CN105147251A - Muscle fatigue dynamic prediction method based on multi-channel sEMG - Google Patents
Muscle fatigue dynamic prediction method based on multi-channel sEMG Download PDFInfo
- Publication number
- CN105147251A CN105147251A CN201510512631.6A CN201510512631A CN105147251A CN 105147251 A CN105147251 A CN 105147251A CN 201510512631 A CN201510512631 A CN 201510512631A CN 105147251 A CN105147251 A CN 105147251A
- Authority
- CN
- China
- Prior art keywords
- semg
- muscle fatigue
- time
- mpf
- prediction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 206010049565 Muscle fatigue Diseases 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000013519 translation Methods 0.000 claims abstract description 5
- 238000004458 analytical method Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 3
- 238000012935 Averaging Methods 0.000 claims 1
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- 238000001228 spectrum Methods 0.000 description 9
- 210000003205 muscle Anatomy 0.000 description 8
- 238000011160 research Methods 0.000 description 7
- 238000002567 electromyography Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 238000001320 near-infrared absorption spectroscopy Methods 0.000 description 3
- 238000004497 NIR spectroscopy Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004118 muscle contraction Effects 0.000 description 2
- 230000002232 neuromuscular Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 208000025978 Athletic injury Diseases 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 208000029549 Muscle injury Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003183 myoelectrical effect Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Landscapes
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明提供一种基于sEMG的肌肉疲劳动态预测方法。由于sEMG信号易受外部干扰,首先重新选取所有通道的平均值作为参考值,通过新的参考值与原来多通道sEMG作差分,有效的减少了外部干扰。分时最小二乘法通过时间基准平移,实现动态更新,预测肌肉疲劳时间。而MPF、MF参数是反映肌肉的疲劳重要参数,为提高肌肉疲劳预测可靠性,本发明采用MPF,MF两个参数预测肌肉疲劳时间,有效避免了单独参数预测的不稳定性,提升了预测的健壮性。本发明预测准确性高,运算速度快,实现简单,具有重要应用价值。
The invention provides a dynamic prediction method of muscle fatigue based on sEMG. Since the sEMG signal is susceptible to external interference, the average value of all channels is first reselected as the reference value, and the new reference value is differentiated from the original multi-channel sEMG, which effectively reduces the external interference. The time-sharing least squares method achieves dynamic update and predicts the time of muscle fatigue through time reference translation. The MPF and MF parameters are important parameters reflecting muscle fatigue. In order to improve the reliability of muscle fatigue prediction, the present invention uses MPF and MF parameters to predict muscle fatigue time, which effectively avoids the instability of individual parameter prediction and improves the prediction accuracy. robustness. The invention has high prediction accuracy, fast operation speed, simple realization and important application value.
Description
技术领域 technical field
本发明涉及一种基于多通道sEMG的肌肉疲劳动态预测方法。 The invention relates to a multi-channel sEMG-based dynamic prediction method for muscle fatigue.
背景技术 Background technique
神经肌肉疲劳机理与预测研究是国内外运动医学研究的热点,同时也是运动人体科学研究的重点。在运动过程中,由于血液中的供氧量,或者营养物质缺乏等都会使肌肉的结构、代谢以及能量等发生一系列变化,会使神经肌肉系统的效率下降,从而肌肉无法继续完成任务,导致肌肉疲劳。肌肉疲劳可能导致肌肉损伤,严重情况下的肌肉疲劳将不可恢复。肌肉疲劳的研究在人机工程学、人机接口、康复医疗、运动损伤、假肢等领域应用前景广泛。 Research on the mechanism and prediction of neuromuscular fatigue is a hot spot in sports medicine research at home and abroad, and it is also the focus of sports human science research. During exercise, due to the oxygen supply in the blood or the lack of nutrients, a series of changes will occur in the structure, metabolism and energy of the muscle, which will reduce the efficiency of the neuromuscular system, so that the muscle cannot continue to complete the task, resulting in Muscle fatigue. Muscle fatigue may lead to muscle damage, and muscle fatigue in severe cases will not be recoverable. The research on muscle fatigue has broad application prospects in the fields of ergonomics, human-machine interface, rehabilitation medicine, sports injuries, and artificial limbs.
