CN105136454A - Wind turbine gear box fault recognition method - Google Patents
Wind turbine gear box fault recognition method Download PDFInfo
- Publication number
- CN105136454A CN105136454A CN201510672350.7A CN201510672350A CN105136454A CN 105136454 A CN105136454 A CN 105136454A CN 201510672350 A CN201510672350 A CN 201510672350A CN 105136454 A CN105136454 A CN 105136454A
- Authority
- CN
- China
- Prior art keywords
- gearbox
- wind turbine
- frequency
- historical data
- variance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 239000000284 extract Substances 0.000 claims abstract description 14
- 238000004458 analytical method Methods 0.000 claims abstract description 10
- 238000012706 support-vector machine Methods 0.000 claims abstract description 10
- 238000012549 training Methods 0.000 claims abstract description 8
- 239000011159 matrix material Substances 0.000 claims description 18
- 238000000354 decomposition reaction Methods 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 5
- 230000005484 gravity Effects 0.000 claims description 4
- 230000008676 import Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 102000008297 Nuclear Matrix-Associated Proteins Human genes 0.000 claims 3
- 108010035916 Nuclear Matrix-Associated Proteins Proteins 0.000 claims 3
- 210000000299 nuclear matrix Anatomy 0.000 claims 3
- 238000011002 quantification Methods 0.000 claims 2
- 230000001186 cumulative effect Effects 0.000 abstract description 16
- 238000012545 processing Methods 0.000 abstract description 10
- 238000012847 principal component analysis method Methods 0.000 abstract description 7
- 230000009286 beneficial effect Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 5
- 238000000513 principal component analysis Methods 0.000 description 4
- 238000013139 quantization Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 238000007781 pre-processing Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
本发明公开了一种风电机组齿轮箱故障识别方法,包括如下步骤:获取一定时间范围内的风电机组齿轮箱运行的历史数据;采用自相关分析对历史数据进行小波消噪处理;通过快速傅立叶变换,提取消噪后的历史数据中的时域和频域特征参数;采用核主元分析方法对特征参数进行维数的降维,提取方差累计贡献率最大的几个非线性主元;用齿轮箱正常运行的历史数据提取的非线性主元建立正常模型,并利用支持向量机进行训练将后期齿轮箱运行的历史数据提取的非线性主元导入训练后的模型,由此对齿轮箱的故障进行识别,本发明有利于提高振动信号的处理能力,对齿轮箱故障识别有着重要意义。
The invention discloses a fault identification method for a wind turbine gearbox, which comprises the following steps: acquiring historical data of wind turbine gearbox operation within a certain time range; using autocorrelation analysis to perform wavelet denoising processing on the historical data; using fast Fourier transform , extract the time-domain and frequency-domain characteristic parameters in the denoised historical data; use the kernel principal component analysis method to reduce the dimensionality of the characteristic parameters, and extract several nonlinear principal components with the largest cumulative contribution rate of variance; use the gear The nonlinear principal element extracted from the historical data of the normal operation of the gearbox is used to establish a normal model, and the support vector machine is used for training. For identification, the present invention is beneficial to improve the processing ability of the vibration signal, and is of great significance to the identification of the fault of the gearbox.
Description
技术领域technical field
本发明涉及风电机组传动系统故障监测和故障诊断领域,特别是涉及一种基于快速傅立叶变换、核主元分析和支持向量机的风电机组齿轮箱故障识别方法。The invention relates to the field of fault monitoring and fault diagnosis of a transmission system of a wind turbine, in particular to a fault identification method for a gearbox of a wind turbine based on fast Fourier transform, kernel principal component analysis and support vector machine.
背景技术Background technique
随着风能的快速发展,大量风电机组投入运行,而且由于大多数风电机组安装在偏远地区,负荷不稳定等因素,我国有不少风电机组出现了运行故障,这将会直接影响风力发电的安全性和经济性。为了使风力发电更具竞争性,确保风机持续高效运行,风电机组的状态监测、故障诊断、维修等维护服务的重要性受到普遍关注。这其中对风电机组关键机械部件的损坏尤为严重,据统计,我国的风场齿轮箱损坏率高达40%~50%,是风电机组机械部件中故障率最高的部件。With the rapid development of wind energy, a large number of wind turbines have been put into operation, and because most of the wind turbines are installed in remote areas, the load is unstable and other factors, many wind turbines in my country have malfunctioned, which will directly affect the safety of wind power generation sex and economy. In order to make wind power generation more competitive and ensure continuous and efficient operation of wind turbines, the importance of maintenance services such as condition monitoring, fault diagnosis, and repair of wind turbines has attracted widespread attention. Among them, the damage to key mechanical components of wind turbines is particularly serious. According to statistics, the damage rate of gearboxes in wind farms in my country is as high as 40% to 50%, which is the component with the highest failure rate among mechanical components of wind turbines.
风电机组齿轮箱发生故障时,由于存在多部件耦合振动,并且工作时振动噪声干扰巨大,振动的信号体现为非高斯、非平稳、非线性。常用的时域、频域特征信息提取方法往往包含诸多冗余信息,以致信号的精度不高,难以准确评价揭示风力发电机运行状态的内在特征,不能有效反映当前设备所处状态。基于时频域的小波分析技术能够满足上述要求,但在实际应用中所提取设备的信号往往存在很强的噪声背景,如何对这些故障信号进行进一步的处理,是信号分析的一大障碍。When the wind turbine gearbox fails, due to the existence of multi-component coupling vibration and the huge vibration and noise interference during operation, the vibration signal is non-Gaussian, non-stationary, and nonlinear. Commonly used time-domain and frequency-domain feature information extraction methods often contain a lot of redundant information, so that the accuracy of the signal is not high, it is difficult to accurately evaluate and reveal the inherent characteristics of the operating state of the wind turbine, and it cannot effectively reflect the current state of the equipment. The wavelet analysis technology based on the time-frequency domain can meet the above requirements, but in practical applications, the extracted equipment signals often have a strong noise background. How to further process these fault signals is a major obstacle in signal analysis.
