施例的膜层结构及其材料和厚度。Table 1 shows the film layer structure of this embodiment and its material and thickness.
表1实施例1的膜层结构和膜层厚度Film layer structure and film thickness of table 1 embodiment 1
表2示出了该实施例钢化前后的颜色参数值,即光学性能的表征。Table 2 shows the color parameter values of this embodiment before and after tempering, that is, the characterization of optical properties.
表2实施例1的光学性能The optical property of table 2 embodiment 1
注:Tvis代表可见光透射比;a*(T)、b*(T)分别代表透过色中的a*和b*值;Rg代表玻面反射比,a*(Rg)、b*(Rg)分别代表玻面反射色中的a*和b*值;△Eab代表钢化前后颜色差异,其公式为:Note: Tvis represents the visible light transmittance; a*(T), b*(T) represent the a* and b* values in the transmitted color respectively; Rg represents the reflectance of the glass surface, a*(Rg), b*(Rg ) respectively represent the a* and b* values in the reflection color of the glass surface; △Eab represents the color difference before and after tempering, and the formula is:
由上表2的结果可知,实施例1的镀膜玻璃具有较高的可见光透过率,Tvis=64%(钢前),且在钢化前后颜色稳定性好,△Eab<1.5。From the results in Table 2 above, it can be seen that the coated glass of Example 1 has a relatively high visible light transmittance, Tvis=64% (before steel), and has good color stability before and after tempering, ΔEab<1.5.
实施例2Example 2
该实施例的膜层结构自玻璃(6mm)向外依次为Si3N4/Zn2SnO4/ZnAlOx/Ag合金/AZO/Zn2SnO4/ZnAlOx/Ag合金/AZO/Zn2SnO4/ZnAlOx/Ag合金/AZO/Zn2SnO4/Si3N4。The film layer structure of this example is Si 3 N 4 /Zn 2 SnO 4 /ZnAlO x /Ag alloy/AZO/Zn 2 SnO 4 /ZnAlO x /Ag alloy/AZO/Zn 2 SnO from the glass (6mm) to the outside 4 /ZnAlO x /Ag alloy/AZO/Zn 2 SnO 4 /Si 3 N 4 .
上述膜层的加工工艺及其参数说明如下:The processing technology and parameters of the above-mentioned film layer are described as follows:
所有腔室的本底真空<5×10-5mbar,溅射时气压约为10-3mbar。The background vacuum of all chambers is less than 5×10 -5 mbar, and the gas pressure during sputtering is about 10 -3 mbar.
溅射第一、二、三、四复合介质层:采用中频交流电压加双旋转阴极在混合气氛(氩氮或氩氧)下反应溅射沉积,真空磁控溅射设备功率为10-60kw,中频电源频率为40kHz。其中,制备Si3N4膜层,采用中频电源溅射双旋转阴极SiAl靶(Si:Al=90:10),氩氮体积比保持在1.2:1;制备Zn2SnO4膜层,采用混合气体反应溅射ZnSn(Zn:Sn=50:50),其氩氧体积比保持在1:1.2;制备ZnAlOx膜层,通过交流阴极反应溅射ZnAl靶(Zn:Al=98:2),其氩氧体积比保持在1.3:1。Sputtering of the first, second, third, and fourth composite dielectric layers: using medium-frequency AC voltage plus double rotating cathodes in a mixed atmosphere (argon nitrogen or argon oxygen) for reactive sputtering deposition, the power of the vacuum magnetron sputtering equipment is 10-60kw, The intermediate frequency power supply frequency is 40kHz. Among them, to prepare the Si 3 N 4 film layer, an intermediate frequency power source is used to sputter a double rotating cathode SiAl target (Si:Al=90:10), and the volume ratio of argon to nitrogen is kept at 1.2:1; to prepare the Zn 2 SnO 4 film layer, a mixed Gas reactive sputtering ZnSn (Zn:Sn=50:50), the volume ratio of argon and oxygen is kept at 1:1.2; ZnAlO x film layer is prepared, and the ZnAl target is sputtered by AC cathode reactive sputtering (Zn:Al=98:2), Its argon-oxygen volume ratio is maintained at 1.3:1.