目前,肌肉疲劳的临床检测工具主要有肌电信号(sEMG,surfaceelectromyography)、肌音(MMG,Mechanomyogram)、声肌图(SMG,Sonomyography)、近红外光谱(NIRS,Near-infraredspectroscopy)、声波描记图(AMG,Acousticmyography)、测角传感器等。利用sEMG记录、研究肌肉疲劳是劳动生理学中常用的方法,作为一种简单、无创伤、可定量的研究方法,它可研究局部肌肉疲劳过程中的变化特征,是一种精确检测工具。MMG从皮肤表面记录肌肉振动信号,它能很好捕捉肌肉活动,但是,MMG不能用于肌肉动态收缩研究,而且,在肌肉疲劳重复检测中稳定性不高。SMG采用超声描述骨骼肌的形态和结构的变化,该方法适合作为sEMG的辅助手段,提供更多的肌肉疲劳信息。NIRS使用电磁波谱的近红外部分测量血液的吸收特性血红蛋白,由于等长收缩过程中,肌氧含量不一致,导致NIRS信号不可靠。AMG是MMG的特殊应用,记录肌肉收缩时声音信号,该技术目前采用的不多,有些过时。测角传感器,测角传感器寿命短,成本高。另外还有测力计,Moore-Garg指数等等。总的来说,sEMG和MMG信号是临床研究肌肉疲劳的主要手段,而sEMG被认为是最适合的。 At present, the clinical detection tools for muscle fatigue mainly include myoelectric signal (sEMG, surface electromyography), muscle sound (MMG, Mechanomyogram), myosonography (SMG, Sonomyography), near-infrared spectroscopy (NIRS, Near-infraredspectroscopy), sonogram (AMG, Acousticmyography), angle sensor, etc. Using sEMG to record and study muscle fatigue is a commonly used method in labor physiology. As a simple, non-invasive and quantitative research method, it can study the changing characteristics of local muscle fatigue and is an accurate detection tool. MMG records muscle vibration signals from the skin surface, and it can capture muscle activity well. However, MMG cannot be used for the study of muscle dynamic contraction, and its stability is not high in repeated detection of muscle fatigue. SMG uses ultrasound to describe the changes in the shape and structure of skeletal muscle. This method is suitable as an auxiliary means of sEMG to provide more muscle fatigue information. NIRS uses the near-infrared portion of the electromagnetic spectrum to measure the absorption property of blood, hemoglobin, and the NIRS signal is unreliable due to inconsistent muscle oxygen content during isometric contractions. AMG is a special application of MMG, which records the sound signal of muscle contraction. This technology is not widely used at present and is somewhat outdated. Angle sensor, the angle sensor has short service life and high cost. There are also dynamometers, Moore-Garg indices, and more. Overall, sEMG and MMG signals are the main means of clinical research on muscle fatigue, and sEMG is considered the most suitable.
由于肌肉疲劳的sEMG信号受以下因素影响:运动方式、运动强度、肌肉的收缩方式(离心、向心收缩)、肌肉类型、个体特征等,所以在众多的疲劳EMG特征的研究中,不同的特征参数得到结论不完全一致,肌肉疲劳预测仍然困难。 Since the sEMG signal of muscle fatigue is affected by the following factors: exercise mode, exercise intensity, muscle contraction mode (centrifugal, concentric contraction), muscle type, individual characteristics, etc., in many researches on fatigue EMG characteristics, different characteristics Parameters are not fully consistent, and muscle fatigue prediction remains difficult.
发明内容 Contents of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种基于sEMG的肌肉疲劳在线预测的快速方法。 In view of the shortcomings of the prior art described above, the purpose of the present invention is to provide a fast method for online prediction of muscle fatigue based on sEMG.
一种基于多通道sEMG的肌肉疲劳动态预测方法,其包括如下步骤: A method for dynamic prediction of muscle fatigue based on multi-channel sEMG, comprising the steps of:
1):对多通道sEMG信号进行预处理:重新选择参考值,并且采用带通滤波器、带阻滤波器,消除干扰。 1): Preprocess the multi-channel sEMG signal: reselect the reference value, and use a band-pass filter and a band-stop filter to eliminate interference.