鉴于此,需要提出一种风电机组齿轮箱故障识别方法,其可以通过核主元分析和方差累计贡献率对风机齿轮箱消噪后的历史数据进行分析,并用支持向量机进行训练测试,有利于提高振动信号的处理能力,对齿轮箱故障识别有着重要意义。In view of this, it is necessary to propose a fault identification method for wind turbine gearboxes, which can analyze the historical data of wind turbine gearboxes after denoising through kernel principal component analysis and variance cumulative contribution rate, and use support vector machines for training and testing, which is beneficial to Improving the processing ability of vibration signals is of great significance to gearbox fault identification.
发明内容Contents of the invention
为克服上述现有技术存在的不足,本发明之目的在于提供一种风电机组齿轮箱故障识别方法,其充分考虑到风机齿轮箱故障中存在大量的非线性信号,在利用支持向量机进行故障分类的基础上加入核主元分析方法,在兼顾故障分类效果的基础上提高了故障识别率,特别是对于风机齿轮箱故障中存在大量的非线性信号有着更强的适应性。In order to overcome the deficiencies in the above-mentioned prior art, the purpose of the present invention is to provide a wind turbine gearbox fault identification method, which fully considers that there are a large number of nonlinear signals in the wind turbine gearbox fault, and uses support vector machines for fault classification The core principal component analysis method is added on the basis of the fault classification, and the fault recognition rate is improved on the basis of taking into account the fault classification effect, especially for the large number of nonlinear signals in the fault of the wind turbine gearbox, which has stronger adaptability.
为达上述及其它目的,本发明提出一种风电机组齿轮箱故障识别方法,包括如下步骤:In order to achieve the above and other purposes, the present invention proposes a wind turbine gearbox fault identification method, including the following steps:
步骤一,获取一定时间范围内的风电机组齿轮箱运行的历史数据;Step 1, obtain the historical data of wind turbine gearbox operation within a certain time range;
步骤二,采用自相关分析对历史数据进行小波消噪处理;Step 2, using autocorrelation analysis to perform wavelet de-noising processing on historical data;
步骤三,通过快速傅立叶变换,提取消噪后的历史数据中的时域和频域特征参数;Step 3, extracting time-domain and frequency-domain characteristic parameters in the denoised historical data through fast Fourier transform;
步骤四,采用核主元分析方法对特征参数进行维数的降维,提取方差累计贡献率最大的几个非线性主元;Step 4, using the nuclear principal component analysis method to reduce the dimensionality of the characteristic parameters, and extract several nonlinear principal components with the largest cumulative contribution rate of variance;
步骤五,用齿轮箱正常运行的历史数据提取的非线性主元建立正常模型,并利用支持向量机进行训练Step five, use the nonlinear principal element extracted from the historical data of the normal operation of the gearbox to establish a normal model, and use the support vector machine for training
步骤六,将后期齿轮箱运行的历史数据提取的非线性主元导入训练后的模型,由此对齿轮箱的故障进行识别。Step 6: Import the nonlinear principal element extracted from the historical data of gearbox operation into the trained model, thereby identifying the fault of the gearbox.
进一步地,步骤二进一步包括:Further, step two further includes:
步骤2.1,选择一个合适的小波并设定小波分解的层次N,然后对含噪声信号开展N层小波分解;Step 2.1, select an appropriate wavelet and set the level N of wavelet decomposition, and then carry out N-layer wavelet decomposition on the signal containing noise;
步骤2.2,对第1到第N层的每一层高频系数,选择一个阈值进行软阈值量化处理;Step 2.2, for each layer of high-frequency coefficients from the 1st to the Nth layer, select a threshold to perform soft threshold quantization;
步骤2.3,根据小波分解的第N层的低频系数和经过量化处理后的第1层到第N层的高频系数,进行一维信号的小波重构。Step 2.3, performing wavelet reconstruction of the one-dimensional signal according to the low-frequency coefficients of the Nth layer decomposed by wavelets and the quantized high-frequency coefficients of the first layer to the Nth layer.
进一步地,步骤三进一步包括:Further, step three further includes:
步骤3.1,进行快速傅里叶变换预处理,提取时域特征参数和频域特征参数;Step 3.1, performing fast Fourier transform preprocessing, extracting time-domain characteristic parameters and frequency-domain characteristic parameters;
步骤3.2,计算8个影响最大的时域指标;Step 3.2, calculate the 8 most influential time-domain indicators;
步骤3.3,计算6个频域指标;Step 3.3, calculating 6 frequency domain indicators;
步骤3.4;将计算后的时域指标和频域指标构成齿轮状态原始特征集。Step 3.4: The calculated time domain index and frequency domain index constitute the original feature set of the gear state.
进一步地,该时域指标包括振动信号的均值、峰值、均方根值、方差、峭度及无量纲参数峭度因子、脉冲因子和裕度因子。Further, the time-domain index includes the mean value, peak value, root mean square value, variance, kurtosis and dimensionless parameters kurtosis factor, pulse factor and margin factor of the vibration signal.
进一步地,该频域指标包括振动信号的转频幅值、啮合频率幅值、啮合频率二倍频率幅值、重心频率、均方频率、频率方差。Further, the frequency domain index includes the rotational frequency amplitude, the meshing frequency amplitude, the double frequency amplitude of the meshing frequency, the center of gravity frequency, the mean square frequency, and the frequency variance of the vibration signal.
进一步地,步骤四进一步包括:Further, step four further includes:
步骤4.1,选取合适的核函数;Step 4.1, select an appropriate kernel function;
步骤4.2,,计算核矩阵K;Step 4.2, calculate the kernel matrix K;
步骤4.3,对该核矩阵K进行特征向量分解,将核矩阵K中心化得K’;Step 4.3, performing eigenvector decomposition on the kernel matrix K, and centering the kernel matrix K to obtain K';
步骤4.4,选取正常样本数据,计算其均值和标准差,并对样本数据标准化,构建训练矩阵X;Step 4.4, select normal sample data, calculate its mean and standard deviation, and standardize the sample data to construct a training matrix X;
步骤4.5,计算特征值和特征向量;Step 4.5, calculating eigenvalues and eigenvectors;
步骤4.6,计算方差累计贡献率,确定主元数目,提取最大的几个特征值对应的特征向量V;Step 4.6, calculate the variance cumulative contribution rate, determine the number of pivots, and extract the eigenvector V corresponding to the largest eigenvalues;
步骤4.7,计算特征向量V在特征空间上的投影tk,即矩阵X的非线性主元。Step 4.7, calculate the projection t k of the eigenvector V on the eigenspace, that is, the nonlinear pivot of the matrix X.
