CN105131327B - 一种可控孔径的多孔薄膜的制造方法 - Google Patents
一种可控孔径的多孔薄膜的制造方法 Download PDFInfo
- Publication number
- CN105131327B CN105131327B CN201510562715.0A CN201510562715A CN105131327B CN 105131327 B CN105131327 B CN 105131327B CN 201510562715 A CN201510562715 A CN 201510562715A CN 105131327 B CN105131327 B CN 105131327B
- Authority
- CN
- China
- Prior art keywords
- film
- inorganic salt
- polymer
- solvent
- pore size
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000011148 porous material Substances 0.000 title claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 229910017053 inorganic salt Inorganic materials 0.000 claims abstract description 60
- 229920000642 polymer Polymers 0.000 claims abstract description 43
- 239000002245 particle Substances 0.000 claims abstract description 42
- 238000000034 method Methods 0.000 claims abstract description 41
- 239000002904 solvent Substances 0.000 claims abstract description 36
- 239000012768 molten material Substances 0.000 claims abstract description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 34
- -1 polyethylene Polymers 0.000 claims description 26
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 22
- 239000004743 Polypropylene Substances 0.000 claims description 21
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 claims description 21
- 239000011780 sodium chloride Substances 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 12
- 239000002033 PVDF binder Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 239000004698 Polyethylene Substances 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 10
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- 229920000573 polyethylene Polymers 0.000 claims description 8
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 238000003756 stirring Methods 0.000 claims description 7
- 150000002500 ions Chemical class 0.000 claims description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 6
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000008096 xylene Substances 0.000 claims description 5
- 229910021591 Copper(I) chloride Inorganic materials 0.000 claims description 4