2):采用分时最小二乘法拟合sEMG的平均功率频率MPF、中位频率MF曲线; 2): The average power frequency MPF and median frequency MF curves of sEMG are fitted by the time-sharing least squares method;
3):预测肌肉疲劳时间:根据MPF、MF拟合结果,将得到的时间加权计算肌肉疲劳时间; 3): Predict muscle fatigue time: according to the MPF and MF fitting results, calculate the muscle fatigue time by weighting the obtained time;
4):反复步骤1)、2)、3),动态更新预测肌肉疲劳时间。 4): Repeat steps 1), 2), and 3) to dynamically update and predict muscle fatigue time.
优化的措施,还包括: Optimization measures also include:
步骤1)对多通道sEMG信号进行预处理,具体步骤如下: Step 1) Preprocessing the multi-channel sEMG signal, the specific steps are as follows:
a)将通道sEMG信号相加,并求平均; a) will Channel sEMG signal Add and average ;
b)以上述平均值作为参考值,得到新的通道sEMG信号,,,...,; b) Using the above average as a reference value, a new channel sEMG signal, , ,..., ;
c)将新的通道sEMG信号进行带通滤波和带阻滤波,消除干扰,后续sEMG信号处理均针对新的通道sEMG信号。 c) replace the new Channel sEMG signal Perform band-pass filtering and band-stop filtering to eliminate interference, and subsequent sEMG signal processing is aimed at the new Channel sEMG signal.
带通滤波器用来保留10Hz--500Hz频段信号,然后采用陷波滤波器,滤除50Hz工频干扰。带通滤波器和带阻滤波均采用常规的做法,采用巴特沃斯数字滤波器,设置参数包括阶数、3dB截止频率、滤波器的通带、阻带截止频率等。 The band-pass filter is used to retain the 10Hz--500Hz frequency band signal, and then the notch filter is used to filter out the 50Hz power frequency interference. Both the band-pass filter and the band-stop filter adopt conventional methods, using Butterworth digital filters, and setting parameters include order, 3dB cut-off frequency, filter pass band, stop band cut-off frequency, etc.
步骤2)分时最小二乘法,具体方法是:首先以当前时刻为基准,向前取K秒(K为正整数)时长的sEMG信号,其次针对该段sEMG,计算第1秒、第2秒、第3秒、...,第K秒的平均功率频率MPF及中位频率MF,然后利用最小二乘法分别拟合MPF及MF曲线,最后分别得到曲线上平均功率频率MPF下降到90%MPF所对应的时刻,以及中位频率下降到90%MPF所对应的时刻。其中最小二乘法的参数可由下式计算: Step 2) Time-sharing least squares method, the specific method is: firstly take the current time as the benchmark, take the sEMG signal with a duration of K seconds (K is a positive integer) forward, and then calculate the 1st second and the 2nd second for this segment of sEMG , the 3rd second, ..., the average power frequency MPF and the median frequency MF of the K second, and then use the least square method to fit the MPF and MF curves respectively, and finally get the average power frequency MPF on the curve to drop to 90%MPF corresponding moment , and the moment when the median frequency drops to 90% MPF . The parameters of the least squares method can be calculated by the following formula:
其中表示MPF或MF,表示MPF或MF的均值,表示时刻,,表示时刻均值。 in means MPF or MF, Denotes the mean value of MPF or MF, indicates the moment, , represents the time mean.
其中MPF、MF计算公式如下: The calculation formulas of MPF and MF are as follows:
其中为肌电信号的频率为其功率密度谱,采用基于傅里叶分析的经典功率谱估计技术估计。 in is the frequency of the electromyographic signal For its power density spectrum, the classical power spectrum estimation technique based on Fourier analysis is used to estimate .