进一步地,步骤4.6中,数据集X中第i个分量xi方差贡献率为:Further, in step 4.6, the variance contribution rate of the ith component xi in the data set X is:
前k个分量的方差累计贡献率为:The variance cumulative contribution rate of the first k components is:
其中λi为协方差矩阵Σ的特征值,且λ1≥λ2…≥λm≥0。Where λ i is the eigenvalue of the covariance matrix Σ, and λ 1 ≥λ 2 ...≥λ m ≥0.
进一步地,若当前k个核主元的方差累计贡献率达到90%以上,则认为所求核主元可全面表征原始特征信息,此时确定核主元个数为k。Further, if the cumulative contribution rate of the variance of the current k kernel pivots reaches more than 90%, it is considered that the sought kernel pivots can fully represent the original feature information, and the number of kernel pivots is determined to be k at this time.
进一步地,步骤一中,从数据存储模块中获取一定时间范围内的风电机组齿轮箱输入轴、输出轴共计8个测点的历史数据。Further, in step 1, the historical data of 8 measuring points in total of the input shaft and the output shaft of the wind turbine gearbox within a certain time range are obtained from the data storage module.
进一步地,步骤一中,获得的历史数据为输入轴、输出轴的轴向和径向测点的历史数据。Further, in step 1, the historical data obtained are the historical data of the axial and radial measuring points of the input shaft and the output shaft.
与现有技术相比,本发明一种风电机组齿轮箱故障识别方法根据风电机组齿轮箱的故障特点,通过核主元分析和方差累计贡献率对风机齿轮箱消噪后的历史数据进行分析,有利于处理非线性信号,再利用支持向量机进行故障分类,有利于提高振动信号的处理能力,在兼顾故障分类效果的基础上提高了故障识别率,特别是对于风机齿轮箱故障中存在大量的非线性信号有着更强的适应性,对齿轮箱故障识别有着重要意义,同时也对风电机组齿轮箱的维护优化成本具有重要意义。Compared with the prior art, a wind turbine gearbox fault identification method according to the present invention, according to the fault characteristics of the wind turbine gearbox, analyzes the historical data of the wind turbine gearbox after denoising through kernel principal component analysis and variance cumulative contribution rate, It is beneficial to deal with nonlinear signals, and then use support vector machine for fault classification, which is conducive to improving the processing ability of vibration signals, and improves the fault recognition rate on the basis of taking into account the effect of fault classification, especially for the large number of faults in the fan gearbox fault. The nonlinear signal has stronger adaptability, which is of great significance to the fault identification of the gearbox, and it is also of great significance to the maintenance and optimization cost of the gearbox of the wind turbine.
附图说明Description of drawings
图1为本发明一种风电机组齿轮箱故障识别方法的步骤流程图。Fig. 1 is a flow chart of the steps of a method for identifying a fault of a wind turbine gearbox according to the present invention.
具体实施方式Detailed ways
以下通过特定的具体实例并结合附图说明本发明的实施方式,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。The implementation of the present invention is described below through specific examples and in conjunction with the accompanying drawings, and those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific examples, and various modifications and changes can be made to the details in this specification based on different viewpoints and applications without departing from the spirit of the present invention.
图1为本发明一种风电机组齿轮箱故障识别方法的步骤流程图。如图1所示,本发明一种风电机组齿轮箱故障识别方法,包括如下步骤:Fig. 1 is a flow chart of the steps of a method for identifying a fault of a wind turbine gearbox according to the present invention. As shown in Fig. 1, a kind of wind turbine gearbox fault identification method of the present invention comprises the following steps:
步骤101,获取一定时间范围内的风电机组齿轮箱运行的历史数据。Step 101 , acquiring historical data of wind turbine gearbox operation within a certain time range.
步骤102,采用自相关分析对历史数据进行小波消噪处理。Step 102, using autocorrelation analysis to perform wavelet de-noising processing on the historical data.
步骤103,通过快速傅立叶变换,提取消噪后的历史数据中的时域和频域特征参数。In step 103, feature parameters in the time domain and frequency domain are extracted from the denoised historical data through fast Fourier transform.
步骤104,采用核主元分析方法对特征参数进行维数的降维,提取方差累计贡献率最大的几个非线性主元。In step 104, the kernel principal component analysis method is used to reduce the dimensionality of the characteristic parameters, and several nonlinear principal components with the largest cumulative contribution rate of variance are extracted.
步骤105,用齿轮箱正常运行的历史数据提取的非线性主元建立正常模型,并用支持向量机进行训练。Step 105, using the nonlinear principal element extracted from the historical data of normal operation of the gearbox to establish a normal model, and train it with a support vector machine.
步骤106,将后期齿轮箱运行的历史数据提取的非线性主元导入训练后的模型,由此可以对齿轮箱的故障进行识别。Step 106, importing the nonlinear principal element extracted from the historical data of the later operation of the gearbox into the trained model, so that the fault of the gearbox can be identified.
进一步地,步骤102还包括以下步骤:Further, step 102 also includes the following steps:
步骤2.1小波分解。选择一个合适的小波并设定小波分解的层次N,然后对含噪声信号开展N层小波分解。Step 2.1 Wavelet decomposition. Select an appropriate wavelet and set the level N of wavelet decomposition, and then carry out N-level wavelet decomposition on the noise-containing signal.
步骤2.2小波分解高频系数的阈值量化。对第1到第N层的每一层高频系数,选择一个阈值进行软阈值量化处理。Step 2.2 Threshold quantization of high frequency coefficients of wavelet decomposition. For each layer of high-frequency coefficients from the 1st to the Nth layers, a threshold is selected for soft threshold quantization.
步骤2.3一维小波的重构。根据小波分解的第N层的低频系数和经过量化处理后的第1层到第N层的高频系数,进行一维信号的小波重构。Step 2.3 Reconstruction of one-dimensional wavelet. According to the low-frequency coefficients of the Nth layer decomposed by the wavelet and the high-frequency coefficients of the first layer to the Nth layer after quantization, the wavelet reconstruction of the one-dimensional signal is carried out.