- 229910013553 LiNO Inorganic materials 0.000 claims description 4
- 239000004952 Polyamide Substances 0.000 claims description 4
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 229920001083 polybutene Polymers 0.000 claims description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 235000019253 formic acid Nutrition 0.000 claims description 3
- 150000008282 halocarbons Chemical class 0.000 claims description 3
- 150000002576 ketones Chemical class 0.000 claims description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims 8
- 238000002791 soaking Methods 0.000 claims 1
- 239000012528 membrane Substances 0.000 abstract description 10
- 150000003839 salts Chemical class 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 239000003361 porogen Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 126
- 230000008569 process Effects 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- 238000005191 phase separation Methods 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 8
- 239000002994 raw material Substances 0.000 description 7
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000002145 thermally induced phase separation Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- CAWGQUPKYLTTNX-UHFFFAOYSA-N 3,4,5,6-tetrahydro-2,7-benzodioxecine-1,8-dione Chemical compound O=C1OCCCCOC(=O)C2=CC=CC=C12 CAWGQUPKYLTTNX-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001523 electrospinning Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000000614 phase inversion technique Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明公开了一种可控孔径的多孔薄膜的制造方法,该方法为根据对多孔薄膜中孔径大小的需要,选取相应大小的无机盐颗粒;将聚合物与无机盐混合,加热使聚合物熔融,而无机盐不熔融,再搅拌分散;将熔融物质经制膜机制得薄膜,将其置于溶剂中溶去薄膜中的无机盐,干燥,即可获得多孔薄膜。这样就实现了可控孔径的多孔薄膜的制造。本发明采用无机盐作为致孔剂可生产比传统更均匀的孔洞,且更经济环保,还可以增强聚合物的导电性,更容易实现制膜。
Description
技术领域
本发明的目的在于为生成可控孔径大小的多孔薄膜提供一种方法,属于微纳加工领域。
背景技术
聚合物多孔薄膜是具有无数胡同的微孔,孔径的范围小于10微米的薄膜。多孔薄膜主要用于环保过滤行业,电池隔膜行业,生物医药行业等。它的制备方法主要有熔融拉伸法、非溶剂致相分离法,热诱导相分离法,静电纺丝法等。其中工业化的方法主要有熔融拉神法和热诱导相分离法。
熔融拉伸法原理:一般地,在熔融拉伸法制备多孔膜的过程中,以纯高聚物溶体进行溶融挤出,微孔的形成主要与聚合物材料的硬弹性有关。在拉伸过程中,硬弹性材料垂直于挤出方向且平行排列的片晶结构被拉开形成微孔,然后通过热定型工艺固定此结构。炼融拉伸法制备聚稀径膜的关键在于得到硬弹性材料,而获得硬弹性聚合物形态的最关键因素是融融挤出时聚合物分子链的高度取向,然后立即热处理,获得垂直于挤出方向且平行排列的片晶结构。