步骤3)预测肌肉疲劳时间。肌电信号的功率谱变化能反映传导速度的变化,因而也能反映疲劳程度,且MPF和MF随着肌肉疲劳都有下降趋势。中位频率MF比平均功率频率MPF能更可靠地反映传导速度,MF对噪声较不敏感,适用于在线估计。但是MPF对于频谱移动是一个更稳定的测量,尤其信噪比较高MPF比较可靠。为提高肌肉疲劳预测可靠性,本发明采用MPF,MF两个参数预测肌肉疲劳时间。根据上述时间,,预测肌肉疲劳时间函数为: Step 3) Predict muscle fatigue time. The change of the power spectrum of the EMG signal can reflect the change of conduction velocity, so it can also reflect the degree of fatigue, and both MPF and MF have a downward trend with muscle fatigue. The median frequency MF can reflect the conduction velocity more reliably than the average power frequency MPF. MF is less sensitive to noise and is suitable for online estimation. However, MPF is a more stable measurement for spectrum shift, especially if the signal-to-noise ratio is high, MPF is more reliable. In order to improve the reliability of muscle fatigue prediction, the present invention uses two parameters, MPF and MF, to predict muscle fatigue time. According to the above time , , the predicted muscle fatigue time function is:
其中是加权系数,根据个体的年龄、性别等特征具体选择, in is the weighting coefficient, which is selected according to the characteristics of the individual such as age and gender,
步骤4)反复步骤1)、2)、3),通过时间基准的平移,可取不同时间段的sEMG,分时信号分析,实现动态更新,预测肌肉疲劳时间。 Step 4) Repeat steps 1), 2), and 3). Through the translation of the time reference, sEMG of different time periods can be obtained, time-sharing signal analysis, dynamic update, and prediction of muscle fatigue time.
采用上述方法预测肌肉疲劳,预测准确快捷。首先重新选取所有通道的平均值作为参考值,由于外部干扰大部分会对所有的电极均产生影响,通过新的参考值与原来多通道sEMG作差,有效的减少了外部干扰,而且参考值变化,不会影响后续的预测运算,反而提高了预测的准确性。分时最小二乘法的采用简化了计算,提高了运算速度,而且实现简单。MPF、MF两参数的运用,有效避免了单独参数预测的不稳定性,提升了预测的健壮性。分时信号分析,实现动态更新,在线预测肌肉疲劳时间。 Using the above method to predict muscle fatigue, the prediction is accurate and fast. First, the average value of all channels is reselected as the reference value. Since most of the external interference will affect all electrodes, the difference between the new reference value and the original multi-channel sEMG effectively reduces the external interference, and the reference value changes , will not affect the subsequent prediction operation, but improve the accuracy of the prediction. The adoption of the time-sharing least squares method simplifies the calculation, improves the operation speed, and is simple to implement. The application of MPF and MF parameters effectively avoids the instability of individual parameter prediction and improves the robustness of prediction. Time-sharing signal analysis, dynamic update, and online prediction of muscle fatigue time.
附图说明 Description of drawings
图1为本发明流程图。 Fig. 1 is the flow chart of the present invention.
具体实施方式 Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地实现。 Embodiments of the present invention are described below through specific examples, and those skilled in the art can easily realize the contents disclosed in this specification.
如图1所示,一种基于多通道sEMG的肌肉疲劳动态预测方法,其包括如下步骤: As shown in Figure 1, a kind of muscle fatigue dynamic prediction method based on multi-channel sEMG, it comprises the following steps:
1):对多通道sEMG信号进行预处理:重新选择参考值,并且采用带通滤波器、带阻滤波器,消除干扰,具体步骤如下: 1): Preprocess the multi-channel sEMG signal: reselect the reference value, and use a band-pass filter and a band-stop filter to eliminate interference. The specific steps are as follows:
a)将通道sEMG信号相加,并求平均; a) will Channel sEMG signal Add and average ;
b)以上述平均值作为参考值,得到新的通道sEMG信号,,,...,; b) Using the above average as a reference value, a new channel sEMG signal, , ,..., ;
c)将新的通道sEMG信号进行带通滤波和带阻滤波,消除干扰,后续sEMG信号处理均针对新的通道sEMG信号。 c) replace the new Channel sEMG signal Perform band-pass filtering and band-stop filtering to eliminate interference, and subsequent sEMG signal processing is aimed at the new Channel sEMG signal.
