CN105138791A - Evaluating method for excitation mode of eddy current sensor based on information entropy - Google Patents
Evaluating method for excitation mode of eddy current sensor based on information entropy Download PDFInfo
- Publication number
- CN105138791A CN105138791A CN201510568513.7A CN201510568513A CN105138791A CN 105138791 A CN105138791 A CN 105138791A CN 201510568513 A CN201510568513 A CN 201510568513A CN 105138791 A CN105138791 A CN 105138791A
- Authority
- CN
- China
- Prior art keywords
- eddy current
- distribution
- information entropy
- information
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005284 excitation Effects 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims description 11
- 238000009826 distribution Methods 0.000 claims abstract description 20
- 238000001514 detection method Methods 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000011156 evaluation Methods 0.000 claims description 2
- 238000010187 selection method Methods 0.000 claims 1
- 238000007619 statistical method Methods 0.000 claims 1
- 239000004020 conductor Substances 0.000 abstract description 4
- 238000004422 calculation algorithm Methods 0.000 abstract description 3
- 238000004088 simulation Methods 0.000 abstract description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000009659 non-destructive testing Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
Abstract
本发明涉及一种用于平面涡流传感器设计中激励曲线的选优算法。采用信息论中描述信息量的熵,通过对激励线圈在导体表面感应出的涡流场进行有限元仿真结果在不同方向上涡流强度的分布进行统计,并求出这种分布的信息熵。以这种信息熵为作为涡流传感器设计中的一种选优标准。本发明利用这种信息上对比了一圈圆形线圈和一圈3阶科赫分形曲线激励下的涡流场在不同角度分布的信息上和在垂直于扫查方向的直线上的涡流场在不同角度分布的信息熵。The invention relates to an optimal algorithm for excitation curves in the design of planar eddy current sensors. Using the entropy that describes the amount of information in information theory, through the finite element simulation results of the eddy current field induced by the excitation coil on the surface of the conductor, the distribution of the eddy current intensity in different directions is counted, and the information entropy of this distribution is obtained. This kind of information entropy is used as a selection criterion in the design of eddy current sensor. The present invention uses this information to compare the eddy current field under the excitation of a circle of circular coils and a circle of third-order Koch fractal curves on the information of different angle distributions and the eddy current field on a straight line perpendicular to the scanning direction. Information entropy of angular distribution.
Description
技术领域technical field
本发明属于电磁无损检测技术领域,涉及一种为裂纹检测的平面涡流传感器的激励曲线的选优方法。可以用于涡流传感器设计时传感器激励性能的一种评价方法,为涡流传感器设计中的激励曲线选择提供一种可行的算法。The invention belongs to the technical field of electromagnetic non-destructive testing, and relates to a method for selecting an optimal excitation curve of a planar eddy current sensor for crack detection. It can be used as an evaluation method for the excitation performance of the sensor in the design of the eddy current sensor, and provides a feasible algorithm for the selection of the excitation curve in the design of the eddy current sensor.
背景技术Background technique
涡流检测由于其廉价、快速、环境适应性好等优势在机械产品生产和服役过程中的无损检测中发挥着不可替代的作用。平面柔性涡流传感器作为一种曲面构件检测一种常用的涡流传感器,其激励曲线往往向单匝或几匝的方向发展,然而,激励曲线的形状对涡流传感器的性能的影响是不得不考虑的。Eddy current testing plays an irreplaceable role in non-destructive testing during the production and service of mechanical products due to its advantages of low cost, fast speed and good environmental adaptability. The planar flexible eddy current sensor is a commonly used eddy current sensor as a curved surface component, and its excitation curve tends to develop in the direction of a single turn or several turns. However, the influence of the shape of the excitation curve on the performance of the eddy current sensor has to be considered.