热诱导相分离法基本原理是将聚合物在高温下溶解形成均勻溶液,然后利用聚合物/稀释剂溶液降温时溶解性的变化发生相分离,相分离机理包括固-液相分离(S-L相分离)和液-液(L-L相分离)相分离。控制适当的工艺条件,体系将形成以聚合物为连续相,稀释剂为分散相的两相结构,萃取出其中的溶剂后即得到多孔隔膜。
非溶剂致相分离法:法是湿法工艺中应用最早、研究最多的薄膜制备方法,也称倒相法,广泛应用于各种分离膜、功能膜的制备,其大致制备流程如下:釆用某种溶剂将聚合物溶解,形成均匀稳定的聚合物溶液;将聚合物溶液倾倒在洁净的玻璃基板上,采用调节好厚度的刮刀刮涂成型,放置一定时间;将成型的薄膜浸泡在某种非溶剂中,发生相分离,再经烘干等过程即可得到多孔的隔膜。
以上所述制备多孔薄膜方法均有各自优势,但他们均存在膜孔径不可控的问题。
发明内容
为了解决上述存在的问题,本发明通过提出一种利用无机盐的颗粒大小来控制膜的孔径大小的方法,来实现生产薄膜过程中对膜孔径大小的控制。
本发明的目的在于提供一种可控孔径的多孔薄膜的制造方法。
本发明所采取的技术方案是:
一种可控孔径的多孔薄膜的制造方法,包括以下步骤:
1)将聚合物与无机盐混合,加热使聚合物熔融,而无机盐不熔融;充分搅拌分散,此时聚合物熔融体中分散有无机盐的离子,增强了聚合物熔融体的导电性;
2)上步所得熔融物质经制膜机制备得薄膜,所得薄膜上分散有无机盐颗粒;
3)将薄膜置于溶剂A中浸泡溶去无机盐颗粒,干燥,即可获得多孔薄膜;所述溶剂A为能够溶解无机盐而不能溶解聚合物的溶剂。
一种可控孔径的多孔薄膜的制造方法,该方法同上,除了将步骤3)的操作替换为:将薄膜置于溶剂A’中溶胀,去溶剂A’,加入溶剂A溶去无机盐颗粒,干燥,即可获得多孔薄膜。
进一步的,上述无机盐选自NaCl、KCl、LiCl、FeCl3、ZnCl2、CuCl2、AlCl3、NaNO3、KNO3、LiNO3、Fe(NO3)3、Zn(NO3)2、Cu(NO3)2、Al(NO3)3中的至少一种。
进一步的,上述的聚合物选自聚乙烯、聚丙烯、聚酰胺、聚丁烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚偏氟乙烯中的至少一种。
进一步的,上述溶剂A选自醇溶液、醚溶液、酮溶液、酯溶液、酸溶液、卤烃溶液、芳烃溶液、酰胺溶液、NMP溶液、DMA溶液中的至少一种。
进一步的,上述溶剂A的浓度为3%~20%v/v。
进一步的,上述的溶剂A’选自甲苯、二甲苯、甲酸中的至少一种。
进一步的,根据对多孔薄膜中孔径大小的需要选择相应大小的无机盐颗粒。
进一步的,步骤1)中聚合物与无机盐的质量比为100:(3~30)。
进一步的,步骤1)中加热的温度为60℃~400℃,时间为10min~2h。
本发明的有益效果是:
1. 本发明通过筛选控制无机盐的颗粒大小来实现多孔薄膜孔径的可控,解决了传统用于生成多孔薄膜工艺孔径不可控的问题。
2. 本发明可以生产比传统多孔薄膜生产工艺所生产孔径更均匀的多孔薄膜,对多孔薄膜用于药物载送、能源化工,电子等运用提供性能更好的多孔薄膜。
3. 本发明采用无机盐作为多孔薄膜孔洞生成的辅佐材料,比传统工艺的有机物更经济环保。
4. 本发明采用无机盐作为多孔薄膜孔洞生成的辅佐材料,所生成孔洞大小更均匀。
附图说明
图1为可控孔径的多孔薄膜的制造工艺流程图;图2为可控孔径的多孔薄膜的制造工艺中材料制备流程示意图,其中A表示无机盐,B表示能够制成薄膜的聚合物。
具体实施方式
一种可控孔径的多孔薄膜的制造方法,包括以下步骤:
1)将聚合物与无机盐混合,加热使聚合物熔融,而无机盐不熔融;充分搅拌分散,此时聚合物熔融体中分散有无机盐的离子,增强了聚合物熔融体的导电性;
2)上步所得熔融物质经制膜机制得薄膜,所得薄膜上分散有无机盐颗粒;
3)将薄膜置于溶剂A中浸泡溶去无机盐颗粒,干燥,即可获得多孔薄膜;所述溶剂A为能够溶解无机盐而不能溶解聚合物的溶剂。
一种可控孔径的多孔薄膜的制造方法,包括以下步骤:
1)将聚合物与无机盐混合,加热使聚合物熔融,而无机盐不熔融;充分搅拌分散,此时聚合物熔融体中分散有无机盐的离子,增强了聚合物熔融体的导电性;
2)上步所得熔融物质经制膜机制得薄膜,所得薄膜上分散有无机盐颗粒;
3)将薄膜置于溶剂A’中溶胀,去溶剂A’,加入溶剂A溶去无机盐颗粒,干燥,即可获得多孔薄膜。
优选的,上述无机盐选自NaCl、KCl、LiCl、FeCl3、ZnCl2、CuCl2、AlCl3、NaNO3、KNO3、LiNO3、Fe(NO3)3、Zn(NO3)2、Cu(NO3)2、Al(NO3)3中的至少一种;
优选的,上述聚合物选自PE(聚乙烯)、PP(聚丙烯)、PA(聚酰胺)、PB(聚丁烯)、PET(聚对苯二甲酸乙二醇酯)、PBT(聚对苯二甲酸丁二醇酯)、PVDF(聚偏氟乙烯)中的至少一种。
优选的,上述溶剂A选自醇溶液、醚溶液、酮溶液、酯溶液、酸溶液、卤烃溶液、芳烃溶液、酰胺溶液、NMP溶液、DMA溶液中的至少一种。