带通滤波器用来保留10Hz--500Hz频段信号,然后采用陷波滤波器,滤除50Hz工频干扰。带通滤波器和带阻滤波均采用常规的做法,采用巴特沃斯数字滤波器,设置参数包括阶数、3dB截止频率、滤波器的通带、阻带截止频率等。 The band-pass filter is used to retain the 10Hz--500Hz frequency band signal, and then the notch filter is used to filter out the 50Hz power frequency interference. Both the band-pass filter and the band-stop filter adopt conventional methods, using Butterworth digital filters, and setting parameters include order, 3dB cut-off frequency, filter pass band, stop band cut-off frequency, etc.
2):采用分时最小二乘法拟合sEMG的平均功率频率MPF、中位频率MF曲线。具体方法是:首先以当前时刻为基准,向前取K秒(K为正整数)时长的sEMG信号,其次针对该段sEMG,计算第1秒、第2秒、第3秒、...,第K秒的平均功率频率MPF及中位频率MF,然后利用最小二乘法分别拟合MPF及MF曲线,最后分别得到曲线上平均功率频率MPF下降到90%MPF所对应的时刻,以及中位频率下降到90%MPF所对应的时刻。其中最小二乘法的参数可由下式计算: 2): The average power frequency MPF and median frequency MF curves of sEMG were fitted by the time-sharing least squares method. The specific method is: firstly take the current time as the benchmark, take the sEMG signal with a duration of K seconds (K is a positive integer) forward, and then calculate the 1st second, the 2nd second, the 3rd second, ... for this segment of sEMG, The average power frequency MPF and median frequency MF of the K second, and then use the least square method to fit the MPF and MF curves respectively, and finally obtain the corresponding time when the average power frequency MPF on the curve drops to 90% MPF , and the moment when the median frequency drops to 90% MPF . The parameters of the least squares method can be calculated by the following formula:
其中表示MPF或MF,表示MPF或MF的均值,表示时刻,,时刻均值。 in means MPF or MF, Denotes the mean value of MPF or MF, indicates the moment, , time mean.
其中MPF、MF计算公式如下: The calculation formulas of MPF and MF are as follows:
其中为肌电信号的频率为其功率密度谱,采用基于傅里叶分析的经典功率谱估计技术估计。 in is the frequency of the electromyographic signal For its power density spectrum, the classical power spectrum estimation technique based on Fourier analysis is used to estimate .
3):预测肌肉疲劳时间:根据MPF、MF拟合结果,将得到的时间加权计算肌肉疲劳时间。肌电信号的功率谱变化能反映传导速度的变化,因而也能反映疲劳程度,且MPF和MF随着肌肉疲劳都有下降趋势。中位频率MF比平均功率频率MPF能更可靠地反映传导速度,MF对噪声较不敏感,适用于在线估计。但是MPF对于频谱移动是一个更稳定的测量,尤其信噪比较高MPF比较可靠。为提高肌肉疲劳预测可靠性,本发明采用MPF,MF两个参数预测肌肉疲劳时间。根据上述时间,,预测肌肉疲劳时间函数为: 3): Predict the muscle fatigue time: according to the MPF and MF fitting results, calculate the muscle fatigue time by weighting the obtained time. The change of the power spectrum of the EMG signal can reflect the change of conduction velocity, so it can also reflect the degree of fatigue, and both MPF and MF have a downward trend with muscle fatigue. The median frequency MF can reflect the conduction velocity more reliably than the average power frequency MPF. MF is less sensitive to noise and is suitable for online estimation. However, MPF is a more stable measurement for spectrum shift, especially if the signal-to-noise ratio is high, MPF is more reliable. In order to improve the reliability of muscle fatigue prediction, the present invention uses two parameters, MPF and MF, to predict muscle fatigue time. According to the above time , , the predicted muscle fatigue time function is:
其中是加权系数,根据个体的年龄、性别等特征具体选择, in is the weighting coefficient, which is selected according to the characteristics of the individual such as age and gender,
4):反复步骤1)、2)、3),动态更新预测肌肉疲劳时间。通过时间基准的平移,可取不同时间段的sEMG,分时信号分析,实现动态更新,预测肌肉疲劳时间。 4): Repeat steps 1), 2), and 3) to dynamically update and predict muscle fatigue time. Through the translation of the time base, sEMG of different time periods can be taken, and the time-sharing signal analysis can realize dynamic update and predict the time of muscle fatigue.