溅射第一、二、三红外反射层:采用直流电源加平面阴极在纯氩气氛围下溅射沉积,真空磁控溅射设备功率为3-15kw。采用银合金,其主要成分为银,并包括5at.%的钛、钯和铜。Sputtering of the first, second and third infrared reflective layers: DC power supply and planar cathode are used for sputtering deposition in a pure argon atmosphere, and the power of the vacuum magnetron sputtering equipment is 3-15kw. A silver alloy is used, the main component of which is silver and includes 5 at. % of titanium, palladium and copper.
溅射第一、二、三阻挡层:采用直流电源溅射金属氧化物陶瓷靶(旋转靶)制备,金属氧化物陶瓷靶选用AZO(98wt%ZnO:2wt%Al2O3),溅射功率为10-40kw。溅射气体为纯氩气。Sputtering of the first, second and third barrier layers: prepared by sputtering a metal oxide ceramic target (rotary target) with a DC power supply. The metal oxide ceramic target is selected from AZO (98wt% ZnO: 2wt% Al 2 O 3 ), 10-40kw. The sputtering gas was pure argon.
表3示出了该实施例的膜层结构及其材料和厚度。Table 3 shows the film layer structure of this embodiment and its material and thickness.
表3实施例2的膜层结构和膜层厚度Film layer structure and film thickness of table 3 embodiment 2
表4示出了该实施例钢化前后的颜色参数值,即光学性能的表征。Table 4 shows the color parameter values of this embodiment before and after tempering, that is, the characterization of optical properties.
表4实施例2的光学性能The optical performance of table 4 embodiment 2
由上表4的结果可知,实施例2的镀膜玻璃的可见光透过率达到70.6%(钢前),在钢化前后△Eab<1.5,产品的颜色稳定性好。From the results in Table 4 above, it can be seen that the visible light transmittance of the coated glass in Example 2 reaches 70.6% (before steel), ΔEab<1.5 before and after tempering, and the color stability of the product is good.
实施例3Example 3
该实施例的膜层结构自玻璃(6mm)向外依次为Si3N4/Zn2SnO4/ZnAlOx/Ag合金/NiCrOx/Zn2SnO4/ZnAlOx/Ag合金/NiCrOx/Zn2SnO4/ZnAlOx/Ag合金/NiCrOx/Zn2SnO4/Si3N4。The film layer structure of this embodiment is Si 3 N 4 /Zn 2 SnO 4 /ZnAlO x /Ag alloy/NiCrO x /Zn 2 SnO 4 /ZnAlO x /Ag alloy/NiCrO x /Zn from the glass (6mm) to the outside 2 SnO 4 /ZnAlO x /Ag alloy/NiCrO x /Zn 2 SnO 4 /Si 3 N 4 .
上述膜层的加工工艺及其参数说明如下:The processing technology and parameters of the above-mentioned film layer are described as follows:
所有腔室的本底真空<5×10-5mbar,溅射时气压约为10-3mbar。The background vacuum of all chambers is less than 5×10 -5 mbar, and the gas pressure during sputtering is about 10 -3 mbar.