更优选的,上述溶剂A选自乙醇溶液、醋酸溶液、丙酮溶液、乙醚溶液、NMP(N-甲基吡咯烷酮)溶液、DMA(二甲基乙酰胺)溶液中的至少一种。
优选的,上述溶剂A的浓度为3%~20%v/v。
优选的,上述溶剂A’选自甲苯、二甲苯、甲酸中的至少一种。
优选的,根据对多孔薄膜中孔径大小的需要选择相应大小的无机盐颗粒。
优选的,上述多孔薄膜中孔径大小为10nm~10μm,无机盐颗粒的粒径为10nm~10μm。
优选的,步骤1)中聚合物与无机盐的质量比为100:(3~30)。
优选的,步骤1)中加热的温度为60℃~400℃,时间为10min~2h。
优选的,步骤1)中搅拌分散的时间为20min~1h。
优选的,上述溶剂A浸泡薄膜的时间为1~60min。
优选的,步骤3)中干燥的温度为40~60℃,时间为2~10min。
下面结合具体实施例对本发明作进一步的说明,但并不局限于此。
实施例1 可控孔径的多孔薄膜的制造方法
可控孔径的多孔薄膜制造方法的流程图如图1所示,具体操作步骤为:
1)设计多孔薄膜的孔径大小为10nm~10μm,根据所设计的薄膜的孔径大小筛选出颗粒大小为10nm~10μm的无机盐;
所述的无机盐选自NaCl、KCl、LiCl、FeCl3、ZnCl2、CuCl2、AlCl3、NaNO3、KNO3、LiNO3、Fe(NO3)3、Zn(NO3)2、Cu(NO3)2、Al(NO3)3中的至少一种;
2)取聚合物作为薄膜的原材料,与经筛选后的无机盐按质量比100:(3~30)混合(无机盐的用量可以根据设计的多孔薄膜孔径大小和孔的密度决定),于60℃~400℃条件下加热10min~2h,此时聚合物完全熔融,无机盐不会熔融,用磁力搅拌机对其搅拌分散20min~1h;该步骤的示意图如图2所示;
此时,熔融体中均匀分散有无机盐的离子,增强了熔融体聚合物的导电性;更容易实现制膜,在高压静电场的作用下,聚合物更易被拉伸成薄膜,也更有利于无机盐颗粒在薄膜中的均匀分散;
所述聚合物选自选自PE(聚乙烯)、PP(聚丙烯)、PA(聚酰胺)、PB(聚丁烯)、PET(聚对苯二甲酸乙二醇酯)、PBT(聚对苯二甲酸丁二醇酯)、PVDF(聚偏氟乙烯)中的至少一种。
3)将上步混匀的熔融物质经制膜机制得薄膜,所得薄膜上均匀分散着无机盐颗粒;
4)将上步所得的薄膜置于溶剂A中浸泡时间为1~60min,溶去薄膜中的无机盐颗粒,无机盐所占据的位置将变成孔洞;再将溶去无机盐的薄膜在40~60℃干燥,2~10min,即可获得多孔薄膜;
所述溶剂A为能够溶解无机盐而不能溶解聚合物的溶剂,如3%~20%v/v的乙醇溶液、醋酸溶液、丙酮溶液、乙醚溶液、NMP(N-甲基吡咯烷酮)溶液、DMA(二甲基乙酰胺)溶液中的至少一种。
实施例2 可控孔径的多孔薄膜的制造方法
1)设计多孔薄膜的孔径大小为400~500nm,根据所设计的薄膜的孔径大小筛选出颗粒大小为400~500 nm的无机盐NaCl;
2)取聚乙烯作为薄膜的原材料,与经筛选后的NaCl按质量比100:20混合,于200℃条件下加热1h,此时聚乙烯完全熔融,NaCl不会熔融,再用磁力搅拌机对其搅拌分散1h;此时,聚乙烯中均匀分散有NaCl的离子,增强了熔融体聚乙烯 的导电性;
3)将上步混匀的熔融物质经制膜机制得薄膜,所得薄膜上均匀分散着NaCl颗粒;
4)将上所得的薄膜置于10%v/v的乙醇溶液中浸泡30min,溶去薄膜中的NaCl颗粒,NaCl所占据的位置将变成孔洞;再将溶去无机盐的薄膜在50℃干燥10min,即可获得多孔薄膜。
用扫描电子显微镜和原子力学纤维镜检测本实施例制备的多孔薄膜的孔径大小,检测结果中可以看出本发明制备的多孔薄膜孔径主要集中在400~500nm内,孔洞大小很均匀,分布也均匀。
实施例3 可控孔径的多孔薄膜的制造方法
1)设计多孔薄膜的孔径大小为1~10μm ,根据所设计的薄膜的孔径大小筛选出颗粒大小为1~10μm的无机盐KCl;
2)取聚偏氟乙烯作为薄膜的原材料,与经筛选后的KCl按质量比100:30混合,于200℃条件下加热30min,此时聚偏氟乙烯完全熔融,KCl不会熔融,再用磁力搅拌机对其搅拌分散20min;此时,聚偏氟乙烯中均匀分散有KCl的离子,增强了熔融体聚偏氟乙烯的导电性;
3)将上步混匀的熔融物质经制膜机制得薄膜,所得薄膜上均匀分散着KCl颗粒;
4)将上所得的薄膜置于3%v/v的乙醇溶液中浸泡60min,溶去薄膜中的KCl颗粒,KCl所占据的位置将变成孔洞;再将溶去无机盐的薄膜在60℃干燥2min,即可获得多孔薄膜。
实施例4 可控孔径的多孔薄膜的制造方法
1)设计多孔薄膜的孔径大小为100~1000nm,根据所设计的薄膜的孔径大小筛选出颗粒大小为100~1000 nm的无机盐KCl;
2)取聚偏氟乙烯作为薄膜的原材料,与经筛选后的KCl按质量比100:3混合,于200℃条件下加热10min,此时聚偏氟乙烯完全熔融,KCl不会熔融,再用磁力搅拌机对其搅拌分散1h;此时,聚偏氟乙烯中均匀分散有KCl的离子,增强了熔融体聚偏氟乙烯的导电性;
3)将上步混匀的熔融物质经制膜机制得薄膜,所得薄膜上均匀分散着KCl颗粒;
