CN105138976A - A Genetic Wavelet Neural Network Based Icing Thickness Recognition Method for Transmission Lines - Google Patents
A Genetic Wavelet Neural Network Based Icing Thickness Recognition Method for Transmission Lines Download PDFInfo
- Publication number
- CN105138976A CN105138976A CN201510499928.3A CN201510499928A CN105138976A CN 105138976 A CN105138976 A CN 105138976A CN 201510499928 A CN201510499928 A CN 201510499928A CN 105138976 A CN105138976 A CN 105138976A
- Authority
- CN
- China
- Prior art keywords
- neural network
- transmission line
- wavelet neural
- image
- genetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/086—Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Remote Sensing (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Astronomy & Astrophysics (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Multimedia (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域 technical field
本发明涉及输电线路覆冰灾害监测领域,具体涉及了一种遗传小波神经网络的输电线路覆冰厚度识别方法。 The invention relates to the field of icing disaster monitoring of transmission lines, in particular to a method for identifying the icing thickness of transmission lines using a genetic wavelet neural network.
背景技术 Background technique
伴随着国家的经济发展,输电线路起着越来越重要的作用。由于输电线路的工作环境大多在野外,容易受到各种环境气象因素的影响,特别是在一些高海波高寒地区,输电线路容易受到覆冰灾害的影响,导致输电线路故障,造成电力系统无法安全可靠的运行,影响人民群众的正常生产和生活,造成经济损失和社会影响。因此,通过及时掌握输电线路覆冰的状态,开展覆冰灾害预防与处理工作,对电力输送的安全稳定具有重要的现实意义与实用价值。 With the economic development of the country, transmission lines play an increasingly important role. Since the working environment of the transmission line is mostly in the wild, it is easily affected by various environmental and meteorological factors, especially in some high-altitude and cold areas, the transmission line is easily affected by ice-covered disasters, resulting in failure of the transmission line, making the power system unsafe and reliable. Operation, affecting the normal production and life of the people, causing economic losses and social impact. Therefore, it has important practical significance and practical value for the safety and stability of power transmission to grasp the icing status of transmission lines in time and carry out the prevention and treatment of icing disasters.
现有的依据图像的输电线路覆冰厚度识别方法大多采用传统的图像边缘检测算子,然而这些算子仅适用于有限类型的检测,并且对噪声敏感,自适应性较差。 Most of the existing image-based identification methods for transmission line ice thickness use traditional image edge detection operators. However, these operators are only suitable for limited types of detection, and are sensitive to noise and have poor adaptability.
本发明提出了一种遗传小波神经网络的输电线路覆冰厚度识别方法,通过输电线路覆冰图像进行识别,能有有效计算输电线路的覆冰厚度并且为输电线路覆冰灾害监测与处理提供参考,具有广泛的应用前景以及经济价值。 The present invention proposes a genetic wavelet neural network method for identifying the icing thickness of transmission lines, which can effectively calculate the icing thickness of transmission lines through the identification of icing images on transmission lines and provide reference for the monitoring and treatment of icing disasters on transmission lines , has broad application prospects and economic value.
发明内容 Contents of the invention
本发明提出了一种遗传小波神经网络的输电线路覆冰厚度识别方法,为输电线路覆冰灾害监测与处理提供参考,从而保证电力运行的安全稳定。 The invention proposes a genetic wavelet neural network-based identification method for icing thickness of transmission lines, which provides reference for monitoring and processing icing disasters of transmission lines, thereby ensuring safe and stable power operation.
为实现上述目的,本发明采用的技术方案是: In order to achieve the above object, the technical scheme adopted in the present invention is:
一种遗传小波神经网络的输电线路覆冰厚度识别方法,包括以下步骤: A genetic wavelet neural network identification method for transmission line ice thickness, comprising the following steps:
步骤1:通过图像传感器获取输电线路覆冰图像; Step 1: Obtain the image of the icing of the transmission line through the image sensor;
步骤2:对获取的输电线路图像进行预处理; Step 2: Preprocessing the acquired transmission line image;
步骤3:利用遗传小波神经网络识别输电线路图像的边缘; Step 3: Use the genetic wavelet neural network to identify the edge of the transmission line image;
步骤4:计算输电线路覆冰厚度。 Step 4: Calculate the ice thickness of the transmission line.