溅射第一、二、三、四复合介质层:采用中频交流电压和双旋转阴极在混合气氛(氩氮或氩氧)下溅射沉积,真空磁控溅射设备功率为10-60kw,中频电源频率为40kHz。其中,制备Si3N4膜层,采用中频电源溅射双旋转阴极SiAl靶(Si:Al=90:10),氩氮体积比保持在1.2:1;制备Zn2SnO4膜层,采用混合气体反应溅射ZnSn靶(Zn:Sn=50:50),其氩氧体积比保持在1:1.2;制备ZnAlOx膜层,通过交流阴极反应溅射ZnAl靶(Zn:Al=98:2),其氩氧体积比保持在1.3:1。Sputtering of the first, second, third, and fourth composite dielectric layers: Sputtering deposition under a mixed atmosphere (argon nitrogen or argon oxygen) using medium frequency AC voltage and double rotating cathodes, vacuum magnetron sputtering equipment power 10-60kw, medium frequency The mains frequency is 40kHz. Among them, to prepare the Si 3 N 4 film layer, an intermediate frequency power source is used to sputter a double rotating cathode SiAl target (Si:Al=90:10), and the volume ratio of argon to nitrogen is kept at 1.2:1; to prepare the Zn 2 SnO 4 film layer, a mixed Gas reactive sputtering ZnSn target (Zn:Sn=50:50), the volume ratio of argon to oxygen is kept at 1:1.2; ZnAlO x film layer is prepared, and ZnAl target is sputtered by AC cathode reactive sputtering (Zn:Al=98:2) , the volume ratio of argon to oxygen is kept at 1.3:1.
溅射第一、二、三红外反射层:采用直流电源和平面阴极在纯氩气氛围下溅射沉积,真空磁控溅射设备功率为3-15kw。采用银合金,其主要成分为银,并包括10at.%的钛、钯、铜和铌。Sputtering of the first, second and third infrared reflective layers: DC power supply and planar cathode are used for sputtering deposition in a pure argon atmosphere, and the power of the vacuum magnetron sputtering equipment is 3-15kw. A silver alloy is used, the main component of which is silver and includes 10 at.% of titanium, palladium, copper and niobium.
溅射第一、二、三阻挡层:采用直流电源溅射金属氧化物陶瓷靶(旋转靶)制备,金属氧化物陶瓷靶选用NiCrOx(0.5≤x≤1),溅射功率为10-40kw。溅射气体为氩气和氧气的混合气体,氧气量较低,氩氧体积比保持在100:9。Sputtering of the first, second, and third barrier layers: It is prepared by sputtering metal oxide ceramic targets (rotary targets) with a DC power supply. The metal oxide ceramic targets are NiCrO x (0.5≤x≤1), and the sputtering power is 10-40kw . The sputtering gas is a mixed gas of argon and oxygen, the amount of oxygen is low, and the volume ratio of argon to oxygen is kept at 100:9.
表5示出了该实施例的膜层结构及其材料和厚度。Table 5 shows the film layer structure of this embodiment and its material and thickness.
表5实施例3的膜层结构和膜层厚度Film layer structure and film thickness of table 5 embodiment 3
表6示出了该实施例钢化前后的颜色参数值,即光学性能的表征。Table 6 shows the color parameter values of this embodiment before and after tempering, that is, the characterization of optical properties.
表6实施例3的光学性能The optical performance of table 6 embodiment 3
由上表6的结果可知,实施例3的镀膜玻璃的可见光透过率达到67%(钢前),在钢化前后△Eab<1.5,产品的颜色稳定性好。From the results in Table 6 above, it can be seen that the visible light transmittance of the coated glass in Example 3 reaches 67% (before steel), ΔEab<1.5 before and after tempering, and the color stability of the product is good.