进一步地,步骤103还包括以下步骤:Further, step 103 also includes the following steps:
步骤3.1快速傅里叶变换预处理,提取时域特征参数和频域特征参数。Step 3.1 Fast Fourier transform preprocessing, extracting time-domain characteristic parameters and frequency-domain characteristic parameters.
步骤3.2计算8个影响最大的时域指标,时域指标是振动信号的均值、峰值、均方根值、方差、峭度及无量纲参数峭度因子、脉冲因子和裕度因子。Step 3.2 calculates 8 most influential time-domain indicators. The time-domain indicators are the mean value, peak value, root mean square value, variance, kurtosis and dimensionless parameters kurtosis factor, pulse factor and margin factor of the vibration signal.
步骤3.3计算6个频域指标,频域指标是振动信号的转频幅值、啮合频率幅值、啮合频率二倍频率幅值、重心频率、均方频率、频率方差Step 3.3 Calculate 6 frequency domain indicators, frequency domain indicators are the vibration signal’s rotation frequency amplitude, meshing frequency amplitude, double frequency amplitude of meshing frequency, center of gravity frequency, mean square frequency, and frequency variance
步骤3.4将计算后的时域指标和频域指标构成齿轮状态原始特征集。In step 3.4, the calculated time domain index and frequency domain index constitute the original feature set of the gear state.
进一步地,步骤104还包括以下步骤:Further, step 104 also includes the following steps:
步骤4.1:选取合适的核函数;Step 4.1: Select an appropriate kernel function;
步骤4.2:计算核矩阵K;Step 4.2: Calculate the kernel matrix K;
步骤4.3:对K进行特征向量分解,将核矩阵K中心化得K’;Step 4.3: Decompose the eigenvector of K, and center the kernel matrix K to obtain K';
步骤4.4:选取正常样本数据,计算其均值和标准差,并对样本数据标准化,构建训练矩阵X;Step 4.4: Select normal sample data, calculate its mean and standard deviation, and standardize the sample data to construct a training matrix X;
步骤4.5:计算特征值和特征向量;Step 4.5: Calculate eigenvalues and eigenvectors;
步骤4.6:计算方差累计贡献率,确定主元数目,提取最大的几个特征值对应的特征向量;Step 4.6: Calculate the variance cumulative contribution rate, determine the number of pivots, and extract the eigenvectors corresponding to the largest eigenvalues;
步骤4.7:计算特征向量V在特征空间上的投影tk,即矩阵X的非线性主元。Step 4.7: Calculate the projection t k of the eigenvector V on the eigenspace, that is, the nonlinear pivot of the matrix X.
以下将通过具体实施例来说明本发明的各步骤:Each step of the present invention will be described below by specific examples:
步骤1,获取历史数据。即从数据存储模块中获取一定时间范围内的风电机组齿轮箱输入轴、输出轴(包括轴向和径向)共计8个测点的历史数据。Step 1, get historical data. That is, the historical data of 8 measuring points of the wind turbine gearbox input shaft and output shaft (including axial and radial directions) within a certain time range are obtained from the data storage module.
步骤2,采用自相关分析对历史数据进行小波消噪处理。通过初步比较,输出轴径向的数据更能反应振动信号的变化,所以选择输出轴径向测点的数据进行后续分析Step 2, using autocorrelation analysis to perform wavelet denoising processing on historical data. Through preliminary comparison, the data in the radial direction of the output shaft can better reflect the change of the vibration signal, so the data of the measuring points in the radial direction of the output shaft are selected for subsequent analysis
步骤3,通过快速傅立叶变换,提取消噪后的历史数据中的时域和频域特征参数。快速傅里叶变换预处理,提取时域特征参数和频域特征参数。计算8个影响最大的时域指标,时域指标是振动信号的均值、峰值、均方根值、方差、峭度及无量纲参数峭度因子、脉冲因子和裕度因子。计算6个频域指标,频域指标是振动信号的转频幅值、啮合频率幅值、啮合频率二倍频率幅值、重心频率、均方频率、频率方差。将计算后的时域指标和频域指标构成齿轮状态原始特征集。Step 3, through fast Fourier transform, extract the time domain and frequency domain characteristic parameters in the denoised historical data. Fast Fourier transform preprocessing to extract time-domain feature parameters and frequency-domain feature parameters. Calculate the 8 most influential time-domain indicators, the time-domain indicators are the mean value, peak value, root mean square value, variance, kurtosis and dimensionless parameters kurtosis factor, pulse factor and margin factor of the vibration signal. Calculate 6 frequency domain indicators, the frequency domain indicators are the vibration signal's rotation frequency amplitude, meshing frequency amplitude, double frequency amplitude of meshing frequency, center of gravity frequency, mean square frequency, and frequency variance. The calculated time domain index and frequency domain index constitute the original feature set of the gear state.
步骤4,采用核主元分析方法对特征参数进行维数的降维,提取方差累计贡献率最大的几个非线性主元。先选取合适的核函数:高斯径向基核函数,计算核矩阵K,对K进行特征向量分解,将核矩阵K中心化得K’,选取正常样本数据,计算其均值和标准差,并对样本数据标准化,构建训练矩阵X,计算特征值和特征向量,计算方差累计贡献率,确定主元数目,提取最大的几个特征值对应的特征向量,计算特征向量V在特征空间上的投影tk,即矩阵X的非线性主元。Step 4, using the kernel principal component analysis method to reduce the dimensionality of the characteristic parameters, and extract several nonlinear principal components with the largest cumulative contribution rate of variance. First select the appropriate kernel function: Gaussian radial basis kernel function, calculate the kernel matrix K, decompose the eigenvector of K, center the kernel matrix K to get K', select normal sample data, calculate its mean and standard deviation, and Standardize the sample data, construct the training matrix X, calculate the eigenvalues and eigenvectors, calculate the cumulative contribution rate of the variance, determine the number of pivots, extract the eigenvectors corresponding to the largest eigenvalues, and calculate the projection tk of the eigenvector V on the feature space , which is the nonlinear pivot of matrix X.