所述步骤2中应包括以下具体步骤: The following specific steps should be included in the step 2:
步骤2.1:对权利要求1中所述步骤1获取的图像灰度化处理: Step 2.1: grayscale processing of the image acquired in step 1 described in claim 1:
(1) (1)
式中,为转换为灰度图像后对应的像素点的灰度值,、、为原图像红色分量值、绿色分量值与蓝色分量值; In the formula, is the gray value of the corresponding pixel after being converted into a grayscale image, , , are the red component value, green component value and blue component value of the original image;
步骤2.2:对灰度化后的图像以为窗口进行中值滤波。 Step 2.2: To grayscale the image with Perform median filtering for the window.
所述步骤3中应包括以下具体步骤: The following specific steps should be included in the step 3:
步骤3.1:对权利要求1中所述步骤2获取的预处理后的图像归一化处理: Step 3.1: Normalize the preprocessed image obtained in step 2 of claim 1:
(2) (2)
式中,为归一化后的像素灰度值,为预处理后的像素灰度值 In the formula, is the normalized pixel gray value, is the preprocessed pixel gray value
步骤3.2:采用Canny算子的窗口作为二值图像检测窗口的幅度,获得9维特征向量作为遗传小波神经网络的输入,像素点为边缘点小波神经网络输出为1,否则为0,小波神经网络中隐含层神经元小波基函数为: Step 3.2: Using the Canny operator The window is used as the magnitude of the binary image detection window, and the 9-dimensional feature vector is obtained as the input of the genetic wavelet neural network. The pixel point is the edge point. The output of the wavelet neural network is 1, otherwise it is 0. The hidden layer neurons in the wavelet neural network The function is:
(3) (3)
其中,与为伸缩平移尺度因子,,取Morlet小波: in, and is the scale factor for stretching and translation, , Take Morlet wavelet:
(4) (4)
所述输出层神经元通过选择Sigmoid函数: The neurons in the output layer select the Sigmoid function:
(5) (5)
可以表示为: It can be expressed as:
(6) (6)
其中, in,
(7) (7)
(8) (8)
(9) (9)
(10) (10)
(11) (11)
式中为样本个数,、、、为网络学习速率,为网络动量因子。步骤3.3:具体包括: In the formula is the number of samples, , , , is the network learning rate, is the network momentum factor. Step 3.3: Specifically include:
步骤3.3.1:初始化遗传算法参数,包括群体大小、交叉概率、变异概率以及最大代数; Step 3.3.1: Initialize genetic algorithm parameters, including population size , cross probability , mutation probability and the maximum algebraic ;
步骤3.3.2:将所述的小波神经网络中的隐含层节点数、初始权值、、网络学习速率、、、、伸缩平移尺度因子、以及网络动量因子采用实数编码方法作为一组染色体; Step 3.3.2: the number of hidden layer nodes in the wavelet neural network , initial weight , , network learning rate , , , , scaling factor , and the network momentum factor Use the real number encoding method as a set of chromosomes;
步骤3.3.3:随机生成组初始染色体,构成初始种群; Step 3.3.3: Random generation group of initial chromosomes, constituting the initial population ;
步骤3.3.4:定义适应度函数为: Step 3.3.4: Define the fitness function as:
, ,
式中为第个样本输出神经元的实际输出,为第个样本输出神经元的理想输出,计算种群各个个体的适应度; In the formula for the first The actual output of the sample output neuron, for the first The ideal output of the sample output neuron, calculate the population the fitness of each individual;
步骤3.3.5:选择适应度比例选择法进行遗传操作; Step 3.3.5: Select the fitness proportional selection method for genetic operation;
步骤3.3.6:根据交叉概率,进行交叉操作; Step 3.3.6: According to the crossover probability , perform cross operation;
步骤3.3.7:选择变异概率,进行变异操作; Step 3.3.7: Select Mutation Probability , to perform a mutation operation;
步骤3.3.8:得到下一代种群; Step 3.3.8: Get the next generation population ;
步骤3.3.9:判断是否达到最大次数或中最优个体适应度大于等于预定值,若是则停止运算,将最优个体解码为小波神经网络的参数,若否则重复步骤3.3.3-步骤3.3.9; Step 3.3.9: Determine whether the maximum number of times or If the fitness of the optimal individual is greater than or equal to the predetermined value, if so, stop the operation, and decode the optimal individual into the parameters of the wavelet neural network, if otherwise, repeat steps 3.3.3-3.3.9;
步骤3.4:将Canny算子检测为边缘的像素点作为训练样本训练小波神经网络。 Step 3.4: Use the pixels detected as edges by the Canny operator as training samples to train the wavelet neural network.