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。The above content is a further detailed description of the present invention in conjunction with specific embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. Those of ordinary skill in the technical field to which the present invention belongs can also make some simple deduction or replacement without departing from the concept of the present invention.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510275011.5A CN105152549A (en) | 2015-05-26 | 2015-05-26 | Coated glass and preparation method thereof |
HK16103574.0A HK1215564A1 (en) | 2015-05-26 | 2016-03-29 | Coated glass and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510275011.5A CN105152549A (en) | 2015-05-26 | 2015-05-26 | Coated glass and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105152549A true CN105152549A (en) | 2015-12-16 |
Family
ID=54793670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510275011.5A Pending CN105152549A (en) | 2015-05-26 | 2015-05-26 | Coated glass and preparation method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105152549A (en) |
HK (1) | HK1215564A1 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108929045A (en) * | 2018-08-07 | 2018-12-04 | 杨瑞冰 | Low emissivity energy-saving glass and preparation method thereof |
CN109231847A (en) * | 2017-07-11 | 2019-01-18 | 中国南玻集团股份有限公司 | Half-reflection and half-transmission glass and preparation method thereof |
CN109336411A (en) * | 2018-12-05 | 2019-02-15 | 天津北玻玻璃工业技术有限公司 | A kind of high low radiation coated glass |
CN110563344A (en) * | 2019-09-16 | 2019-12-13 | 传奇视界有限公司 | Energy-saving glass and preparation method and application thereof |
CN110596981A (en) * | 2019-09-16 | 2019-12-20 | 传奇视界有限公司 | Electrochromic glass with more neutral color matching and preparation method and application thereof |
CN111138089A (en) * | 2018-11-06 | 2020-05-12 | 中国南玻集团股份有限公司 | Double silver glass |
CN111196683A (en) * | 2020-03-23 | 2020-05-26 | 中山市格兰特实业有限公司 | Three-silver temperable three-property gray Low-E glass |
CN111233345A (en) * | 2020-03-23 | 2020-06-05 | 中山市格兰特实业有限公司 | Superstrong scratch-resistant three-silver temperable Low-E glass |
CN111253082A (en) * | 2020-03-23 | 2020-06-09 | 中山市格兰特实业有限公司 | A kind of ultra-shielding heat-insulating three-silver temperable Low-E glass and preparation method thereof |
CN111362590A (en) * | 2020-03-25 | 2020-07-03 | 四川猛犸半导体科技有限公司 | Thin film device |
CN111517669A (en) * | 2020-06-09 | 2020-08-11 | 吴江南玻华东工程玻璃有限公司 | A kind of high-transmittance and low-reflection steel triple-silver low-emissivity glass and preparation method thereof |
CN111733390A (en) * | 2019-12-30 | 2020-10-02 | 宁波瑞凌新能源科技有限公司 | Composite barrier material for double-reflection layer film and application thereof |
CN112194384A (en) * | 2020-10-26 | 2021-01-08 | 四川宇光光学玻璃有限公司 | Coated glass processing technology |
CN112624627A (en) * | 2019-10-08 | 2021-04-09 | 湖北亿钧耀能新材股份公司 | Automobile glass and manufacturing method thereof |
CN112777945A (en) * | 2019-11-07 | 2021-05-11 | 中国南玻集团股份有限公司 | Three-silver glass |
CN113264691A (en) * | 2021-05-31 | 2021-08-17 | 天津耀皮工程玻璃有限公司 | High-weather-resistance coated glass and preparation method thereof |
CN113896432A (en) * | 2021-10-18 | 2022-01-07 | 膜尚科技(上海)有限公司 | Coated automobile glass |
CN114044632A (en) * | 2021-12-16 | 2022-02-15 | 西湖大学 | Vehicle glass and preparation method thereof |
CN115849731A (en) * | 2021-09-26 | 2023-03-28 | 河北勒克斯光学薄膜技术有限公司 | Temperable glass mirror and preparation method thereof |
CN116514409A (en) * | 2022-12-15 | 2023-08-01 | 天津南玻节能玻璃有限公司 | A kind of medium and low permeability steel low-emissivity coated glass |
CN118322676A (en) * | 2024-04-01 | 2024-07-12 | 江苏城乡建设职业学院 | Self-powered dimming energy-saving hollow glass and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020009601A1 (en) * | 1999-12-06 | 2002-01-24 | Grzegorz Stachowiak | Low-E matchable coated articles and methods of making same |