采用核主元分析方法来降低控制指标个数,其中样本方差反映了携带数据信息的大小。因此指标个数的确定必须按照一定的准则,既要避免数据信息丢失,又要有效降低参量的维数。在此依据方差累计贡献率法来确定主元。The kernel principal component analysis method is used to reduce the number of control indicators, in which the sample variance reflects the size of the carried data information. Therefore, the number of indicators must be determined according to certain criteria, not only to avoid loss of data information, but also to effectively reduce the dimension of parameters. Here, the pivot is determined based on the variance cumulative contribution rate method.
数据集X中第i个分量xi方差贡献率为:The variance contribution rate of the i-th component xi in the data set X is:
前k个分量的方差累计贡献率为:The variance cumulative contribution rate of the first k components is:
其中λi为协方差矩阵Σ的特征值,且λ1≥λ2…≥λm≥0。贡献越大该分量越重要,当前k个核主元的方差累计贡献率达到90%以上,认为所求核主元可全面表征原始特征信息,此时确定核主元个数为k。Where λ i is the eigenvalue of the covariance matrix Σ, and λ 1 ≥λ 2 ...≥λ m ≥0. The greater the contribution, the more important this component is. The cumulative contribution rate of the variance of the current k kernel pivots is over 90%. It is considered that the required kernel pivots can fully represent the original feature information. At this time, the number of kernel pivots is determined to be k.
步骤5用齿轮箱正常运行的历史数据提取的非线性主元建立正常模型,并用支持向量机进行训练。Step 5 establishes a normal model with the nonlinear principal element extracted from the historical data of the normal operation of the gearbox, and trains it with a support vector machine.
步骤6将后期齿轮箱运行的历史数据提取的非线性主元导入训练后的模型,由此可以对齿轮箱的故障进行识别,得出识别结论。In step 6, the nonlinear principal element extracted from the historical data of the gearbox operation in the later period is imported into the trained model, so that the fault of the gearbox can be identified and the identification conclusion can be drawn.
可见,本发明一种风电机组齿轮箱故障识别方法通过自相关分析,对历史数据进行小波消噪处理,通过快速傅立叶变换,提取消噪后的历史数据中的时域和频域特征参数,然后采用核主元分析方法对特征参数进行维数的降维,提取方差累计贡献率最大的几个非线性主元,使用齿轮箱正常运行的历史数据提取的非线性主元建立正常模型,并用支持向量机进行训练,最后将后期齿轮箱运行的历史数据提取的非线性主元导入训练后的模型,由此可以对齿轮箱的故障进行识别。It can be seen that a wind turbine gearbox fault identification method of the present invention performs wavelet denoising processing on historical data through autocorrelation analysis, and extracts the time domain and frequency domain characteristic parameters in the denoising historical data through fast Fourier transform, and then The kernel principal component analysis method is used to reduce the dimensionality of the characteristic parameters, extract several nonlinear principal elements with the largest cumulative contribution rate of variance, and use the nonlinear principal elements extracted from the historical data of the normal operation of the gearbox to establish a normal model, and use the support The vector machine is trained, and finally the nonlinear principal element extracted from the historical data of the gearbox operation is imported into the trained model, so that the fault of the gearbox can be identified.
综上所述,本发明之风电机组齿轮箱故障识别方法根据风电机组齿轮箱的故障特点,即风机齿轮箱故障中存在大量的非线性信号,通过核主元分析和方差累计贡献率对风机齿轮箱消噪后的历史数据进行分析,有利于处理非线性信号,再利用支持向量机进行故障分类,有利于提高振动信号的处理能力,在兼顾故障分类效果的基础上提高了故障识别率,特别是对于风机齿轮箱故障中存在大量的非线性信号有着更强的适应性,对齿轮箱故障识别有着重要意义,同时也对风电机组齿轮箱的维护优化成本具有重要意义。In summary, the wind turbine gearbox fault identification method of the present invention is based on the fault characteristics of the wind turbine gearbox, that is, there are a large number of nonlinear signals in the fault of the wind turbine gearbox, and the wind turbine gear is analyzed by the nuclear principal component analysis and the cumulative contribution rate of variance. Analyzing the historical data after the denoising of the vibration box is beneficial to the processing of nonlinear signals, and then using the support vector machine for fault classification is conducive to improving the processing ability of vibration signals, and improving the fault recognition rate on the basis of taking into account the effect of fault classification, especially It has stronger adaptability to a large number of nonlinear signals in wind turbine gearbox faults, which is of great significance for gearbox fault identification, and also has great significance for the maintenance and optimization cost of wind turbine gearboxes.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何本领域技术人员均可在不违背本发明的精神及范畴下,对上述实施例进行修饰与改变。因此,本发明的权利保护范围,应如权利要求书所列。The above-mentioned embodiments only illustrate the principles and effects of the present invention, but are not intended to limit the present invention. Any person skilled in the art can modify and change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be listed in the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510672350.7A CN105136454A (en) | 2015-10-15 | 2015-10-15 | Wind turbine gear box fault recognition method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510672350.7A CN105136454A (en) | 2015-10-15 | 2015-10-15 | Wind turbine gear box fault recognition method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105136454A true CN105136454A (en) | 2015-12-09 |
Family
ID=54721885
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510672350.7A Pending CN105136454A (en) | 2015-10-15 | 2015-10-15 | Wind turbine gear box fault recognition method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105136454A (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105954223A (en) * | 2016-04-28 | 2016-09-21 | 南京富岛信息工程有限公司 | Method for improving prediction accuracy of gasoline properties |
CN106503794A (en) * | 2016-11-08 | 2017-03-15 | 上海电机学院 | A kind of gear case of blower method for predicting residual useful life |
CN106777606A (en) * | 2016-12-02 | 2017-05-31 | 上海电机学院 | A kind of gearbox of wind turbine failure predication diagnosis algorithm |