步骤4中应包括以下具体步骤: Step 4 should include the following specific steps:
步骤4.1:根据小波神经网络的输出结果计算输电线路覆冰后导线平均轮廓宽度: Step 4.1: According to the output of the wavelet neural network, calculate the average profile width of the conductor after the transmission line is iced:
(12) (12)
式中,为第个边缘像素轮廓的宽度; In the formula, for the first The width of the edge pixel outline;
步骤4.2:计算输电线路覆冰的平均厚度: Step 4.2: Calculate the average thickness of icing on transmission lines:
(13) (13)
式中,为已知的输电线路原始直径。 In the formula, is the known original diameter of the transmission line.
本发明的有益效果在于: The beneficial effects of the present invention are:
本发明的一种遗传小波神经网络的输电线路覆冰厚度识别方法,可以达到有效计算输电线路覆冰厚度的目的,结果准确率高、自适应好、具有一定鲁棒性,从而为输电线路冰灾监测及处理提供参考,保证电网系统的安全稳定。 A transmission line icing thickness recognition method based on a genetic wavelet neural network of the present invention can achieve the purpose of effectively calculating the transmission line icing thickness. Provide reference for disaster monitoring and handling to ensure the safety and stability of the power grid system.
附图说明 Description of drawings
图1为本发明的流程图。 Fig. 1 is a flowchart of the present invention.
图2为本发明中小波神经网络结构图。 Fig. 2 is a structure diagram of the wavelet neural network in the present invention.
图3为本发明中遗传算法优化流程图。 Fig. 3 is a flowchart of genetic algorithm optimization in the present invention.
具体实施方式 Detailed ways
以下结合附图1-附图3对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。 Preferred embodiments of the present invention will be described below in conjunction with accompanying drawings 1-3. It should be understood that the preferred embodiments described here are only used to illustrate and explain the present invention, and are not intended to limit the present invention.
一种遗传小波神经网络的输电线路覆冰厚度识别方法,包括以下步骤: A genetic wavelet neural network identification method for transmission line ice thickness, comprising the following steps:
步骤1:通过图像传感器获取输电线路覆冰图像; Step 1: Obtain the image of the icing of the transmission line through the image sensor;
步骤2:对获取的输电线路图像进行预处理 Step 2: Preprocessing the acquired transmission line image
步骤3:利用遗传小波神经网络识别输电线路图像的边缘; Step 3: Use the genetic wavelet neural network to identify the edge of the transmission line image;
步骤4:计算输电线路覆冰厚度。 Step 4: Calculate the ice thickness of the transmission line.
所述步骤2中应包括以下具体步骤: The following specific steps should be included in the step 2:
步骤2.1:对权利要求1中所述步骤1获取的图像灰度化处理: Step 2.1: grayscale processing of the image acquired in step 1 described in claim 1:
(1) (1)
式中,为转换为灰度图像后对应的像素点的灰度值,、、为原图像红色分量值、绿色分量值与蓝色分量值; In the formula, is the gray value of the corresponding pixel after being converted into a grayscale image, , , are the red component value, green component value and blue component value of the original image;
步骤2.2:对灰度化后的图像以为窗口进行中值滤波。 Step 2.2: To grayscale the image with Perform median filtering for the window.