综上所述,本发明提出基于sEMG的肌肉疲劳预测方法能够准确预测肌肉疲劳时间。由于sEMG信号易受外部干扰,通过将多通道信号平均作为新的参考值,有效地抑制信号的干扰。而MPF、MF参数是反映肌肉的疲劳重要参数,为提高肌肉疲劳预测可靠性,本发明采用MPF,MF两个参数预测肌肉疲劳时间。分时最小二乘法通过时间基准平移,实现动态更新,预测肌肉疲劳时间。本发明有效克服了现有技术中的种种缺点而具有重要应用价值。 In summary, the present invention proposes that the muscle fatigue prediction method based on sEMG can accurately predict the muscle fatigue time. Since the sEMG signal is susceptible to external interference, the multi-channel signal average is used as a new reference value to effectively suppress the interference of the signal. The MPF and MF parameters are important parameters reflecting muscle fatigue. In order to improve the reliability of muscle fatigue prediction, the present invention uses MPF and MF parameters to predict muscle fatigue time. The time-sharing least squares method achieves dynamic update and predicts the time of muscle fatigue through time reference translation. The invention effectively overcomes various shortcomings in the prior art and has important application value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。 The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Anyone skilled in the art can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those skilled in the art without departing from the spirit and technical ideas disclosed in the present invention should still be covered by the claims of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510512631.6A CN105147251B (en) | 2015-08-19 | 2015-08-19 | Muscular fatigue dynamic prediction method based on multichannel sEMG |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510512631.6A CN105147251B (en) | 2015-08-19 | 2015-08-19 | Muscular fatigue dynamic prediction method based on multichannel sEMG |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105147251A true CN105147251A (en) | 2015-12-16 |
CN105147251B CN105147251B (en) | 2017-12-22 |
Family
ID=54788564
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510512631.6A Expired - Fee Related CN105147251B (en) | 2015-08-19 | 2015-08-19 | Muscular fatigue dynamic prediction method based on multichannel sEMG |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105147251B (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108209902A (en) * | 2017-05-25 | 2018-06-29 | 深圳市未来健身衣科技有限公司 | Sportsman's competitive state appraisal procedure and system |
CN108742614A (en) * | 2018-06-11 | 2018-11-06 | 上海交通大学 | A kind of muscular fatigue detection method of joint surface myoelectric flesh sound and near infrared spectrum |
WO2018209495A1 (en) * | 2017-05-15 | 2018-11-22 | 东莞市棒棒糖电子科技有限公司 | Muscle fatigue monitoring system |
WO2018214524A1 (en) * | 2017-05-25 | 2018-11-29 | 深圳市未来健身科技有限公司 | Early warning method and apparatus for exercise training |
CN109077725A (en) * | 2018-08-09 | 2018-12-25 | 江汉大学 | A kind of muscular fatigue degree detection device |
CN109464129A (en) * | 2019-01-09 | 2019-03-15 | 浙江强脑科技有限公司 | Detection method, equipment and the computer readable storage medium of muscular fatigue state |
CN109846480A (en) * | 2018-08-09 | 2019-06-07 | 江汉大学 | Method, device and storage medium for detecting comprehensive muscle fatigue |
CN109938725A (en) * | 2017-12-20 | 2019-06-28 | 北京怡和嘉业医疗科技股份有限公司 | EEG signal processing method and system |
CN110720911A (en) * | 2019-10-12 | 2020-01-24 | 宁波工程学院 | Muscle movement unit extraction method |
CN110870769A (en) * | 2018-09-03 | 2020-03-10 | 香港理工大学深圳研究院 | Method and device for detecting muscle fatigue level |
CN112957056A (en) * | 2021-03-16 | 2021-06-15 | 苏州大学 | Method and system for extracting muscle fatigue grade features by utilizing cooperative network |