CN102372447A (en) * | 2010-08-24 | 2012-03-14 | 中国南玻集团股份有限公司 | Low emissivity glass containing silver |
CN103879080A (en) * | 2012-12-21 | 2014-06-25 | 中国南玻集团股份有限公司 | Three-silver-layer low-radiation glass and preparation method thereof |
CN104325736A (en) * | 2014-10-30 | 2015-02-04 | 中山市亨立达机械有限公司 | Three-silver LOW-E coated glass |
-
2015
- 2015-05-26 CN CN201510275011.5A patent/CN105152549A/en active Pending
-
2016
- 2016-03-29 HK HK16103574.0A patent/HK1215564A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020009601A1 (en) * | 1999-12-06 | 2002-01-24 | Grzegorz Stachowiak | Low-E matchable coated articles and methods of making same |
CN102372447A (en) * | 2010-08-24 | 2012-03-14 | 中国南玻集团股份有限公司 | Low emissivity glass containing silver |
CN103879080A (en) * | 2012-12-21 | 2014-06-25 | 中国南玻集团股份有限公司 | Three-silver-layer low-radiation glass and preparation method thereof |
CN104325736A (en) * | 2014-10-30 | 2015-02-04 | 中山市亨立达机械有限公司 | Three-silver LOW-E coated glass |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109231847A (en) * | 2017-07-11 | 2019-01-18 | 中国南玻集团股份有限公司 | Half-reflection and half-transmission glass and preparation method thereof |
CN108929045A (en) * | 2018-08-07 | 2018-12-04 | 杨瑞冰 | Low emissivity energy-saving glass and preparation method thereof |
CN108929045B (en) * | 2018-08-07 | 2021-04-16 | 江苏华玻光电技术有限公司 | Low-radiation energy-saving glass and preparation method thereof |
CN111138089A (en) * | 2018-11-06 | 2020-05-12 | 中国南玻集团股份有限公司 | Double silver glass |
CN109336411A (en) * | 2018-12-05 | 2019-02-15 | 天津北玻玻璃工业技术有限公司 | A kind of high low radiation coated glass |
CN110563344A (en) * | 2019-09-16 | 2019-12-13 | 传奇视界有限公司 | Energy-saving glass and preparation method and application thereof |
CN110596981A (en) * | 2019-09-16 | 2019-12-20 | 传奇视界有限公司 | Electrochromic glass with more neutral color matching and preparation method and application thereof |
CN110596981B (en) * | 2019-09-16 | 2022-04-19 | 传奇视界有限公司 | Electrochromic glass with more neutral color matching and preparation method and application thereof |
CN110563344B (en) * | 2019-09-16 | 2022-05-27 | 传奇视界有限公司 | Energy-saving glass and preparation method and application thereof |
CN112624627A (en) * | 2019-10-08 | 2021-04-09 | 湖北亿钧耀能新材股份公司 | Automobile glass and manufacturing method thereof |
CN112777945A (en) * | 2019-11-07 | 2021-05-11 | 中国南玻集团股份有限公司 | Three-silver glass |
CN111733390A (en) * | 2019-12-30 | 2020-10-02 | 宁波瑞凌新能源科技有限公司 | Composite barrier material for double-reflection layer film and application thereof |
CN111253082A (en) * | 2020-03-23 | 2020-06-09 | 中山市格兰特实业有限公司 | A kind of ultra-shielding heat-insulating three-silver temperable Low-E glass and preparation method thereof |
CN111233345A (en) * | 2020-03-23 | 2020-06-05 | 中山市格兰特实业有限公司 | Superstrong scratch-resistant three-silver temperable Low-E glass |
CN111196683B (en) * | 2020-03-23 | 2025-01-21 | 中山市格兰特实业有限公司 | A kind of three-silver temperable three-property gray Low-E glass |
CN111233345B (en) * | 2020-03-23 | 2024-08-13 | 中山市格兰特实业有限公司 | Super scratch-resistant three-silver toughened Low-E glass |
CN111253082B (en) * | 2020-03-23 | 2023-11-14 | 中山市格兰特实业有限公司 | A super-shielding and heat-insulating triple-silver temperable Low-E glass and its preparation method |
CN111196683A (en) * | 2020-03-23 | 2020-05-26 | 中山市格兰特实业有限公司 | Three-silver temperable three-property gray Low-E glass |
CN111362590A (en) * | 2020-03-25 | 2020-07-03 | 四川猛犸半导体科技有限公司 | Thin film device |
CN111517669A (en) * | 2020-06-09 | 2020-08-11 | 吴江南玻华东工程玻璃有限公司 | A kind of high-transmittance and low-reflection steel triple-silver low-emissivity glass and preparation method thereof |
CN112194384A (en) * | 2020-10-26 | 2021-01-08 | 四川宇光光学玻璃有限公司 | Coated glass processing technology |