所述步骤3中应包括以下具体步骤: The following specific steps should be included in the step 3:
步骤3.1:对步骤2获取的预处理后的图像归一化处理: Step 3.1: Normalize the preprocessed image obtained in step 2:
(2) (2)
式中,为归一化后的像素灰度值,为预处理后的像素灰度值 In the formula, is the normalized pixel gray value, is the preprocessed pixel gray value
采用Canny算子的窗口作为二值图像检测窗口的幅度,获得9维特征向量作为遗传小波神经网络的输入,像素点为边缘点小波神经网络输出为1,否则为0,小波神经网络中隐含层神经元小波基函数为: Using Canny operator The window is used as the magnitude of the binary image detection window, and the 9-dimensional feature vector is obtained as the input of the genetic wavelet neural network. The pixel point is the edge point. The output of the wavelet neural network is 1, otherwise it is 0. The hidden layer neurons in the wavelet neural network The function is:
(3) (3)
其中,与为伸缩平移尺度因子,,取Morlet小波: in, and is the scale factor for stretching and translation, , Take Morlet wavelet:
(4) (4)
所述输出层神经元通过选择Sigmoid函数: The neurons in the output layer select the Sigmoid function:
(5) (5)
可以表示为: It can be expressed as:
(6) (6)
其中, in,
(7) (7)
(8) (8)
(9) (9)
(10) (10)
(11) (11)
式中为样本个数,、、、为网络学习速率,为网络动量因子。 In the formula is the number of samples, , , , is the network learning rate, is the network momentum factor.
步骤3.3:具体包括: Step 3.3: Specifically include:
步骤3.3.1:初始化遗传算法参数,包括群体大小、交叉概率、变异概率以及最大代数; Step 3.3.1: Initialize genetic algorithm parameters, including population size , cross probability , mutation probability and the maximum algebraic ;
步骤3.3.2:将基于权利要求1所述的步骤3所述的小波神经网络的预测模型中的隐含层节点数、初始权值、、网络学习速率、、、、伸缩平移尺度因子、以及网络动量因子采用实数编码方法作为一组染色体; Step 3.3.2: the number of hidden layer nodes in the prediction model based on the wavelet neural network described in step 3 described in claim 1 , initial weight , , network learning rate , , , , scaling factor , and the network momentum factor Use the real number encoding method as a set of chromosomes;
步骤3.3.3:随机生成组初始染色体,构成初始种群; Step 3.3.3: Random generation group of initial chromosomes, constituting the initial population ;
步骤3.3.4:定义适应度函数为 Step 3.3.4: Define the fitness function as
式中为第个样本输出神经元的实际输出,为第个样本输出神经元的理想输出,计算种群各个个体的适应度; In the formula for the first The actual output of the sample output neuron, for the first The ideal output of the sample output neuron, calculate the population the fitness of each individual;
步骤3.3.5:选择适应度比例选择法进行遗传操作; Step 3.3.5: Select the fitness proportional selection method for genetic operation;
步骤3.3.6:根据交叉概率,进行交叉操作; Step 3.3.6: According to the crossover probability , perform cross operation;
步骤3.3.7:选择变异概率,进行变异操作; Step 3.3.7: Select Mutation Probability , to perform a mutation operation;
步骤3.3.8:得到下一代种群; Step 3.3.8: Get the next generation population ;
步骤3.3.9:判断是否达到最大次数或中最优个体适应度大于等于预定值,若是则停止运算,将最优个体解码为小波神经网络的参数,若否则重复步骤3.3.3-步骤3.3.9; Step 3.3.9: Determine whether the maximum number of times or If the fitness of the optimal individual is greater than or equal to the predetermined value, if so, stop the operation, and decode the optimal individual into the parameters of the wavelet neural network, if otherwise, repeat steps 3.3.3-3.3.9;
步骤3.4:将Canny算子检测为边缘的像素点取1500个作为训练样本,500个作为训练小波神经网络。 Step 3.4: Take 1500 pixels of edge pixels detected by Canny operator as training samples, and 500 as training wavelet neural network.
步骤4中应包括以下具体步骤: Step 4 should include the following specific steps:
步骤4.1:根据小波神经网络的输出结果计算输电线路覆冰后导线平均轮廓宽度: Step 4.1: According to the output of the wavelet neural network, calculate the average profile width of the conductor after the transmission line is iced:
(12) (12)
式中,为第个边缘像素轮廓的宽度; In the formula, for the first The width of the edge pixel outline;
步骤4.2:计算输电线路覆冰的平均厚度: Step 4.2: Calculate the average thickness of icing on transmission lines:
(13) (13)
式中,为已知的输电线路原始直径。 In the formula, is the known original diameter of the transmission line.