CN113645901A (en) * | 2019-03-27 | 2021-11-12 | 皇家飞利浦有限公司 | Assess muscle fatigue |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002224072A (en) * | 2001-02-02 | 2002-08-13 | Mazda Motor Corp | Muscular fatigue evaluating device, muscular fatigue evaluating method, computer program for executing this method and storage medium for storing this computer program |
CN103054575A (en) * | 2013-01-15 | 2013-04-24 | 中国医学科学院生物医学工程研究所 | Method for studying muscle fatigue on basis of static myoelectricity after electrical stimulation |
CN104224169A (en) * | 2014-10-14 | 2014-12-24 | 沈阳工程学院 | Surface electromyogram signal linear analyzing method for judging human body muscle fatigue |
CN104714645A (en) * | 2015-03-24 | 2015-06-17 | 华为技术有限公司 | Human-computer interaction method and human-computer interaction equipment |
-
2015
- 2015-08-19 CN CN201510512631.6A patent/CN105147251B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002224072A (en) * | 2001-02-02 | 2002-08-13 | Mazda Motor Corp | Muscular fatigue evaluating device, muscular fatigue evaluating method, computer program for executing this method and storage medium for storing this computer program |
CN103054575A (en) * | 2013-01-15 | 2013-04-24 | 中国医学科学院生物医学工程研究所 | Method for studying muscle fatigue on basis of static myoelectricity after electrical stimulation |
CN104224169A (en) * | 2014-10-14 | 2014-12-24 | 沈阳工程学院 | Surface electromyogram signal linear analyzing method for judging human body muscle fatigue |
CN104714645A (en) * | 2015-03-24 | 2015-06-17 | 华为技术有限公司 | Human-computer interaction method and human-computer interaction equipment |
Non-Patent Citations (4)
Title |
---|
周前祥等: "基于sEMG信号的操作者上肢肌肉施力疲劳评价模型研究", 《中国科学:生命科学》 * |
王笃明等: "静态负荷诱发肌肉疲劳时表面肌电信号(sEMG)变化与主观疲劳感之间的关系", 《航天医学与医学工程》 * |
陈胜利等: "表面肌电信号分析评价肌肉疲劳的有效性和敏感性", 《武汉体育学院学报》 * |
黄耐寒: "基于表面肌电的肌疲劳分析与肌力预测研究及实现", 《中国优秀硕士学位论文全文数据库(医药卫生科技辑)》 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018209495A1 (en) * | 2017-05-15 | 2018-11-22 | 东莞市棒棒糖电子科技有限公司 | Muscle fatigue monitoring system |
CN111491559A (en) * | 2017-05-15 | 2020-08-04 | 东莞市棒棒糖电子科技有限公司 | Muscle fatigue detection system |
WO2018214524A1 (en) * | 2017-05-25 | 2018-11-29 | 深圳市未来健身科技有限公司 | Early warning method and apparatus for exercise training |
CN108209902A (en) * | 2017-05-25 | 2018-06-29 | 深圳市未来健身衣科技有限公司 | Sportsman's competitive state appraisal procedure and system |
CN109938725A (en) * | 2017-12-20 | 2019-06-28 | 北京怡和嘉业医疗科技股份有限公司 | EEG signal processing method and system |
CN109938725B (en) * | 2017-12-20 | 2022-03-18 | 北京怡和嘉业医疗科技股份有限公司 | Electroencephalogram signal processing method and system |
CN108742614A (en) * | 2018-06-11 | 2018-11-06 | 上海交通大学 | A kind of muscular fatigue detection method of joint surface myoelectric flesh sound and near infrared spectrum |
CN109077725A (en) * | 2018-08-09 | 2018-12-25 | 江汉大学 | A kind of muscular fatigue degree detection device |
CN109846480A (en) * | 2018-08-09 | 2019-06-07 | 江汉大学 | Method, device and storage medium for detecting comprehensive muscle fatigue |
CN109077725B (en) * | 2018-08-09 | 2021-03-09 | 江汉大学 | A kind of muscle fatigue detection device |
CN109846480B (en) * | 2018-08-09 | 2021-10-29 | 江汉大学 | Method, device and storage medium for detecting comprehensive muscle fatigue |
CN110870769A (en) * | 2018-09-03 | 2020-03-10 | 香港理工大学深圳研究院 | Method and device for detecting muscle fatigue level |
CN110870769B (en) * | 2018-09-03 | 2022-08-09 | 香港理工大学深圳研究院 | Method and equipment for detecting muscle fatigue grade |