CN113264691A (en) * | 2021-05-31 | 2021-08-17 | 天津耀皮工程玻璃有限公司 | High-weather-resistance coated glass and preparation method thereof |
CN115849731A (en) * | 2021-09-26 | 2023-03-28 | 河北勒克斯光学薄膜技术有限公司 | Temperable glass mirror and preparation method thereof |
CN113896432A (en) * | 2021-10-18 | 2022-01-07 | 膜尚科技(上海)有限公司 | Coated automobile glass |
CN114044632A (en) * | 2021-12-16 | 2022-02-15 | 西湖大学 | Vehicle glass and preparation method thereof |
CN116514409A (en) * | 2022-12-15 | 2023-08-01 | 天津南玻节能玻璃有限公司 | A kind of medium and low permeability steel low-emissivity coated glass |
CN118322676A (en) * | 2024-04-01 | 2024-07-12 | 江苏城乡建设职业学院 | Self-powered dimming energy-saving hollow glass and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
HK1215564A1 (en) | 2016-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105152549A (en) | Coated glass and preparation method thereof | |
CN1777690B (en) | Substrates coated with mixtures of titanium and aluminum materials, methods for making the substrates, and cathode targets of titanium and aluminum metal | |
JP2505276B2 (en) | Gray highly permeable low emissivity article and its manufacturing method | |
EP3388400A1 (en) | Barrier layers comprising ni and/or ti, coated articles including barrier layers, and methods of making the same | |
JP5725481B2 (en) | Low emission glass containing dielectric layer and method for producing the same | |
CN101058486B (en) | Heat treated low radiation coated glass prepared by magnetron sputtering method | |
CN110028251B (en) | Copper-containing double-silver low-emissivity coated glass capable of being subsequently processed and preparation method thereof | |
CN114368919B (en) | Light-transmission-color heat-processable energy-saving LOW-E product | |
CN110573468B (en) | Low emissivity coating, glass surfaces including the same, and methods of making the same | |
TW201305078A (en) | Triple-silver low radiation coating glass and manufacturing method thereof | |
CN102372445B (en) | Single-silver and low-radiation glass and manufacturing method thereof | |
CN104230182A (en) | Preparation method of high-transmittance tempered low-emissivity coated glass | |
JP2020510591A (en) | Coated article having a LOW-E coating with a doped silver IR reflective layer | |
CN112679114A (en) | Single silver layer HTLE glass | |
TWI501931B (en) | Can strengthen the three silver low-emission coated glass | |
CN107117832B (en) | Low-reflection and low-transmission temperable single-silver low-emissivity coated glass and its manufacturing method and application | |
CN103879080A (en) | Three-silver-layer low-radiation glass and preparation method thereof | |
CN102336529A (en) | High transmittance toughenable low radiation glass and manufacture method thereof | |
CN111302652A (en) | Flat-bent matched double-silver coated glass and preparation method thereof | |
CN112876096B (en) | Multi-silver layer low-radiation coated glass containing crystalline dielectric layer and preparation method and use thereof | |
CN210030460U (en) | Copper-containing double-silver low-emissivity coated glass capable of being subsequently processed | |
CN109081610A (en) | Saturating grey can steel double-silver low-emissivity coated glass and preparation method in one kind | |
CN210656698U (en) | High-transmittance light blue bendable steel three-silver low-emissivity coated glass | |
CN209010387U (en) | Saturating grey can steel double-silver low-emissivity coated glass in one kind | |
CN115321835B (en) | Flat-bending matched double-silver glass and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 1215564 Country of ref document: HK |
|
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151216 |
|
REG | Reference to a national code |
Ref country code: HK Ref legal event code: WD Ref document number: 1215564 Country of ref document: HK |