涡流传感器检测裂纹的原理涡流和裂纹之间的相互作用,即涡流被裂纹扰动,改变了原来的流动的路径和分布的情况,从而能够检测到裂纹。但是,当涡流方向与裂纹尤其是微裂纹方向夹角很小时,这种扰动将极其微弱,传感器对裂纹的灵敏度也随之下降,从而造成很大的漏检概率。所以要求设计的涡流传感器的激励曲线在导体表面感应出的涡流,在局部能够分布在更多的方向上,从而增加涡流与裂纹之间相互作用的几率。The principle of eddy current sensor detecting cracks is the interaction between eddy current and cracks, that is, the eddy current is disturbed by cracks, changing the original flow path and distribution, so that cracks can be detected. However, when the angle between the direction of the eddy current and the direction of the crack, especially the micro-crack, is small, this disturbance will be extremely weak, and the sensitivity of the sensor to the crack will also decrease, resulting in a high probability of missed detection. Therefore, the excitation curve of the designed eddy current sensor is required to induce the eddy current on the surface of the conductor to be locally distributed in more directions, thereby increasing the probability of interaction between the eddy current and the crack.
本发明的目的在于为平面涡流传感器的激励曲线的选优提出一种选优标准。The purpose of the present invention is to propose an optimization standard for the optimization of the excitation curve of the planar eddy current sensor.
发明内容Contents of the invention
针对上述需求,本发明提出一种采用信息熵的方法来作为激励曲线选优方法。In view of the above requirements, the present invention proposes a method using information entropy as a method for selecting an optimal excitation curve.
该方法采用的步骤是这样的:The steps taken by this method are as follows:
1.建立有限元模型,计算相同尺寸的激励曲线在相同的导体上方感应出的涡流的分布。1. Establish a finite element model to calculate the distribution of eddy currents induced by excitation curves of the same size above the same conductor.
2.对导体表面的涡流密度进行等间隔采样,获得涡流密度矢量。并采用下面的公式计算涡流各个点处的涡流密度的幅值和方向,2. Sampling the eddy current density on the conductor surface at equal intervals to obtain the eddy current density vector. And use the following formula to calculate the magnitude and direction of the eddy current density at each point of the eddy current,
3.将夹角按照[0°,10°],(20°,30°],(30°,40°],(40°,50°],(50°,60°],(60°,70°],(70°,80°],(80°,90°]分组,然后按照下面的公式3. Set the included angle according to [0°,10°],(20°,30°],(30°,40°],(40°,50°],(50°,60°],(60°, 70°],(70°,80°],(80°,90°] into groups, and then follow the formula below
求出各个区间内涡流分布的概率。Find the probability of eddy current distribution in each interval.
4.采用信息上计算公式求出涡流在各个角度上分布的信息熵。4. Calculate the information entropy of the eddy current distribution at various angles by using the calculation formula on the information.
将上述方法用在垂直于扫查方向上的不同长度线段上的涡流分布的信息上,即可获得局部涡流在不同方向上的分布情况。这种熵值越大,说明涡流分布的方向性越多,所对应的涡流与短裂纹的作用值就越强,所以应的激励曲线也就具有一定的优势。By applying the above method to the information of eddy current distribution on different length line segments perpendicular to the scanning direction, the distribution of local eddy currents in different directions can be obtained. The greater the entropy value, the more directional the eddy current distribution is, and the stronger the corresponding interaction between eddy current and short cracks is, so the corresponding excitation curve has certain advantages.
有益效果:Beneficial effect:
本发明提出了一种利用涡流分布的信息上作为裂纹检测涡流传感器的激励曲线的择优条件。为平面或平面柔性涡流传感器的激励曲线的选择和设计提供了一种择优方法。The invention proposes an optimal condition for using the information of the eddy current distribution as the excitation curve of the eddy current sensor for crack detection. An optimal method is provided for the selection and design of excitation curves of planar or planar flexible eddy current sensors.
附图说明Description of drawings
图1:算法步骤。Figure 1: Algorithm steps.
图2:涡流分布图,(a)圆形线圈,(b)3阶科赫分形曲线。Figure 2: Eddy current distribution diagram, (a) circular coil, (b) 3rd order Koch fractal curve.
图3:扫查方向上涡流在不同角度上分布的信息熵:Figure 3: Information entropy of eddy current distribution at different angles in the scanning direction:
(a)60mm宽度科赫激励;(b)60mm宽度圆形线圈激励;(c)30mm宽度科赫激励;(d)30mm宽度圆形线圈激励。(a) 60mm width Koch excitation; (b) 60mm width circular coil excitation; (c) 30mm width Koch excitation; (d) 30mm width circular coil excitation.