4)将上所得的薄膜置于20%v/v的醋酸溶液中浸泡1min,溶去薄膜中的KCl颗粒,KCl所占据的位置将变成孔洞;再将溶去无机盐的薄膜在60℃干燥10min,即可获得多孔薄膜。
实施例5 可控孔径的多孔薄膜的制造方法
1)设计多孔薄膜的孔径大小为400~500 nm,根据所设计的薄膜的孔径大小筛选出颗粒大小为400~500 nm的无机盐FeCl3;
2)取PP(聚丙烯)作为薄膜的原材料,与经筛选后的FeCl3按质量比100:20混合,于200℃条件下加热1h,此时PP完全熔融,FeCl3不会熔融,再用磁力搅拌机对其搅拌分散1h;此时,PP中均匀分散有FeCl3的离子,增强了熔融体PP的导电性;
3)将上步混匀的熔融物质经制膜机制得薄膜,所得薄膜上均匀分散着FeCl3颗粒;
4)将上所得的薄膜置于10%v/v的乙醚溶液中浸泡30min,溶去薄膜中的FeCl3颗粒,FeCl3所占据的位置将变成孔洞;再将溶去无机盐的薄膜在50℃干燥10min,即可获得多孔薄膜。
实施例6 可控孔径的多孔薄膜的制造方法
1)设计多孔薄膜的孔径大小为700~900 nm,根据所设计的薄膜的孔径大小筛选出颗粒大小为700~900 nm的无机盐LiCl;
2)取PP(聚丙烯)作为薄膜的原材料,与经筛选后的LiCl按质量比100:20混合,于200℃条件下加热1h,此时PP完全熔融,LiCl不会熔融,再用磁力搅拌机对其搅拌分散1h;此时,PP中均匀分散有LiCl的离子,增强了熔融体PP的导电性;
3)将上步混匀的熔融物质经制膜机制得薄膜,所得薄膜上均匀分散着LiCl颗粒;
4)将上所得的薄膜置于10%v/v的NMP(N-甲基吡咯烷酮)溶液中浸泡30min,溶去薄膜中的LiCl颗粒,LiCl所占据的位置将变成孔洞;再将溶去无机盐的薄膜在50℃干燥10min,即可获得多孔薄膜。
实施例7可控孔径的多孔薄膜的制造方法
1)设计多孔薄膜的孔径大小为400~500nm,根据所设计的薄膜的孔径大小筛选出颗粒大小为400~500 nm的无机盐NaCl;
2)取PP(聚丙烯)作为薄膜的原材料,与经筛选后的NaCl按质量比100:20混合,于200℃条件下加热1h,此时PP完全熔融,NaCl不会熔融,再用磁力搅拌机对其搅拌分散1h;此时,PP中均匀分散有NaCl的离子,增强了熔融体PP的导电性;
3)将上步混匀的熔融物质经制膜机制得薄膜,所得薄膜上均匀分散着NaCl颗粒;
4)将上所得的薄膜置于60~80℃二甲苯中进行溶胀,然后去掉二甲苯,加入10%v/v的乙醇溶液浸泡30min,溶去薄膜中的NaCl颗粒,NaCl所占据的位置将变成孔洞;再将溶去无机盐的薄膜在50℃干燥10min,即可获得多孔薄膜。
本发明通过控制无机盐颗粒的大小来控制多孔薄膜孔洞的大小来实现可控孔径的多孔薄膜的制造。本发明中薄膜的生产不仅限于有针纺,同时各种各种通过电场来实现薄膜生产的无针纺薄膜制造工艺也属于本工艺保护的范畴。多孔微米级别的纤维生成工艺也属本工艺范畴。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (6)
1.一种可控孔径的多孔薄膜的制造方法,其特征在于:包括以下步骤:
1)将聚合物与无机盐混合,加热使聚合物熔融,而无机盐不熔融;充分搅拌分散,此时聚合物熔融体中分散有无机盐的离子,增强了聚合物熔融体的导电性;
2)上步所得熔融物质经制膜机制备得薄膜,所得薄膜上分散有无机盐颗粒;
3)将薄膜置于溶剂A中浸泡溶去无机盐颗粒,干燥,即可获得多孔薄膜;
所述溶剂A选自醇的水溶液、醚的水溶液、酮的水溶液、酯的水溶液、酸的水溶液、卤烃的水溶液、芳烃的水溶液、酰胺的水溶液中的至少一种;所述聚合物选自聚乙烯、聚丙烯、聚酰胺、聚丁烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚偏氟乙烯中的至少一种;所述无机盐的粒径为10nm~10μm,步骤1)中聚合物与无机盐的质量比为100:3~30;所述溶剂A的浓度为3%~20%v/v。
2.根据权利要求1所述的方法,其特征在于:将步骤3)操作替换为:将薄膜置于溶剂A’中溶胀,去溶剂A’,加入溶剂A溶去无机盐颗粒,干燥,即可获得多孔薄膜。
3.根据权利要求1或2所述的方法,其特征在于:所述无机盐选自NaCl、KCl、LiCl、FeCl3、ZnCl2、CuCl2、AlCl3、NaNO3、KNO3、LiNO3、Fe(NO3)3、Zn(NO3)2、Cu(NO3)2、Al(NO3)3中的至少一种。
4.根据权利要求2所述的方法,其特征在于:所述的溶剂A’选自甲苯、二甲苯、甲酸中的至少一种。
5.根据权利要求1或2所述的方法,其特征在于:根据对多孔薄膜中孔径大小的需要选择相应大小的无机盐颗粒。