CN109464129A (en) * | 2019-01-09 | 2019-03-15 | 浙江强脑科技有限公司 | Detection method, equipment and the computer readable storage medium of muscular fatigue state |
CN113645901B (en) * | 2019-03-27 | 2024-04-19 | 皇家飞利浦有限公司 | Apparatus for assessing muscle fatigue and corresponding computer program product |
CN113645901A (en) * | 2019-03-27 | 2021-11-12 | 皇家飞利浦有限公司 | Assess muscle fatigue |
CN110720911A (en) * | 2019-10-12 | 2020-01-24 | 宁波工程学院 | Muscle movement unit extraction method |
CN112957056B (en) * | 2021-03-16 | 2022-12-30 | 苏州大学 | Method and system for extracting muscle fatigue grade features by utilizing cooperative network |
CN112957056A (en) * | 2021-03-16 | 2021-06-15 | 苏州大学 | Method and system for extracting muscle fatigue grade features by utilizing cooperative network |
Also Published As
Publication number | Publication date |
---|---|
CN105147251B (en) | 2017-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105147251B (en) | Muscular fatigue dynamic prediction method based on multichannel sEMG | |
CN105943005B (en) | The non-invasive blood pressure detection device mixed based on photoelectricity green light pulse with electrocardiogram | |
CN109907752B (en) | Electrocardiogram diagnosis and monitoring system for removing motion artifact interference and electrocardio characteristic detection | |
CN103549950B (en) | Improved difference threshold detection algorithm for mobile ECG (electrocardiogram) monitoring | |
CN102283670B (en) | Method and device for quantitatively analyzing heart sound signals | |
CN113349752A (en) | Wearable device real-time heart rate monitoring method based on sensing fusion | |
EP3358485A1 (en) | General noninvasive blood glucose prediction method based on timing analysis | |
CN111599470B (en) | Method for improving near-infrared noninvasive blood glucose detection precision | |
CN112998690A (en) | Pulse wave multi-feature fusion-based respiration rate extraction method | |
CN107995981B (en) | Data processing method for blood pressure measuring device | |
CN106999072B (en) | Multi-channel ballistocardiograph with cepstral smoothing and quality-based dynamic channel selection | |
CN102885616A (en) | Method for removing baseline drift from pulse wave signal | |
CN107296600A (en) | A kind of quick 12 lead electrocardiosignal method for evaluating quality | |
CN104958064A (en) | Wearable arteriosclerosis detector and pulse wave velocity detecting method | |
Carbonaro et al. | Wearable biomonitoring system for stress management: A preliminary study on robust ECG signal processing | |
CN103690169B (en) | Respiratory information detecting method | |
CN104068841B (en) | A kind of measuring method and device measuring Indices of Systolic Time parameter | |
CN101637394A (en) | Method for positioning and segmenting heart sound signal | |
CN104095640A (en) | Blood oxygen saturation detection method and device | |
CN109330582A (en) | Heart rate and its characteristic index detection method based on ECG Signal Analysis | |
CN104873218A (en) | Four-passage heart sound synchronous positioning and collecting device | |
CN208511016U (en) | A kind of vital sign comprehensive detection analysis system | |
Aubert et al. | Estimation of vital signs in bed from a single unobtrusive mechanical sensor: Algorithms and real-life evaluation | |
CN103239239B (en) | Fixed-amplitude dynamic spectrum data extraction method | |
CN105852863A (en) | Respiration rate measuring method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171222 Termination date: 20190819 |