具体实施方式Detailed ways
为了更好地说明本发明的目的和优点,下面结合附图和具体实施例对本发明做进一步说明。In order to better illustrate the purpose and advantages of the present invention, the present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
首先对等大的圆形和3阶科赫曲线的激励结果进行仿真,仿真结果如图2所示,仿真中曲线都采用理想曲线,而试件采用等大的铝板。First, simulate the excitation results of equal-sized circles and third-order Koch curves. The simulation results are shown in Figure 2. The curves in the simulation are all ideal curves, and the specimens are made of equal-sized aluminum plates.
然后对扫查方向上垂直于扫查方向的不同长度的直线段上的涡流分布熵进行了计算,如图3所示。Then the eddy current distribution entropy on the straight line segments of different lengths perpendicular to the scanning direction in the scanning direction is calculated, as shown in Fig. 3 .
本实施例仅对等大的圆形和3阶科赫曲线在局部的涡流信息熵进行了对比。其他类型的裂纹检测的平面涡流传感器的激励曲线的选择方法也可以采用该方法来实施。This embodiment only compares the local eddy current information entropy between equal-sized circles and third-order Koch curves. The method for selecting excitation curves of planar eddy current sensors for other types of crack detection can also be implemented using this method.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510568513.7A CN105138791A (en) | 2015-09-09 | 2015-09-09 | Evaluating method for excitation mode of eddy current sensor based on information entropy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510568513.7A CN105138791A (en) | 2015-09-09 | 2015-09-09 | Evaluating method for excitation mode of eddy current sensor based on information entropy |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105138791A true CN105138791A (en) | 2015-12-09 |
Family
ID=54724138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510568513.7A Pending CN105138791A (en) | 2015-09-09 | 2015-09-09 | Evaluating method for excitation mode of eddy current sensor based on information entropy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105138791A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105844053A (en) * | 2016-04-12 | 2016-08-10 | 北京理工大学 | Vortex flow transducer evaluation method based on fractal information dimensions |
CN109900784A (en) * | 2019-01-30 | 2019-06-18 | 兰州理工大学 | An Evaluation Method of Eddy Current Distribution Based on Information Entropy of Tangential Angle Spectrum |
CN110220970A (en) * | 2019-05-21 | 2019-09-10 | 兰州理工大学 | A kind of eddy current sensor method of evaluating performance based on vortex Energy distribution |
CN112557498A (en) * | 2020-11-27 | 2021-03-26 | 兰州理工大学 | Method and device for quantitatively detecting eddy current energy distribution based on cross entropy |
CN112578020A (en) * | 2020-12-07 | 2021-03-30 | 兰州理工大学 | Quantitative detection method and device based on information entropy time-space domain vortex distribution |
CN112798683A (en) * | 2020-12-09 | 2021-05-14 | 兰州理工大学 | Eddy current sensor performance detection method and device based on relative entropy of tangential angle spectrum |
CN115389610A (en) * | 2022-02-09 | 2022-11-25 | 兰州理工大学 | Array type plane eddy current sensor based on Koch curve |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010056343A (en) * | 1999-12-15 | 2001-07-04 | 채재우 | heat intensive type ceramic burner |
CN203114426U (en) * | 2011-07-09 | 2013-08-07 | 拉姆金动力系统有限责任公司 | Gas turbine engine and device for gas turbine engine |
CN103760231A (en) * | 2014-01-07 | 2014-04-30 | 天津大学 | Detection method and device for welding defect giant magneto-resistance eddy current based on decision-making tree |
-
2015
- 2015-09-09 CN CN201510568513.7A patent/CN105138791A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010056343A (en) * | 1999-12-15 | 2001-07-04 | 채재우 | heat intensive type ceramic burner |
CN203114426U (en) * | 2011-07-09 | 2013-08-07 | 拉姆金动力系统有限责任公司 | Gas turbine engine and device for gas turbine engine |
CN103760231A (en) * | 2014-01-07 | 2014-04-30 | 天津大学 | Detection method and device for welding defect giant magneto-resistance eddy current based on decision-making tree |
Non-Patent Citations (2)
Title |
---|
XIAO CHUN-YAN ET AL: "Analytical solutions of transient pulsed eddy current", 《CHIN. PHYS. B》 * |
张荣华等: "基于空间分布熵的电磁脉冲涡流无损检测方法", 《仪器仪表学报》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105844053A (en) * | 2016-04-12 | 2016-08-10 | 北京理工大学 | Vortex flow transducer evaluation method based on fractal information dimensions |