CN106971027A (en) * | 2017-03-09 | 2017-07-21 | 西安建筑科技大学 | A kind of handpiece Water Chilling Units fault signature system of selection based on DR BN models |
CN107147143A (en) * | 2017-05-25 | 2017-09-08 | 华侨大学 | A method for establishing an early warning model for wind turbine cascading off-grid faults |
CN107315996A (en) * | 2017-05-19 | 2017-11-03 | 燕山大学 | A kind of noise characteristic extracting method of ships under water based on IMF Energy-Entropies and PCA |
CN107563451A (en) * | 2017-09-18 | 2018-01-09 | 河海大学 | Running rate recognizing method under a kind of pumping plant steady state condition |
CN107560844A (en) * | 2017-07-25 | 2018-01-09 | 广东工业大学 | A kind of fault diagnosis method and system of gearbox of wind turbine |
CN107588947A (en) * | 2017-08-23 | 2018-01-16 | 电子科技大学 | Consider the wind turbine transmission chain state monitoring method of operating condition and Information Simplification |
CN107607302A (en) * | 2017-08-31 | 2018-01-19 | 国网江苏省电力公司电力科学研究院 | Mechanical Failure of HV Circuit Breaker diagnostic method based on multidimensional scaling statistical analysis |
CN107689059A (en) * | 2017-06-30 | 2018-02-13 | 北京金风科创风电设备有限公司 | Method and device for identifying abnormality of wind turbine pitch |
CN107742008A (en) * | 2017-09-20 | 2018-02-27 | 上海电机学院 | A fault early warning method for a wind turbine gearbox |
CN108062565A (en) * | 2017-12-12 | 2018-05-22 | 重庆科技学院 | Double pivots-dynamic kernel principal component analysis method for diagnosing faults based on chemical industry TE processes |
CN108628185A (en) * | 2018-06-26 | 2018-10-09 | 上海海事大学 | Five-electrical level inverter fault diagnosis and fault-tolerant control method and semi-physical emulation platform |
CN108731923A (en) * | 2018-03-28 | 2018-11-02 | 中控技术(西安)有限公司 | A kind of fault detection method and device of rotating machinery |
CN108875558A (en) * | 2018-04-27 | 2018-11-23 | 浙江师范大学 | A kind of high-performance large-scale wind turbine gearbox Fault Classification and system |
CN108898182A (en) * | 2018-07-02 | 2018-11-27 | 武汉科技大学 | A kind of MMC method for diagnosing faults based on core pivot element analysis and support vector machines |
CN108984893A (en) * | 2018-07-09 | 2018-12-11 | 北京航空航天大学 | A kind of trend forecasting method based on gradient method for improving |
CN109238691A (en) * | 2017-07-06 | 2019-01-18 | 神华集团有限责任公司 | Portable fault detection system, fault detection method |
CN109580218A (en) * | 2018-12-08 | 2019-04-05 | 上海电力学院 | A kind of state of fan gear box recognition methods based on likelihood learning machine |
CN109800861A (en) * | 2018-12-28 | 2019-05-24 | 上海联影智能医疗科技有限公司 | A kind of equipment fault recognition methods, device, equipment and computer system |
CN110160778A (en) * | 2019-05-24 | 2019-08-23 | 武汉工程大学 | Gearbox fault state identification method based on sequential hypothesis testing |
CN110411766A (en) * | 2019-07-30 | 2019-11-05 | 中国神华能源股份有限公司神朔铁路分公司 | The snakelike unstability detection method of train bogie, device, system and storage medium |
CN110426199A (en) * | 2019-08-07 | 2019-11-08 | 广东交通职业技术学院 | A kind of detection device of electric automobile gear device performance |
CN110657072A (en) * | 2018-06-29 | 2020-01-07 | 中车株洲电力机车研究所有限公司 | Wind power fault maintenance method and system based on structured knowledge base |
CN111239521A (en) * | 2020-02-18 | 2020-06-05 | 金陵科技学院 | Wind power generation system converter fault identification method based on PCA-kNN |
CN111461208A (en) * | 2020-03-31 | 2020-07-28 | 贵州电网有限责任公司 | Development scale prediction method and system suitable for distributed energy supply system |
CN112067334A (en) * | 2020-08-31 | 2020-12-11 | 电子科技大学 | Fault identification method for air conditioner external unit |
CN112164020A (en) * | 2020-03-31 | 2021-01-01 | 苏州润迈德医疗科技有限公司 | Method, device, analysis system and storage medium for accurately extracting blood vessel center line |
CN112729793A (en) * | 2020-12-24 | 2021-04-30 | 东北大学 | Weak fault feature extraction method based on nonlinear spectrum analysis |
CN113107785A (en) * | 2021-05-12 | 2021-07-13 | 浙江浙能技术研究院有限公司 | Real-time monitoring method and device for power performance abnormity of wind turbine generator |
CN113218658A (en) * | 2021-05-24 | 2021-08-06 | 中车株洲电力机车研究所有限公司 | Gearbox fault feature vector extraction method |
CN113642433A (en) * | 2021-07-30 | 2021-11-12 | 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 | Method and device for determining working state of elevator, terminal equipment and medium |
WO2022036710A1 (en) * | 2020-08-21 | 2022-02-24 | Abb Schweiz Ag | Method of indication selection for a fault diagnosis of a gearbox |
CN115293286A (en) * | 2022-08-20 | 2022-11-04 | 华南理工大学 | Offshore wind turbine monitoring data processing method based on big data feature extraction |
CN115306650A (en) * | 2021-05-07 | 2022-11-08 | 中车株洲电力机车研究所有限公司 | A method and system for detecting abnormal state of wind turbine based on audio data |
WO2024074084A1 (en) * | 2022-10-08 | 2024-04-11 | 中国航发商用航空发动机有限责任公司 | Fault diagnosis method and system for gearbox, device, and medium |
US12009059B2 (en) | 2016-11-28 | 2024-06-11 | Koninklijke Philips N.V. | Analytic prediction of antibiotic susceptibility |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997043729A1 (en) * | 1996-05-14 | 1997-11-20 | Csi Technology, Inc. | Vibration data analysis based on time waveform parameters |
US20020188411A1 (en) * | 1993-11-12 | 2002-12-12 | Entek Ird International Corporation | Portable, self-contained data collection systems and methods |
CN203163988U (en) * | 2013-03-28 | 2013-08-28 | 华南理工大学 | Wind turbine generator gear case on-line fault diagnosis device |
CN103308305A (en) * | 2013-06-04 | 2013-09-18 | 中国航空动力机械研究所 | Gear fault diagnosis device and method |