6.根据权利要求1或2所述的方法,其特征在于:步骤1)中加热的温度为60℃~400℃,时间为10min~2h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510562715.0A CN105131327B (zh) | 2015-09-07 | 2015-09-07 | 一种可控孔径的多孔薄膜的制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510562715.0A CN105131327B (zh) | 2015-09-07 | 2015-09-07 | 一种可控孔径的多孔薄膜的制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105131327A CN105131327A (zh) | 2015-12-09 |
CN105131327B true CN105131327B (zh) | 2019-07-02 |
Family
ID=54716930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510562715.0A Expired - Fee Related CN105131327B (zh) | 2015-09-07 | 2015-09-07 | 一种可控孔径的多孔薄膜的制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105131327B (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106867017B (zh) * | 2015-12-11 | 2021-02-19 | 东丽纤维研究所(中国)有限公司 | 一种孔径可控的微多孔膜及其制备方法 |
CN106887605B (zh) * | 2017-01-16 | 2020-04-14 | 深圳大学 | 三维蜂窝状类石墨烯非金属催化剂及制备方法与应用 |
CN109135021A (zh) * | 2018-09-03 | 2019-01-04 | 厦门朗纳科材料技术有限公司 | 一种多孔薄膜配方及制造工艺 |
CN109627485B (zh) * | 2018-12-18 | 2021-07-23 | 上海华谊三爱富新材料有限公司 | 多孔含氟聚合物的制备方法 |
CN109535614A (zh) * | 2018-12-18 | 2019-03-29 | 上海三爱富新材料科技有限公司 | 纤维增强多孔含氟聚合物的制备方法 |
CN109627484B (zh) * | 2018-12-18 | 2021-07-23 | 上海华谊三爱富新材料有限公司 | 使用回收料制备多孔含氟聚合物的方法 |
CN111962070B (zh) * | 2020-09-08 | 2022-09-27 | 中国科学院上海应用物理研究所 | 一种无机盐纳米薄膜的制备方法以及由此得到的无机盐纳米薄膜 |
CN113021733A (zh) * | 2021-03-02 | 2021-06-25 | 华中科技大学 | 一种多孔薄膜以及多孔性医用防护用品的成形方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5183607A (en) * | 1991-12-17 | 1993-02-02 | Beall George H | Polymer membranes for separation process |
TW539705B (en) * | 2000-06-30 | 2003-07-01 | Tonen Sekiyukagaku Kk | Process for preparing heat curable resin micro-porous film |
CN1253493C (zh) * | 2003-07-30 | 2006-04-26 | 复旦大学 | 一种中等孔隙率的高分子多孔泡沫的注塑制备方法 |
KR100750009B1 (ko) * | 2003-12-24 | 2007-08-16 | 아사히 가세이 케미칼즈 가부시키가이샤 | 폴리올레핀제 미다공막 |
CN102241832B (zh) * | 2011-05-14 | 2013-08-28 | 中材科技股份有限公司 | 聚烯烃薄膜及其制备方法 |
JP5832907B2 (ja) * | 2012-01-10 | 2015-12-16 | 鉄郎 野方 | ポリオレフィン微多孔膜の製造方法 |
US9908985B2 (en) * | 2012-09-11 | 2018-03-06 | UNIVERSITé LAVAL | Microporous and hydrophobic polymeric hollow fiber membranes and methods for preparation thereof |
-
2015
- 2015-09-07 CN CN201510562715.0A patent/CN105131327B/zh not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