CN109900784A (en) * | 2019-01-30 | 2019-06-18 | 兰州理工大学 | An Evaluation Method of Eddy Current Distribution Based on Information Entropy of Tangential Angle Spectrum |
CN110220970A (en) * | 2019-05-21 | 2019-09-10 | 兰州理工大学 | A kind of eddy current sensor method of evaluating performance based on vortex Energy distribution |
CN112557498A (en) * | 2020-11-27 | 2021-03-26 | 兰州理工大学 | Method and device for quantitatively detecting eddy current energy distribution based on cross entropy |
CN112557498B (en) * | 2020-11-27 | 2024-04-09 | 兰州理工大学 | Vortex energy distribution quantitative detection method and device based on cross entropy |
CN112578020A (en) * | 2020-12-07 | 2021-03-30 | 兰州理工大学 | Quantitative detection method and device based on information entropy time-space domain vortex distribution |
CN112578020B (en) * | 2020-12-07 | 2024-04-09 | 兰州理工大学 | Quantitative detection method and device based on information entropy time-space domain vortex distribution |
CN112798683A (en) * | 2020-12-09 | 2021-05-14 | 兰州理工大学 | Eddy current sensor performance detection method and device based on relative entropy of tangential angle spectrum |
CN112798683B (en) * | 2020-12-09 | 2024-05-17 | 兰州理工大学 | Eddy current sensor performance detection method and device based on tangential angle spectrum relative entropy |
CN115389610A (en) * | 2022-02-09 | 2022-11-25 | 兰州理工大学 | Array type plane eddy current sensor based on Koch curve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105138791A (en) | Evaluating method for excitation mode of eddy current sensor based on information entropy | |
CN102645486B (en) | Plane array type electromagnetic sensor with trapezoidal structure | |
US20180217097A1 (en) | Defect measurement method, defect measurement device, and testing probe | |
Zhao et al. | Uniaxial ACFM detection system for metal crack size estimation using magnetic signature waveform analysis | |
CN104155361B (en) | Pulse eddy electromagnetism nondestructive detection method based on probe with iron core coil | |
CN101706474A (en) | Orthorhombic double-U-type intelligent visual detection array probe based on alternating current field measurement (ACFM) | |
CN103760230B (en) | Based on the weld defects giant magnetoresistance eddy current detection method of BP neural network | |
CN202083672U (en) | Magnetic flux leakage probe based on field quantity detection | |
Dehui et al. | A novel non-destructive testing method by measuring the change rate of magnetic flux leakage | |
CN108152687B (en) | A Partial Discharge Localization Method of Power Transformer Using Ultrasonic Inversion | |
CN105844053A (en) | Vortex flow transducer evaluation method based on fractal information dimensions | |
Deng et al. | A permeability-measuring magnetic flux leakage method for inner surface crack in thick-walled steel pipe | |
CN109781838A (en) | An Eddy Current-Ultrasonic Detection Probe Based on V-shaped Coil Excitation | |
Kim et al. | A study on the measurement of axial cracks in the magnetic flux leakage NDT system | |
CN103713042B (en) | Based on the weld defects eddy current detection method of k nearest neighbor algorithm | |
CN103760229B (en) | Based on the weld defects giant magnetoresistance eddy current detection method of support vector machine | |
CN104569142A (en) | U-shaped detection probe based on AC magnetic field detection and detection method | |
CN110763755A (en) | Evaluation method capable of rapidly evaluating crack defect direction of metal material | |
Peng et al. | Three‐dimensional magnetic flux leakage signal analysis and imaging method for tank floor defect | |
Zheng et al. | Numerical simulation of a U-shaped ACFM inducer | |
CN105319444B (en) | A kind of conductive material electrical conductivity uniformity coefficient appraisal procedure | |
CN110220969B (en) | Magnetic flux leakage detection probe with high sensitivity | |
CN104181224A (en) | Engine turbine blade flaw ACFM (Alternating Current Field Measurement) excitation platform | |
CN102692448A (en) | Multidirectional high-sensitivity electromagnetic defect detection sensing device | |
CN209102667U (en) | A Portable Pipeline Detection Device Based on Far-Field Eddy Current |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151209 |
|
WD01 | Invention patent application deemed withdrawn after publication |