以上所述实施例为本发明的优选实施例,应当指出:对于本领域的技术人员来说,其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所做的修改或等同替换,均应属于本发明的权利要求范围内。 The above-described embodiments are preferred embodiments of the present invention. It should be pointed out that those skilled in the art can still modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some of the technical features. All modifications or equivalent replacements made within the spirit and principles of the present invention shall fall within the scope of the claims of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510499928.3A CN105138976A (en) | 2015-08-16 | 2015-08-16 | A Genetic Wavelet Neural Network Based Icing Thickness Recognition Method for Transmission Lines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510499928.3A CN105138976A (en) | 2015-08-16 | 2015-08-16 | A Genetic Wavelet Neural Network Based Icing Thickness Recognition Method for Transmission Lines |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105138976A true CN105138976A (en) | 2015-12-09 |
Family
ID=54724320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510499928.3A Pending CN105138976A (en) | 2015-08-16 | 2015-08-16 | A Genetic Wavelet Neural Network Based Icing Thickness Recognition Method for Transmission Lines |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105138976A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106595551A (en) * | 2016-12-13 | 2017-04-26 | 武汉大学 | Icing thickness detection method for power transmission line icing image based on deep learning |
CN107367319A (en) * | 2017-02-28 | 2017-11-21 | 淮阴师范学院 | The Wavelet Neural Network Method of capacitance weighing sensor nonlinear compensation |
CN109410231A (en) * | 2018-09-13 | 2019-03-01 | 安徽继远软件有限公司 | Powerline ice-covering detection method and system based on image procossing |
CN109447322A (en) * | 2018-09-28 | 2019-03-08 | 昆明理工大学 | A method of it is predicted based on phase space reconfiguration wavelet neural network powerline ice-covering |
CN110599538A (en) * | 2019-09-30 | 2019-12-20 | 山东信通电子股份有限公司 | Method and device for identifying icing thickness of transmission line conductor |
CN110648343A (en) * | 2019-09-05 | 2020-01-03 | 电子科技大学 | Image edge detection method based on sixth-order spline scaling function |
CN113431557A (en) * | 2021-06-09 | 2021-09-24 | 东北石油大学 | Underground borehole trajectory tracking method based on artificial intelligence |
CN113486731A (en) * | 2021-06-17 | 2021-10-08 | 国网山东省电力公司汶上县供电公司 | Abnormal state monitoring method for power transmission equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101793501A (en) * | 2010-04-14 | 2010-08-04 | 华中科技大学 | Transmission line ice coating status detection method based on image |
CN102679935A (en) * | 2012-03-02 | 2012-09-19 | 凯里供电局 | System and method for calculating icing thickness of power transmission line |
CN103400141A (en) * | 2013-07-24 | 2013-11-20 | 华南理工大学 | Method for calculating thickness of ice coated on transmission line on basis of improved image method |
CN103852018A (en) * | 2012-12-03 | 2014-06-11 | 西安元朔科技有限公司 | Electric transmission line icing thickness measuring algorithm based on image processing |
-
2015
- 2015-08-16 CN CN201510499928.3A patent/CN105138976A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101793501A (en) * | 2010-04-14 | 2010-08-04 | 华中科技大学 | Transmission line ice coating status detection method based on image |
CN102679935A (en) * | 2012-03-02 | 2012-09-19 | 凯里供电局 | System and method for calculating icing thickness of power transmission line |
CN103852018A (en) * | 2012-12-03 | 2014-06-11 | 西安元朔科技有限公司 | Electric transmission line icing thickness measuring algorithm based on image processing |
CN103400141A (en) * | 2013-07-24 | 2013-11-20 | 华南理工大学 | Method for calculating thickness of ice coated on transmission line on basis of improved image method |
Non-Patent Citations (5)
Title |
---|
冯玲 等: "基于图像处理的输电线路覆冰厚度测量", 《电力自动化设备》 * |
孙文雅 等: "基于图像处理的管道裂缝检测", 《制造业自动化》 * |
左东广 等: "小波神经网络研究", 《兵器装备工程学报》 * |
李萱: "小波神经网络特征提取技术在图像边缘检测中的应用", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
李逊 等: "基于遗传算法的小波神经网络", 《计算机与数字工程》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106595551A (en) * | 2016-12-13 | 2017-04-26 | 武汉大学 | Icing thickness detection method for power transmission line icing image based on deep learning |