Highly hydrophobic microporous low-density polyethylene hollow fiber membranes by melt-extrusion coupled with salt-leaching technique;S Mosadegh-Sedghi et al.;《Polymers for Advanced Technologies》;20130310;第24卷(第6期);第584–592页 |
Also Published As
Publication number | Publication date |
---|---|
CN105131327A (zh) | 2015-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105131327B (zh) | 一种可控孔径的多孔薄膜的制造方法 | |
Feng et al. | Recent progress in the preparation, characterization, and applications of nanofibers and nanofiber membranes via electrospinning/interfacial polymerization | |
Liu et al. | Electrospun jets number and nanofiber morphology effected by voltage value: Numerical simulation and experimental verification | |
CN102242464B (zh) | 聚合物-陶瓷复合材料纳米纤维膜及其制备方法和应用 | |
CN102131569B (zh) | 多孔膜及其制备方法 | |
Lu et al. | Fabrication of hierarchical porous poly (l-lactide)(PLLA) fibrous membrane by electrospinning | |
CN106049028B (zh) | 一种在聚酰亚胺纳米纤维表面包覆二氧化钛纳米层的方法 | |
CN103343423B (zh) | 一种可用作锂电隔膜的交联聚醚酰亚胺纤维膜及其制备 | |
CN105133067B (zh) | 一种可控孔径的多孔纳米纤维的制造方法 | |
CN105413488A (zh) | 一种超疏水膜的制备方法及其应用 | |
CN106334462A (zh) | 超疏水静电纺丝聚二甲基硅氧烷膜及其制备方法和应用 | |
CN111394892B (zh) | 一种同轴包覆纳米二氧化锆无机层的聚酰亚胺纳米纤维膜及其制备方法 | |
CN105862256A (zh) | 通过peo模板牺牲法制备聚四氟乙烯纳米纤维多孔膜的方法 | |
CN112774457B (zh) | 一种聚合物微滤膜及其制备方法和用途 | |
JP5880892B2 (ja) | ナノ粒子状ファイバー溶液、その製造方法、ナノ粒子状ファイバー製濾過フィルター及びその製造方法 | |
CN102733000A (zh) | 一种中空聚合物纳米纤维的制备方法 | |
CN108905655B (zh) | 一种微孔聚苯硫醚中空纤维膜的制备方法 | |
CN104213333A (zh) | 一种具有交联结构的聚酰亚胺/聚烯烃复合纤维膜及制备方法 | |
CN105442301A (zh) | 一种表面包覆二氧化钛纳米层的聚酰亚胺纤维膜的制备方法 | |
CN107742688B (zh) | 一种聚烯烃锂电隔膜及其制备方法 | |
CN101879416A (zh) | 一种纤维素复合纳滤膜的制备方法 | |
CN102268745A (zh) | 静电纺丝法制备pan多孔纳米纤维 | |
Sun et al. | Controllable surficial and internal hierarchical structures of porous poly (L-lactic acid) membranes for hydrophobicity and potential application in oil-water separation | |
CN106784546A (zh) | 一种纤维素纳米纤维增强的微孔膜、微孔复合膜及其制备方法、应用 | |
CN103498211A (zh) | 迁移型相分离制备核壳结构纳米纤维的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190702 Termination date: 20210907 |
|
CF01 | Termination of patent right due to non-payment of annual fee |