CN103868692A (en) * | 2014-03-18 | 2014-06-18 | 电子科技大学 | Rotary machine fault diagnosis method based on kernel density estimation and K-L divergence |
CN104330257A (en) * | 2014-11-26 | 2015-02-04 | 天津工业大学 | Fault diagnosis method of planetary gear transmission system |
-
2015
- 2015-10-15 CN CN201510672350.7A patent/CN105136454A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020188411A1 (en) * | 1993-11-12 | 2002-12-12 | Entek Ird International Corporation | Portable, self-contained data collection systems and methods |
WO1997043729A1 (en) * | 1996-05-14 | 1997-11-20 | Csi Technology, Inc. | Vibration data analysis based on time waveform parameters |
CN203163988U (en) * | 2013-03-28 | 2013-08-28 | 华南理工大学 | Wind turbine generator gear case on-line fault diagnosis device |
CN103308305A (en) * | 2013-06-04 | 2013-09-18 | 中国航空动力机械研究所 | Gear fault diagnosis device and method |
CN103868692A (en) * | 2014-03-18 | 2014-06-18 | 电子科技大学 | Rotary machine fault diagnosis method based on kernel density estimation and K-L divergence |
CN104330257A (en) * | 2014-11-26 | 2015-02-04 | 天津工业大学 | Fault diagnosis method of planetary gear transmission system |
Non-Patent Citations (1)
Title |
---|
王加祥 等: "基于核主元分析和支持向量机相结合的齿轮箱齿轮故障识别方法", 《上海电机学院学报》 * |
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105954223A (en) * | 2016-04-28 | 2016-09-21 | 南京富岛信息工程有限公司 | Method for improving prediction accuracy of gasoline properties |
CN106503794A (en) * | 2016-11-08 | 2017-03-15 | 上海电机学院 | A kind of gear case of blower method for predicting residual useful life |
US12009059B2 (en) | 2016-11-28 | 2024-06-11 | Koninklijke Philips N.V. | Analytic prediction of antibiotic susceptibility |
CN106777606A (en) * | 2016-12-02 | 2017-05-31 | 上海电机学院 | A kind of gearbox of wind turbine failure predication diagnosis algorithm |
CN106971027A (en) * | 2017-03-09 | 2017-07-21 | 西安建筑科技大学 | A kind of handpiece Water Chilling Units fault signature system of selection based on DR BN models |
CN106971027B (en) * | 2017-03-09 | 2020-06-23 | 西安建筑科技大学 | Water chilling unit fault feature selection method based on DR-BN model |
CN107315996A (en) * | 2017-05-19 | 2017-11-03 | 燕山大学 | A kind of noise characteristic extracting method of ships under water based on IMF Energy-Entropies and PCA |
CN107147143A (en) * | 2017-05-25 | 2017-09-08 | 华侨大学 | A method for establishing an early warning model for wind turbine cascading off-grid faults |
CN107147143B (en) * | 2017-05-25 | 2019-12-31 | 华侨大学 | A method for establishing an early warning model for wind turbine cascading off-grid faults |
CN107689059B (en) * | 2017-06-30 | 2020-01-31 | 北京金风科创风电设备有限公司 | Method and device for identifying abnormal variable pitch of wind generating set |
CN107689059A (en) * | 2017-06-30 | 2018-02-13 | 北京金风科创风电设备有限公司 | Method and device for identifying abnormality of wind turbine pitch |
CN109238691A (en) * | 2017-07-06 | 2019-01-18 | 神华集团有限责任公司 | Portable fault detection system, fault detection method |
CN109238691B (en) * | 2017-07-06 | 2020-05-26 | 国家能源投资集团有限责任公司 | Portable fault detection system, fault detection method |
CN107560844A (en) * | 2017-07-25 | 2018-01-09 | 广东工业大学 | A kind of fault diagnosis method and system of gearbox of wind turbine |
CN107588947B (en) * | 2017-08-23 | 2020-04-28 | 电子科技大学 | Wind turbine generator transmission chain state monitoring method considering operation condition and information simplification |
CN107588947A (en) * | 2017-08-23 | 2018-01-16 | 电子科技大学 | Consider the wind turbine transmission chain state monitoring method of operating condition and Information Simplification |
CN107607302A (en) * | 2017-08-31 | 2018-01-19 | 国网江苏省电力公司电力科学研究院 | Mechanical Failure of HV Circuit Breaker diagnostic method based on multidimensional scaling statistical analysis |
CN107563451A (en) * | 2017-09-18 | 2018-01-09 | 河海大学 | Running rate recognizing method under a kind of pumping plant steady state condition |
CN107742008A (en) * | 2017-09-20 | 2018-02-27 | 上海电机学院 | A fault early warning method for a wind turbine gearbox |
CN108062565B (en) * | 2017-12-12 | 2021-12-10 | 重庆科技学院 | Double-principal element-dynamic core principal element analysis fault diagnosis method based on chemical engineering TE process |
CN108062565A (en) * | 2017-12-12 | 2018-05-22 | 重庆科技学院 | Double pivots-dynamic kernel principal component analysis method for diagnosing faults based on chemical industry TE processes |
CN108731923A (en) * | 2018-03-28 | 2018-11-02 | 中控技术(西安)有限公司 | A kind of fault detection method and device of rotating machinery |
CN108875558A (en) * | 2018-04-27 | 2018-11-23 | 浙江师范大学 | A kind of high-performance large-scale wind turbine gearbox Fault Classification and system |
CN108628185A (en) * | 2018-06-26 | 2018-10-09 | 上海海事大学 | Five-electrical level inverter fault diagnosis and fault-tolerant control method and semi-physical emulation platform |
CN110657072A (en) * | 2018-06-29 | 2020-01-07 | 中车株洲电力机车研究所有限公司 | Wind power fault maintenance method and system based on structured knowledge base |
CN108898182A (en) * | 2018-07-02 | 2018-11-27 | 武汉科技大学 | A kind of MMC method for diagnosing faults based on core pivot element analysis and support vector machines |
CN108984893A (en) * | 2018-07-09 | 2018-12-11 | 北京航空航天大学 | A kind of trend forecasting method based on gradient method for improving |
CN108984893B (en) * | 2018-07-09 | 2021-05-07 | 北京航空航天大学 | A Trend Prediction Method Based on Gradient Boosting |
CN109580218A (en) * | 2018-12-08 | 2019-04-05 | 上海电力学院 | A kind of state of fan gear box recognition methods based on likelihood learning machine |
CN109800861A (en) * | 2018-12-28 | 2019-05-24 | 上海联影智能医疗科技有限公司 | A kind of equipment fault recognition methods, device, equipment and computer system |