CN106595551B (en) * | 2016-12-13 | 2019-01-04 | 武汉大学 | Ice covering thickness detection method in powerline ice-covering image based on deep learning |
CN107367319A (en) * | 2017-02-28 | 2017-11-21 | 淮阴师范学院 | The Wavelet Neural Network Method of capacitance weighing sensor nonlinear compensation |
CN109410231A (en) * | 2018-09-13 | 2019-03-01 | 安徽继远软件有限公司 | Powerline ice-covering detection method and system based on image procossing |
CN109447322A (en) * | 2018-09-28 | 2019-03-08 | 昆明理工大学 | A method of it is predicted based on phase space reconfiguration wavelet neural network powerline ice-covering |
CN110648343A (en) * | 2019-09-05 | 2020-01-03 | 电子科技大学 | Image edge detection method based on sixth-order spline scaling function |
CN110648343B (en) * | 2019-09-05 | 2022-09-23 | 电子科技大学 | Image edge detection method based on sixth-order spline scaling function |
CN110599538A (en) * | 2019-09-30 | 2019-12-20 | 山东信通电子股份有限公司 | Method and device for identifying icing thickness of transmission line conductor |
CN113431557A (en) * | 2021-06-09 | 2021-09-24 | 东北石油大学 | Underground borehole trajectory tracking method based on artificial intelligence |
CN113486731A (en) * | 2021-06-17 | 2021-10-08 | 国网山东省电力公司汶上县供电公司 | Abnormal state monitoring method for power transmission equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105138976A (en) | A Genetic Wavelet Neural Network Based Icing Thickness Recognition Method for Transmission Lines | |
CN107346436B (en) | Visual saliency detection method fusing image classification | |
CN105678332B (en) | Converter steelmaking end point judgment method and system based on flame image CNN recognition modeling | |
CN112800876B (en) | Super-spherical feature embedding method and system for re-identification | |
WO2023082418A1 (en) | Power utility tunnel settlement crack identification method based on artificial intelligence technology | |
CN107480611A (en) | A kind of crack identification method based on deep learning convolutional neural networks | |
CN111339883A (en) | Identification and detection method of abnormal behavior in substations based on artificial intelligence in complex scenarios | |
CN108549841A (en) | A kind of recognition methods of the Falls Among Old People behavior based on deep learning | |
CN109934200A (en) | A method and system for cloud detection in RGB color remote sensing images based on improved M-Net | |
CN108648188A (en) | A kind of non-reference picture quality appraisement method based on generation confrontation network | |
CN105005774A (en) | Face relative relation recognition method based on convolutional neural network and device thereof | |
CN106156765A (en) | safety detection method based on computer vision | |
CN110163278A (en) | A kind of flame holding monitoring method based on image recognition | |
CN105426930B (en) | A kind of substation's attribute dividing method based on convolutional neural networks | |
CN106897739A (en) | A kind of grid equipment sorting technique based on convolutional neural networks | |
CN109858352A (en) | A kind of method for diagnosing faults based on compressed sensing and the multiple dimensioned network of improvement | |
CN108052980A (en) | Air quality grade detection method based on image | |
CN116229380A (en) | A method for identifying bird species related to bird-related faults in substations | |
CN109410209B (en) | Method for detecting exogenous foreign matters in nuts based on deep learning classification | |
CN104504389A (en) | Satellite cloud amount computing method based on convolution neural network | |
CN106370668A (en) | Online visual inspection apparatus and method of internal quality of salted egg | |
CN102201120A (en) | Multifeature-based target object contour detection method | |
CN110660025A (en) | A GAN network-based method for sharpening industrial surveillance video images | |
CN113569756A (en) | Abnormal behavior detection and positioning method, system, terminal equipment and readable storage medium | |
CN105550712A (en) | Optimized convolution automatic encoding network-based auroral image sorting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151209 |