US12067486B2 (en) | 2018-12-28 | 2024-08-20 | Shanghai United Imaging Intelligence Co., Ltd. | Systems and methods for fault diagnosis |
CN110160778A (en) * | 2019-05-24 | 2019-08-23 | 武汉工程大学 | Gearbox fault state identification method based on sequential hypothesis testing |
CN110411766A (en) * | 2019-07-30 | 2019-11-05 | 中国神华能源股份有限公司神朔铁路分公司 | The snakelike unstability detection method of train bogie, device, system and storage medium |
CN110426199A (en) * | 2019-08-07 | 2019-11-08 | 广东交通职业技术学院 | A kind of detection device of electric automobile gear device performance |
CN111239521A (en) * | 2020-02-18 | 2020-06-05 | 金陵科技学院 | Wind power generation system converter fault identification method based on PCA-kNN |
CN111239521B (en) * | 2020-02-18 | 2022-02-11 | 金陵科技学院 | A fault identification method for converters in wind power generation systems based on PCA-kNN |
CN111461208A (en) * | 2020-03-31 | 2020-07-28 | 贵州电网有限责任公司 | Development scale prediction method and system suitable for distributed energy supply system |
CN112164020A (en) * | 2020-03-31 | 2021-01-01 | 苏州润迈德医疗科技有限公司 | Method, device, analysis system and storage medium for accurately extracting blood vessel center line |
CN112164020B (en) * | 2020-03-31 | 2024-01-23 | 苏州润迈德医疗科技有限公司 | Method, device, analysis system and storage medium for accurately extracting blood vessel center line |
WO2022036710A1 (en) * | 2020-08-21 | 2022-02-24 | Abb Schweiz Ag | Method of indication selection for a fault diagnosis of a gearbox |
CN112067334A (en) * | 2020-08-31 | 2020-12-11 | 电子科技大学 | Fault identification method for air conditioner external unit |
CN112729793B (en) * | 2020-12-24 | 2021-09-28 | 东北大学 | Weak fault feature extraction method based on nonlinear spectrum analysis |
CN112729793A (en) * | 2020-12-24 | 2021-04-30 | 东北大学 | Weak fault feature extraction method based on nonlinear spectrum analysis |
CN115306650A (en) * | 2021-05-07 | 2022-11-08 | 中车株洲电力机车研究所有限公司 | A method and system for detecting abnormal state of wind turbine based on audio data |
CN113107785A (en) * | 2021-05-12 | 2021-07-13 | 浙江浙能技术研究院有限公司 | Real-time monitoring method and device for power performance abnormity of wind turbine generator |
CN113218658A (en) * | 2021-05-24 | 2021-08-06 | 中车株洲电力机车研究所有限公司 | Gearbox fault feature vector extraction method |
CN113642433B (en) * | 2021-07-30 | 2024-04-02 | 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 | Method, device, terminal equipment and medium for determining working state of elevator |
CN113642433A (en) * | 2021-07-30 | 2021-11-12 | 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 | Method and device for determining working state of elevator, terminal equipment and medium |
CN115293286A (en) * | 2022-08-20 | 2022-11-04 | 华南理工大学 | Offshore wind turbine monitoring data processing method based on big data feature extraction |
WO2024074084A1 (en) * | 2022-10-08 | 2024-04-11 | 中国航发商用航空发动机有限责任公司 | Fault diagnosis method and system for gearbox, device, and medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105136454A (en) | Wind turbine gear box fault recognition method | |
WO2022261805A1 (en) | Diesel engine gearbox fault diagnosis method | |
CN108827605B (en) | An automatic extraction method of mechanical fault features based on improved sparse filtering | |
CN110057584B (en) | Degradation monitoring method for locomotive traction motor bearing | |
Cui et al. | Matching pursuit of an adaptive impulse dictionary for bearing fault diagnosis | |
CN102721545B (en) | Rolling bearing failure diagnostic method based on multi-characteristic parameter | |
CN113176092B (en) | Fault Diagnosis Method of Motor Bearing Based on Data Fusion and Improved Empirical Wavelet Transform | |
CN109946075A (en) | A bearing condition monitoring and fault diagnosis method | |
CN101799368B (en) | A Nonlinear Fault Prediction Method for Electromechanical Equipment | |
CN103226649B (en) | The integrated noise reconstruct ensemble empirical mode decomposition method of machinery early stage and combined failure | |
CN108318249A (en) | A kind of method for diagnosing faults of bearing in rotating machinery | |
CN106895906A (en) | A kind of feature extracting method of vibration of hydrogenerator set failure | |
CN105678343B (en) | An abnormal noise diagnosis method for hydroelectric generating units based on sparse expression of adaptive weighted group | |
Li et al. | A review on the signal processing methods of rotating machinery fault diagnosis | |
CN103953490A (en) | Implementation method for monitoring status of hydraulic turbine set based on HLSNE | |
CN103983452B (en) | Utilize the method that hybrid domain characteristic vector and grey correlation analysis carry out Fault Pattern Recognition to epicyclic gearbox | |
Guo et al. | Cycle kurtosis entropy guided symplectic geometry mode decomposition for detecting faults in rotating machinery | |
CN108444696A (en) | A kind of gearbox fault analysis method | |
CN105572501A (en) | Power quality disturbance identification method based on SST conversion and LS-SVM | |
CN102394658A (en) | Composite compression method oriented to mechanical vibration signal | |
Zhu et al. | Complex disturbances identification: A novel PQDs decomposition and modeling method | |
CN108036940A (en) | A kind of Method for Bearing Fault Diagnosis | |
CN114263621A (en) | A kind of test method and system for cavitation fault diagnosis simulation of centrifugal pump | |
CN116186578A (en) | Wind turbine generator system fault identification method and device and terminal equipment | |
CN114897138A (en) | System fault diagnosis method based on attention mechanism and depth residual error network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151209 |